8 力学量算符
量子力学最全名词解释及知识点整理

是三重简并的,对应于这些能级的态称为三重态( | 1,1⟩, | 1, − 1⟩, | 1,0⟩)
29. 正氦与仲氦p206
处于三重态的氦称为正氦,处于单态的氦称为仲氦,或者说基态的氦是仲氦
一些结论
1. 谐振子能量本征函数及其性质


为动量,λ为波⻓。
4. 态叠加原理(Superposition principle):p17
对 于 一 般 的 情 况 , 如 果 ψ1 和 ψ2 是 体 系 的 可 能 状 态 , 那 么 它 们 的 线 性 叠 加
ψ = c1ψ1 + c2ψ2也是这个体系的一个可能状态,其中c1和c2为复常数。
20. 偶极跃迁、偶极近似(Electric Dipole Approximation): p146
由于电磁波中电场对电子能量的影响远大于磁场,忽略光波中的磁场作用和原子的尺
寸,把电场近似地用Ex = E0 cos ωt(沿z轴传播的平面单色偏振光的电场)表示后得到的
结果,这样讨论的跃迁称为偶极跃迁,这种近似叫做偶极近似。
22. 简单塞曼效应、复杂塞曼效应(Zeeman e ect):p181
在外磁场较强的情况下,没有外磁场时的一条谱线在外磁场中将分裂为三条,这就是 简单塞曼效应。
在外磁场较弱时,电子自旋与轨道相互作用不能够忽略,光谱线分裂成偶数条,这称 为复杂塞曼效应。
23. 好量子数:p187
守恒量的特点:测量值的几率分布不随时间变化,守恒量的量子数称为好量子数。
•
谐振子能量的本征函数为:ψn(x)
=
Nne−
1 2
α2 x2Hn(α
[理学]第三章量子力学中的力学量1
![[理学]第三章量子力学中的力学量1](https://img.taocdn.com/s3/m/d1f77453a417866fb94a8e05.png)
能量本征方程(定态薛定谔方程) 于这个本征值的本征函数。根据以上假定,当 粒子属于这个状态时,坐标确定,坐标值就是 本征值 r ' 。 角动量本征方程
ˆ r r ' 坐标本征方程,注意这里 r '是本征值,r ' 是属 r r' r' r'
ˆ LL ' L 'L '
注意:这些量的分量也可构成各自的本征方程。
ˆ x p
当粒子处在这个方程的解 描述的状态中 时,它的动量在x方向上的分量是确定的, 值就是所属的本征值
力学量的值肯定是实数。根据以上基本假定,这些力学量算符的 本征值是粒子力学量的某个值。因此力学量算符的本征值必须是 实数。下面我们将要介绍一种重要的算符——厄密算符
(7)复共轭算符 算符Û的复共轭算符 Û*就是把Û表达式中 的所有量换成复共轭.
ˆ O
设定义式中 则,
* ˆ ˆ )* d O d ( O
* * d ( ) d
* d * * d * * d
因为波函数 是平方可积的即
* d d A 2
ˆ T
2
2
2
前面我们已经通过能量本征值方程揭示了能量算符和能量之间 的密切关系。下面我们将这个结论推广到其他所有的物理量上:
量子力学基本假定
ˆ 表示,那么当微观粒子体系处于 F ˆ的 如果力学量 F 用算符 F ˆ 的本征函数 来描述。)时, 本征态 (即体系的状态用 F 力学量 F 具有确定值。这个值就是本征函数 所属的那个本 征值 。它们之间的关系用数学形式表达即: ˆ 本征方程 ˆ 算符 F F
第六章-力学量与本征态1

第六章 力学量与本征态 §6 - 1 量子力学中的力学量 一 力学量用算符表达量子力学中的两个基本概念 ● 量子态 波函数 ● 力学量 (具有特定性质的)算符算符代表着对波函数的一种运算(但并不一定都与力学量相对应):()ddx ψ:对波函数取导数,ψ)(r U :对波函数乘以)(r U ,*ψ: 对波函数取复共轭,ψ: 对波函数开平方根考察位置算符r 和动量算符pˆ:r r →,(6. 1)∇-=→ i ˆpp . (6. 2)经典力学中的力学量还有:势能)(r V 纯位置坐标的函数(算符不变)力)()(r r F V ∇-=速度m /p v = 动量的函数(算符可由动量的对应关系得出)动能m p T 2/2= 动能2222ˆ ()222P T m m m x y z222222∂∂∂==-∇=-++∂∂∂ (6. 3)角动量∇⨯-=⨯=r p r Li ˆˆ (6. 4)在直角坐标系中的分量表达式)(i ˆˆˆyz z y p z py L y z x ∂∂-∂∂-=-= )(i ˆˆˆzx x z p x pz L z x y ∂∂-∂∂-=-=(6. 5))(i ˆˆˆxy y x p y px L x y z ∂∂-∂∂-=-=角动量算符Lˆ的模方(L ˆ的平方) L LL ˆˆˆˆ22⋅==L 222ˆˆˆz y x L L L ++=. (6. 6)角动量在球面坐标系的表示]sin 1)sin (sin 1[ˆ22222ϕθθθθθ∂∂+∂∂∂∂-= L(6. 7)ϕ∂∂-= i ˆz L (6. 8)θθθθθ2222sin ˆ)sin (sin ˆzL L +∂∂∂∂-= (6. 9)利用了:ϕθcos sin r x =,ϕθsin sin r y =, θcos r z =;2222z y x r ++=,rz =θcos , x y=ϕtan .图21 - 1 球面坐标系二 量子力学中的哈密顿量1、 哈密顿算符 薛定谔方程的普遍形式在量子力学中,薛定谔方程的普遍形式是ψψH tˆi =∂∂(6. 10)式中H ˆ是体系的哈密顿算符( = 动能函数 +势能函数)V T H +=,(6. 11)对于一个粒子在势场V ( r )中运动的情况,有)(2ˆ22r V mH +∇-= ,(6. 12) 讨论:● 哈密顿算符决定了体系的量子态随时间的变化规律,在量子力学中占有特别重要的地位。
3.7算符的对易关系两力学量同时有确定值的条件

1/26
Quantum mechanics
§3.7 算符的对易关系 两力学量同时有确定值的条件 测不准关系
§3.7 算符的对易关系 两力学量同时有确定值的条件 测不准关系
Commutation relation of operators Conditions of two mechanical quantities simultaneously with determine value Uncertainty relation 一、算符间的对易关系 (Commutation relation of operators)
ˆ ,L ˆ ]i L ˆ [ L x y z ˆ ˆ ]i L ˆ [ Ly , L z x ˆ ˆ ]i L ˆ [ L , L z x y
ˆ ˆ ˆ [ L , L ] i L , 123 1 εαβγ—列维--斯维塔(j (j=1,2,…) 分别将gj代入前式可得对应于每个gj的一组解
第三章 量子力学中的力学量
11/26
Quantum mechanics
§3.7 算符的对易关系 两力学量同时有确定值的条件 测不准关系
所以相应的波函数
n j ai jni ( j 1, 2,
ˆ y (i p ˆz ) i p ˆz p ˆy p ˆ z (i p ˆy) i p ˆy p ˆz 0 00 p
ˆ ,p ˆ ,p ˆ 2 ] 0,[ L ˆ 2] 0 [L y z
第三章 量子力学中的力学量
6/26
Quantum mechanics
§3.7 算符的对易关系 两力学量同时有确定值的条件 测不准关系
量子力学曾谨言习题解答第五章

第五章: 对称性及守恒定律[1]证明力学量Aˆ(不显含t )的平均值对时间的二次微商为: ]ˆ],ˆ,ˆ[[222H H AA dtd -=(H ˆ是哈密顿量) (解)根据力学量平均值的时间导数公式,若力学量Aˆ 不显含t ,有]ˆ,ˆ[1H Ai dtA d=(1) 将前式对时间求导,将等号右方看成为另一力学量]ˆ,ˆ[1H Ai的平均值,则有: ]ˆ],ˆ,ˆ[[1]ˆ],ˆ,ˆ[1[1222H H A H H A i i dtA d -==(2) 此式遍乘2 即得待证式。
[2]证明,在不连续谱的能量本征态(束缚定态)下,不显含t 的物理量对时间t 的导数的平均值等于零。
(证明)设Aˆ是个不含t 的物理量,ψ是能量H ˆ的公立的本征态之一,求A ˆ在ψ态中的平均值,有:⎰⎰⎰=ττψψd A A ˆ*将此平均值求时间导数,可得以下式(推导见课本§5.1)⎰⎰⎰-≡=ττψψd AH HA iH A i dtA d )ˆˆˆˆ(*1]ˆ,ˆ[1(1) 今ψ代表Hˆ的本征态,故ψ满足本征方程式 ψψE H=ˆ (E 为本征值) (2) 又因为Hˆ是厄密算符,按定义有下式(ψ需要是束缚态,这样下述积公存在) τψψτψψτd A Hd A H⎰⎰⎰⎰⎰⎰=)ˆ(*)ˆ()~(ˆ* (3)(题中说力学量导数的平均值,与平均值的导数指同一量) (2)(3)代入(1)得:τψψτψψd A H id H A idtA d )ˆ(*)ˆ(1)ˆ(ˆ*1⎰⎰⎰⎰⎰⎰-=⎰⎰⎰⎰⎰⎰-=τψψτψψd AiE d A iE ˆ**ˆ* 因*E E =,而0=dtA d[3]设粒子的哈密顿量为 )(2ˆˆ2r V p H+=μ。
(1) 证明V r p p r dtd ∀⋅-=⋅ μ/)(2。
(2) 证明:对于定态 V r T ∀⋅=2(证明)(1)z y x p z p y p xp r ˆˆˆˆˆˆ++=⋅,运用力学量平均值导数公式,以及对易算符的公配律: ]ˆ,ˆˆ[1)ˆˆ(H p r i p rd t d⋅=⋅)],,(ˆ21,ˆˆˆˆˆˆ[]ˆ,ˆˆ[2z y x V pp z p y p x H p r z y x +++=⋅μ )],,()ˆˆˆ(21,ˆˆˆˆˆˆ[222z y x V p p pp z p y p xz y x z y x +++++=μ)],,(,[21],ˆˆˆˆˆˆ[222z y x V zp yp xp p p p p z p y p xz y x z y x z y x +++++++=μ(2)分动量算符仅与一个座标有关,例如xi p x ∂∂= ,而不同座标的算符相对易,因此(2)式可简化成:]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[222z z y y x x p p z p p y p p x H p rμμμ++=⋅ )],,(,ˆˆˆˆˆˆ[z y x V p z p y p xz y x +++],ˆˆ[],ˆˆ[],ˆˆ[]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[21222V p z V p y V p xp p zp p y p p x z y x z z y y x x +++++=μμμ(3)前式是轮换对称式,其中对易算符可展开如下:x x x x p x pp x p p x ˆˆˆˆˆ]ˆ,ˆˆ[232-= x x x x x x p x pp x p p x p p x ˆˆˆˆˆˆˆˆˆˆˆ2223-+-= x x x x x p p x pp p x ˆ]ˆ,ˆ[ˆˆ]ˆ,ˆ[2+= 222ˆ2ˆˆx x x pi p i p i =+= (4) ],ˆ[ˆˆˆˆˆˆˆˆˆˆˆˆˆ],ˆˆ[V p x p V x V p x p x V V p x V p xx x x x x x =-=-= xV x i ∂∂=ˆˆ (5)将(4)(5)代入(3),得:}{)ˆˆˆ(]ˆ,ˆˆ[222zV z y V y x V x i p p p i H p r z y x ∂∂+∂∂+∂∂+++=⋅ μ}ˆ{2V r pi ∀⋅+=μ代入(1),证得题给公式:V r p p r dtd ∀⋅-=⋅μ2ˆ)( (6)(2)在定态ψ之下求不显含时间t 的力学量A ˆ的平均值,按前述习题2的结论,其 结果是零,令p r Aˆˆˆ ⋅= 则0)ˆˆ(*2=∀⋅-=⋅=⋅⎰⎰⎰V r p d p r p r dtdτμτψψ (7)但动能平均值 μτψμψτ22ˆ*22pd p T =≡⎰⎰⎰由前式 V r T ∀⋅⋅=21[4]设粒子的势场),,(z y x V 是z y x ,,的n 次齐次式证明维里定理(Virial theorem ) T V n 2= 式中V是势能,T是动能,并应用于特例:(1)谐振子 T V = (2)库仑场 T V 2-=(3)T V n Cr V n 2,==(解)先证明维里定理:假设粒子所在的势场是直角坐标),,(z y x 的n 次齐次式,则不论n 是正、负数,势场用直角痤标表示的函数,可以表示为以下形式,式中V假定是有理函数(若是无理式,也可展开成级数):∑=i j kkj ii j kz y x Cz y x V ),,( (1)此处的k j i ,,暂设是正或负的整数,它们满足:n k j i =++ (定数)ijk C 是展开式系数,该求和式可设为有限项,即多项式。
量子力学周世勋习题解答第三章

第三章习题解答3.1 一维谐振子处在基态t i x e x ωαπαψ2222)(--=,求:(1)势能的平均值2221x U μω=; (2)动能的平均值μ22p T =;(3)动量的几率分布函数。
解:(1) ⎰∞∞--==dx e x x U x 2222222121απαμωμωμωμωππαμω ⋅==⋅=2222221111221ω 41= (2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ ⎰∞∞----=dx e dx d e x x 22222122221)(21ααμπα ⎰∞∞---=dx e x x 22)1(22222αααμπα][222222222⎰⎰∞∞--∞∞---=dx e x dx e x x ααααμπα]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222 ω 41=或 ωωω 414121=-=-=U E T (3) ⎰=dx x x p c p )()()(*ψψ 212221⎰∞∞---=dx ee Px i xαπαπ⎰∞∞---=dx eePx i x222121απαπ⎰∞∞--+-=dx ep ip x 2222222)(21 21αααπαπ ⎰∞∞-+--=dx ee ip x p 222222)(212 21αααπαπ παπαπα2212222p e -=22221απαp e-=动量几率分布函数为 2221)()(2απαωp ep c p -==#3.2.氢原子处在基态0/301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。
解:(1)ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/23020⎰⎰⎰⎰∞-==⎰∞-=0/233004dr ar a a r04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr ea e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为 ⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-=2/23004)(r e a r a r -=ω 0/2030)22(4)(a r re r a a dr r d --=ω 令 0321 , ,0 0)(a r r r drr d =∞==⇒=,ω当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。
量子力学— —算符
,都是厄米算符。
对于任意量子态
,
。所以,动量算符确实是一个厄米算符。 动量算符确实是一个厄米算符
返回目录
4/52
1.2 (位置算符)本征值与本征函数
假设,位置算符 的本征值为 的本征函数是 。用方程表达, 这方程的一般解为,
其中, 虽然
是常数, 无法归一化:
是狄拉克δ函数。
设定
= 1,我们可以使
满足下述方程:
们立刻再测量可观察量
,得到的答案必定是
可是,假若,我们改为测量可观察量 为
,则量子态不会停留于本征态
的本征态。假若,得到的测量值为其本征值
,则量子态几率地坍缩为本征态
根据不确定性原理, 的不确定性与 与 之间, 与 的不确定性的乘积 之间,也有类似的特性。 ,必定大于或等于 。
返回目录
19/52
返回目录
13/52
3.1 角动量算符 简介
角动量促使在旋转方面的运动得以数量化。在孤立系 统里,如同能量和动量,角动量是守恒的。在量子力 学里,角动量算符的概念是必要的,因为角动量的计 算实现于描述量子系统的波函数,而不是经典地实现 于一点或一刚体。在量子尺寸世界,分析的对象都是 以波函数或量子幅来描述其几率性行为,而不是命定 性(deterministic)行为。
量子力学
算 符
目录
一、位置算符
1.1 厄米算符 1.2 (位置算符)本征值与本征函数 1.3 正则对易关系
七、自旋算符
7.1 概论 7.2 发展史 7.3 自旋量子数
7.3.1 基本粒子的自旋 7.3.2 亚原子粒子的自旋 7.3.3 原子和分子的自旋 7.3.4 自旋与统计
二、动量算符
量子力学中的位置与动量算符
量子力学中的位置与动量算符量子力学是描述微观世界的一种物理学理论,它的基础是量子力学方程和算符。
在量子力学中,位置和动量是两个基本物理量,它们的算符分别是位置算符和动量算符。
本文将详细介绍量子力学中的位置与动量算符,包括它们的定义、性质以及它们之间的关系。
一、位置算符在经典力学中,位置是一个确定的物理量,可以用一个具体的数值来描述。
然而,在量子力学中,位置并不是一个确定的量,而是一个算符,即位置算符。
位置算符用符号x表示,它的定义是:x = iħ∂/∂p其中,i是虚数单位,ħ是约化普朗克常数,∂/∂p表示对动量p求偏导数。
位置算符的本质是描述粒子在空间中的位置分布。
位置算符的性质有以下几点:1. 位置算符是厄米算符。
厄米算符是指满足厄米共轭关系的算符。
对于位置算符x来说,它的厄米共轭算符是x†=x。
2. 位置算符的本征态是位置本征态。
位置本征态是指满足位置本征值方程的态。
对于位置算符x来说,位置本征值方程是x|x⟩=x'|x⟩,其中x'是位置本征值,|x⟩是位置本征态。
3. 位置算符的本征值是连续的。
在经典力学中,位置是连续变量,而在量子力学中,位置算符的本征值也是连续的。
二、动量算符动量是一个描述物体运动状态的物理量,它的算符是动量算符。
动量算符用符号p表示,它的定义是:p = -iħ∂/∂x其中,i是虚数单位,ħ是约化普朗克常数,∂/∂x表示对位置x求偏导数。
动量算符的本质是描述粒子的运动状态。
动量算符的性质有以下几点:1. 动量算符是厄米算符。
对于动量算符p来说,它的厄米共轭算符是p†=p。
2. 动量算符的本征态是动量本征态。
动量本征态是指满足动量本征值方程的态。
对于动量算符p来说,动量本征值方程是p|p⟩=p'|p⟩,其中p'是动量本征值,|p⟩是动量本征态。
3. 动量算符的本征值是连续的。
与位置算符类似,动量算符的本征值也是连续的。
三、位置与动量算符的关系在量子力学中,位置算符和动量算符之间存在一种重要的关系,即不确定关系。
量子力学 第二章 算符理论
第二章(一维)算符理论本章提要:本章从线性变换和微分算子出发,建立算符理论统一它们来处理「观测行为」,引入观测公设。
接着,从观测值=本征值为实数的要求出发,找到了符合条件的厄米矩阵来描述力学量,引入算符公设。
之后介绍了运算法则、基本的位置和动量算符、复合算符的对易子、哈密顿算符等。
最后,作为对上述内容的综合应用,讨论了不确定性原理。
1.算符:每一个可观测量,在态空间中被抽象成算符。
在态空间中,观测行为被抽象为,某可测量对应的算符「作用」在态矢量上①线性变换:线性代数告诉我们,一个线性变换「作用」到n 维向量上会获得一个新的n 维向量,这等价于一个n 阶方阵「作用」在n 行1列矩阵上得到新的n 行1列矩阵,用数学语言可表示为()Ta b T =⇔=αβ。
总之,方阵与线性变换一一对应。
由于方阵性质比矩阵更丰富,我们将只研究方阵。
②微分算子:在微积分中2222,,,ii x f x f dx f d dx df ∂∂∂∂ 也可简写成f f f D Df 22,,,∇∇。
前两种在解欧拉方程和高阶方程式时常用,后两种则经常出现在矢量分析中。
简写法可看作是微分算子「作用」在函数上,我们知道它遵守加法和数乘法则,是一种线性运算③本征值和本征矢:在矩阵方程x Ax λ=中,把λ称为矩阵本征值,x 称为矩阵的本征矢 ④本征值和本征函数:在微分方程f f Dmixμ=中,把μ称为问题本征值,f 称为本征函数⑤线性算符:现在把上述概念统一为线性算符理论。
考虑一个可测量Q ,定义它的对应算符为Q ˆ,它的本征方程是ψ=ψλQˆ或λψψ=Q ˆ,把λ称为算符的「本征值」,λ的取值集合称为算符的「谱」, ψ称为算符的「本征态」(或本征矢),ψ称为算符的「本征函数」 (注意:有时也把ψ记作本征值的对应本征态λ,如后面将遇到的坐标算符本征态x 、动量算符本征态p )⑥第三公设——观测公设:对于量子系统测量某个量Q ,这过程可以抽象为对应的算符Q ˆ作用于系统粒子的态矢量ψ,测量值只能为算符Q ˆ的本征值iλ。
第四章 力学量用厄米算符表达
ˆ ˆ ˆ Fψ = Aψ + Bψ
ˆ ˆ ˆ ˆ ˆ ˆ 称算符 F 等于 A 与 B 之和。写作 F = A + B
。
ˆ ˆ ˆ ˆ ˆ 例3:哈密顿算符 H = T + V 就是动能算符 T 与势能算符 V
之和。算符求和满足交换律与结合律,
ˆ ˆ ˆ ˆ A+ B = B + A
ˆ ˆ ˆ ˆ ˆ ˆ A + ( B + C ) = ( A + B) + C
ˆ ˆ ˆ ˆ ˆ l = r × p = r × (−i ∇) = −i r × ∇
如果没有经典力学表达式的量子力学力学量,比如电子的自旋, 它的算符由量子力学独立建立。
Atomic physics and quantum mechanics
9
三
算符运算的基本性质
定义1:线性算符
由于态叠加原理,在量子力学中的力学量算符应是线性算符, 所谓线性算符,即是具有如下性质
式中c1、c2为任意常数。
Atomic physics and quantum mechanics
20
定义9:转置算符
ˆ ˆ 算符 A 的转置算符 AT 定义为
ˆ Tφ = dτφ Aψ ∗ ˆ dτψ ∗ A ∫ ∫ ˆ ˆ (ψ , ATφ ) = (φ ∗, Aψ ∗)
式中 ψ 与 例5:证明
∫
+∞ −∞
⎡⎛ ∂ ⎞ T ∂ ⎤ dxψ ∗ ⎢⎜ ⎟ + ⎥ φ = 0 ∂x ⎥ ⎢ ⎝ ∂x ⎠ ⎣ ⎦
ψ ∗, φ 任意
∂ ⎛ ∂ ⎞ + =0 ⎜ ⎟ ∂x ⎝ ∂x ⎠
21
T
Atomic physics and quantum mechanics