红外波普分析

红外波普分析
红外波普分析

相关文章:红外光谱(I R)(Infrared Spectroscopy)【1】

4、酯(νC=O H和νC-O-C)

酯和内酯有两个由νC=O和νC-O伸缩引起的很强的特征吸收带.

(1)νC=O

大多数饱和脂肪酸酯的强的νC=O伸缩振动发生在比酮的正常频率为高的

1740cm-1处(甲酸甲酯除外,在1725-1720cm-1)。

C=C-COOR或ArCOOR的νC=O吸收,由于共轭作用移向低波数,在

1730-1715cm-1。

注意:O=C-O-C=C-或RCOOAr结构的νC=O吸收,则移向高波区。α-卤代羧酸酯的νC=O吸收频率也升高,如:三氯乙酸酯在1770cm-1。六元环状内酯羰基吸收与正常酯的相同,当环变小时,其吸收位置将移向高波区。

(2)νC-O-C

酯的νC-O-C伸缩振动吸收带在1330-1030区域有两个吸收带,其一是νasC-O在1300-1000cm-1,此带有吸收强度大和较宽的特征,用处较大。另一个是νsC-O在

1140-1030cm-1,此带吸收强度小,参考价值不大,但是内酯此带吸收强度较大。(其中1250-1230cm-1处的宽而强的谱带是乙酸烷基酯的特征吸收带。)

5、酸酐

(1)n C=O

酸酐的C=O伸缩振动在1860-1800cm-1和1800-1750cm-1出现两个强的吸收峰,前者是反对称伸缩振动,后者是对称伸缩振动。这两个峰相距约60cm-1,开链酸酐高波数峰稍强于低波数峰,而环状酸酐则高波数峰弱于低波数峰,以此可区别这两类酸酐。

共轭的酸酐则使羰基吸收向低波数移,在靠近1775cm-1和1720cm-1处出现吸收。

环状酸酐中,随着环的张力变大,吸收峰向高波移动。例如:

五元酸酐VC=O 1871cm-1 1793cm-1

六元酸酐VC=O 1822cm-1 1780cm-1

(2) n C-O-C

酸酐的C-O伸缩振动产生强的吸收峰,开链的在1180-1045cm-1,而环状酸酐在1310-1200cm-1,利用此峰也可以区别这两种酸酐。

6、酰胺:兹有胺和羰基化合物的特点.

酰胺的主要特征峰有三个,即νC=O伸缩振动(称为酰胺I带);νN-H伸缩振动及

δN-H弯曲振动(称为酰胺II带),酰胺还有C-N吸收带(酰胺III带),

(1)νN-H

在稀溶液中,伯酰胺出现两个中等强度的峰,分别在3500cm-1和3400cm-1附近,

相应于N-H的反对称伸缩振动。在浓溶液和固体中由于有氢键发生,将移向

3350-3180cm-1低频区。随着二缔和和三缔和体的存在将在此区域出现多重峰。仲酰胺

在很稀溶液中,在3460-3420cm-1处只出现一个谱带,浓溶液中或固体中缔和体出现在3330cm-1,在3110-3060出现一个弱吸收带,是δN-H(1550cm-1)的倍频峰。叔酰胺由于N上没有H而没此吸收带,因此利用此吸收带可以识别伯、仲、叔酰胺。

(3)δN-H弯曲振动(酰胺II带)

伯酰胺在νC=O吸收区较低一些的地方出现尖峰,其强度相当于νC=O峰的1/3-1/2。游离态在1600cm-1处,缔合态在1650-1620处,易被I带覆盖.仲酰胺游离态在

1550-1510处;缔和体在1570-1515处, I带和II带能够分开.利用此特点区分伯,仲酰胺.叔酰胺和内酰胺没有此吸收带。注意:内酰胺含有N-H键也不含有δ N-H谱带。

(4)酰胺还有C-N吸收带(酰胺III带),它们的吸收位置如下:

伯酰胺1420-1400cm-1(中);仲酰胺1305-1200cm-1(中)

叔酰胺700-620cm-1(中)

八、胺和胺盐

1、胺:胺有三个特征吸收带即:nNH、δ N-H和nC-N吸收带,其中nNH吸收带用处较大(3550-3250cm-1)。

nNH

游离一级胺的nN-H伸缩振动在3400-3490(中)处,有两个吸收峰,相应于N-H的对称和反对称伸缩振动,另外,脂肪族伯胺在nNH (S)吸收带的低一侧有肩峰;而芳香伯胺有一个尖锐独立的小峰,它们是δN-H2(s)的倍频和nNH2(s)共振的结果。缔和的nN-H

伸缩振动向低波数方向移动,但位移程度不及O-H吸收峰的情况,位移一般不大于100cm-1,并且吸收峰较弱、较尖锐。二级胺的稀溶液在3310-3350cm-1区域只有一个吸收峰。三级胺没有N-H,故没有N-H 伸缩振动吸收峰。

δ N-H

一级胺的面内δN-H弯曲(剪式)振动吸收在1540-1650cm-1(中、强)区域,可用于鉴定(与芳环的骨架振动吸收重叠),一级胺的非平面(面外)摇摆振动吸收在650-900cm-1(宽)区域,而脂肪一级胺则在750-850cm-1(宽、中)区域,非常特征。二级胺的N-H弯曲振动吸收很弱,不能用于鉴定,二级胺的N-H非平面摇摆振动在700-750cm-1区域有强的吸收.

VC-N 位于指纹区与VC-C 重叠,难以辨别.

2、铵盐

成盐之后,伯胺和仲胺的νNH νNH3+ 伯胺盐在3000-2800cm-1之间出现强和宽的吸收带,由NH3+基中不对称和对称伸缩振动引起的。

伯胺盐的δNH3+出现在1600-1575cm-1和1550-1504cm-1处两个吸收带,这相应于不对称和对称弯曲振动吸收带。

仲胺盐的νNH2+ 出现在2700-2250cm-1 区域,是一个强的宽带或是一组较尖锐的谱带。δ NH2+ 出现在1620-1560cm-1区域是一个中等强度的谱带。

叔胺盐的νNH+ 在2700-2250cm-1 区域出现一个强的宽带或一组较尖的谱带。叔胺盐的δ NH1+ 谱带很弱,没有实用价值。

确定样品是否为胺的最好办法是将样品用无机酸处理,然后观察3000-2200cm-1范围出现宽而强的“铵谱带”。然后再根据各类胺盐的吸收特征,确定是哪类胺。

九、硝基化合物

硝基化和物主要有νNO2的反对称和对称伸缩吸收带,它们分别在1650-1500cm-1和1370-1250cm-1,很容易认出。

脂肪族硝基化和物的两个峰分别在1565-1545cm-1;1380-1350cm-1。

芳香族硝基化和物和共轭的脂肪族硝基化和物由于共轭使νNO2频率降低,如芳香族硝基化和物νas(NO2)1525±15cm-1;νs(NO2)1345±cm-1,另外,芳香硝基化和物在870cm-1附近出现C-N伸缩振动带。

十、腈类-C≡N

饱和脂肪腈在2260-2240 cm-1有尖而强的ν-C≡N伸缩振动吸收带,当与不饱和键和芳环共轭时,该带位移到2240-2220 cm-1区间,且强度增加。一般说来,共轭的ν-C≡N伸缩振动吸收带位移要比非共轭的低约30 cm-1。

十一、其它各类化合物

主要对含有卤素、硫、磷、硅等元素的有机化合物的特征吸收作简单介绍。

1、有机卤化合物:

在有机卤化合物中C-X键的伸缩振动吸收很强,随着卤原子量的增大,吸收带的位置向低波数移动。当两个以上卤原子连接在同一碳原子上时,有对称伸缩振动和不对称伸缩振动两种吸收带。

2、有机硫化合物

以S-O键伸缩振动吸收最强(900-700cm-1)较易识别,其它以S-H键

(2600-2550cm-1很弱);S-C(700-590cm-1此键的吸收很弱,位置易变,难以利用),亚砜的S=O键伸缩振动吸收位于(1060-1040 cm-1)是强吸收;砜的-SO2-基在

(1340-1290 cm-1)和(1160-1135 cm-1)区,分别为不对称伸缩振动和对称伸缩振动吸收带。

磺酸卤RSO2Cl的-SO2-基在(1385-1340 cm-1强)和(1185-1160 cm-1强)区,分别为不对称伸缩振动和对称伸缩振动吸收带。

磺酸RSO3H的1385-1340 cm-1中等)区,分别为不对称伸缩振动和对称伸缩振动吸收带,S-O伸缩振动吸收带在(700-810 cm-1强)。磺酸酯RSO2 OR’的(SO2-基在(1390-1290 cm-1强)和(1190-1120 cm-1强)

3、有机磷化合物

显示特征的吸收带有:P - H、P = O、P - C的伸缩振动吸收带。

P - H的伸缩振动吸收在(2425 - 2325cm-1)峰形尖,位置恒定,受分子其余部分结构影响较小,具有中等强度。

P = O的伸缩振动吸收在(1300 - 1140cm-1),也是一个强吸收带。

P – C的伸缩振动吸收:

Ph – P出现在(1450 - 1420cm-1);P - CH3出现在(1320 - 1280cm-1)。

4、有机硅化合物:

较为典型的特征吸收带为:Si - H, Si - O, Si - C等的伸缩振动吸收带。

Si-H的伸缩振动吸收在(2230-2150cm-1)是一个尖锐的强吸收带。

硅醚在(1100-1000cm-1)区至少会出现一个由Si-O-Si的不对称伸缩振动引起的强吸收。

Si-C的伸缩振动吸收在(896-690cm-1),具体的吸收位置可由硅原子上的取代基来确定。

由于硅原子连接基团的位置十分特征,所以在结构分析上很有用。各种典型特征吸收可查有关书。

第三节:红外光谱图的解析

一、谱图解析的一般步骤

1、根据分子式,计算不饱和度:f = 1 + n4 + 1/2 ( n3 – n1)

通过计算不饱和度估计分子结构式中是否有双键、三键或芳香环等,并可验证光谱解析是否合理

2、根据未知物的红外光谱图找出主要的强吸收峰。按照由简单到复杂的顺序,习惯上将红

外区分为五个区域来分析:

(1)4000~2500cm-1.这是X-H(x包括C、N、O、S等)伸缩振动区,主要的吸收基团有羟基、胺基、烃基等。

(2)2500~2000cm-1.为叁键和累积双键(-C≡C-、-C≡N-、-C=C=C-、-N=C=O-、-N=C=S-等)的伸缩振动区。

(3)2000~1500cm-1.为双键伸缩振动区,主要有羰基(C=O)吸收、碳碳双键(C=C)吸收、苯环的骨架振动及C=N N=O等基团的吸收。

(4)2000~1500cm-1,为C-H的弯曲振动吸收峰。

(5)1300~400cm-1.这个区域中有单键的伸缩振动频率、分子的骨架振动频率及反映取

代类型的苯环和烯烃面外弯曲振动频率等吸收。

在解析图谱时,可先从4000-1500cm-1的官能团入手,找出该化合物存在的官能团,然后有的放矢到指纹区找这些基团的吸收峰。例如:如果样品的光谱在1740cm-1出现强的吸

收时,表示有酯羰基存在,接着从指纹区的1300-1050cm-1有酯的C-O伸缩振动强吸收,酯的官能团就进一步得到肯定。另外,指纹区的一些谱带也能提拱很有用的信息。例如在900-650cm-1区,就可以确定(CH2)4的存在,双键取代程度、芳环取代位置等。

3、通过标准图谱验证解析结果的正确性。

最常用的标准图谱有:

(1)、萨特勒(Sadtler)标准红外光谱

这是一部由美国费城萨特勒研究室所编集出版的光谱集,是目前红外光谱图收集最多者,逐年增印(每年增纯化合物谱图约2000种),到1975年为止共收集四万九千种光谱。图谱

上注有化合物的名称、分子式、结构式,大多数有分子量、熔点、沸点、样品来源、制备方法

和测绘谱图所用仪器等。并附有以下几种索引:

A、―Alphabetical Index‖:按字母顺序排列的化合物名称索引,从化合物的名称可以找

出光谱号码;

B、―Molecular Formula Index‖:分子式索引,按C、H、Br、Cl、F、I、N、O、P、Si、M的顺序排列。

C、―Chmical Classes Index‖按字母排列的化合物种类索引,化合物共分为89类。

D、―Functional Group Alphabetical Index‖按字母顺序排列的功能团索引,要查功能团的特征吸收领域,谱线形状和吸收强度时,比较方便。

E、―Wave Length Index‖:从光谱中的几个主要吸收带的波长就能找出光谱号码和该化合物。(其索引检索方法见洪山海编者的《光谱解析在有机化学中的应用》P86)。

F、―Commercial Formual Index‖:从商品名可以找到光谱号码。

G、―Numerical Index‖:光谱号码索引,用上述几种索引,知道了光谱号码后,就可以利用这个索引来找到化合物名称和所在。

(2)、DMS穿孔卡片(Documentation Of Molecular Spectroscopy)

由英国和西德联合编制的卡片形式出现的标准图谱集。分三种类型:有机化合物卡片呈桃红色;无机化合物呈淡兰色;文摘卡片呈淡黄色。现已出34000种

(3)、―API‖红外光谱资料

(AmericanPetrleumInsearchProject44,InfraredSpectralData)为美国石油研究所研究计划44所收集,其中的80%是烃类的光谱,其它则是卤代烃、硫化物以及少量简单的醛、酮、酯的光谱,有两种索引,一种按照谱图收集顺序编目,另一种为根据分子中出现的元素分类,然后再按碳原子数的顺序来排列。

二、解析图谱应注意几点:

1、解析时应兹顾红外光谱的三要素,即峰位、强度和峰形

如,羰基的吸收峰比较强,如果在1700cm-1附近有吸收,但其强度很低,这并不表明所研究的化合物存在羰基,而是说明该化合物存在少量含羰基的杂质。另外,从峰形可判断官能团,如缔合的羟基、缔合的伯胺的吸收峰位置略有差别。但缔合的羟基峰圆滑而宽阔,而缔合的伯胺吸收峰较尖,有分岔。

2、注意同一基团的几种振动吸收峰的相互映证。

防止解释的片面性:对于官能团的定性,通常只有在伸缩振动和弯曲振动频率都出现的情况下,才能肯定。不能确定时,可用化学方法、质谱、核磁、紫外等检验。对化合物的鉴定只有在全部谱峰位置,强度和形状完全吻合时,才能确定,否则就不能认为是同一化合物。

3、注意区别和排除非样品谱带的干扰。

例1、计算C10H20O的不饱和度

U=1+ 10 + 0.5×(0-22)=0

这可以提供化合物不含羰基,可能是醇或醚。

例2.计算C7H8O的不饱和度

U=1+ 7 + 0.5×(0 – 8)= 4

此化合物的不饱和度为4,就可以提供含有苯环结构的线索,如再通过红外光谱就可以决定。

注意:如果不饱和度等于4或大于4,则首先考虑的是芳香族化合物。

五、红外分光光度计制样和图谱表示

1、仪器简介

现在一般用于有机化合物的红外分光光度计,都是双光束,而且有自动记录装置的。分光用的设备分两种——棱镜型和光栅型。用氯化钠制成的棱镜,可以通过波长直至15微米的红外光,而用氯化钠棱镜,则可以达25微米,光栅型的则可延长到50微米,而且分光精度可以达到一个厘米-1,因此新的仪器已逐步采用光栅型。

1、样品的制备

在测定红外光谱的操作中样品制备是很重要的。气体、液体和固体样品都可以得到红外光谱图。下面分别加以简述。

⑴气体样品:气体样品是在气体池中进行测定,先把气体池中的空气抽掉,然后注入被测气体进行测定.

(2)液体样品:如纯化合物本身就是液体,则可很简单的将一滴样品夹在二片盐板之间,使生成一极薄的膜,用于测定光谱。此外亦可将其放入一个极薄的氯化钠样品池中

(0.0025—0.1mm厚度)。这样得到的光谱不能排除分子中间的相互影响(如氢键等),因此最好在惰性溶剂的稀溶剂中测定一下作比较。

(3)溶液样品:制备测定红外光谱用的溶剂,一般为四氯化碳、二硫化碳和氯仿,前两者应用较广,氯仿虽是一个很好的有机溶剂,但会产生较强和较广阔的吸收带。一般溶液的浓度大概在1%左右,置于0.5mm厚度的盐池中,应用双光束光度计,可将纯溶剂放在参考池中,这样溶剂的吸收光谱便可以低消掉。

注意所选用的溶剂不能和溶质发生反应。例如二硫化碳不能作为伯胺或仲胺的溶剂。氨基醇与二硫化碳和四氯化碳会缓慢的发生反应。

(4)固体样品:固体样品的制备常用的有以下两种方法;

A:石蜡油研糊:将固体样品1—3mg,与一滴医用石蜡油一起研磨约2分钟,然后将这糊状物夹在二片盐板中间,即可以放入仪器的样品槽内测试。这一方法的缺点主要是石蜡油本身在2900、1465和1380cm-1区域有强吸收峰,在解释图谱时,须先将这几个峰划去以免误解。

B.卤化盐薄片法:将1mg无水氯化钾或溴化钾混匀研细后,放在金属模中,在真空下加压5分钟,形成含有分散样品的透明卤化盐薄片,可以得到没有其他杂质的吸收光谱.其缺点是由于卤化盐易于吸潮,有时不能避免在3500 cm-1左右出现水的吸收峰,因此样品中是否存有-OH基便会引起怀疑。此外,也可以在薄片制备及保存过程中出现多晶想象。

2、图谱的表示方法

对光谱吸收带的标绘法,在红外光谱图中,吸收位置多用波数(cm-1)表示频率,也有用波长(λ)表示频率的。吸收强度一般都用下列符号来表示:VS(很强)、S(强)、M(中等)、W(弱)、b(宽)、Vw、Sh(肩状吸收带)。

光谱图一般有两种表示法,一种是以吸光度(即光密度)作纵坐标(lgI0/I),以波长或波数作横坐标,这样表示的图谱吸收峰向上。另一种表示方法是以透光率(T%,即I/I0*100)为纵坐标,以波长或波数为横坐标,这样表示的图谱吸收峰向下,吸收越强,则曲线越向下降。这两种方法一般后一种用的较多。

第四节红外吸收光谱在有机化学中的应用

红外光谱法无论是在科学技术方面,还是在结构关系的研究方面都较成熟,因此应用也相当广泛,是现代研究物质的重要工具之一。现将其在有机化学方面的应用情况介绍如下。

一、鉴定化合物

这项工作在日常中遇到最多,尽管有机化合物多达数百万种,红外光谱对鉴定是否是某一化合物是一项有力的工具。通常工作方法有下列几种:

1、鉴定是否为已知的化合物

在鉴定是否为已知的化合物时,通常又有这二种情况:一种是用已知的标准样品与样品在同样条件下测试,所得的红外光谱图,如果官能团区和指纹区的吸收峰及其相对强度完全吻合,则样品即被认为与该标准品为同一化合物。另一种情况是没有标准样品时,可查阅有关的红外光谱的标准图谱。一般来说官能团区和指纹区的吸收峰及其相对强度都完全吻合,则可以认为是同一化合物。

2.鉴定一个全新的未知化合物

对于一个文献上没有的全新化合物的鉴定工作,则是一项很复杂的工作,仅凭一种红外光谱图是不能完全解决的,但是红外光谱图可以给我们提供一些很有用的官能团信息。再用

其他波谱方法,经典化学法,以及各项物理常数的测定等配合,然后经过多方面判断、推理综合考虑后才能下结论。

二.对反应进程的测定:

对反应进程的研究有些借助于红外光谱还是很方便的,例如在反应过程中,总是伴随着一些基团的消失和另一些新的基团的出现。因此在反应过程中定时取出少量样品测定光谱,观察一些关键吸收带的消失和生成,便可以测定反应进行的程度,并进行反应动力学和反应速率的研究。

三.定量分析:

利用红外分光光度计进行定量分析,正如可见光比色分析或紫外光谱定量分析一样,它的理论基础仍然是比耳—朗伯特定律,即:

A=abc

定量分析同样是在某一选定波长下测其消光值,然后在一定的浓度范围内按比耳定律进行计算。误差在5%左右,虽不如紫外光谱灵敏,但红外光谱可供选用的峰数目较多,这时分析组分比较复杂的混合物特别方便,故在有些情况下仍用作定量分析。

四.判断有机化合物的结构

用红外光谱图判断化合物的结构通常是用的较多的。下面我们将应用一些实例来讨论应用红外光谱判断化合物结构的方法:

1、计算有机物的不饱和度:不饱和度表示有机物中碳原子的饱和程度。通过不饱和度的计算,可以缩小判断结构的范围。提供可能结构的线索。所以在测定结构时非常有用。计算不饱和度U的经验公式为:

U=1+n4+2×n6+0.5×(n3+3×n5-n1)

U=1+ n4+0.5×(n3-n1)

式中n1,n3,n4,n5,n6式中一价,三价和四价,五价,六价原子的数目。

通常规定双键(如C=C,C=O等)和饱和环的不饱和度为Ⅰ;(C≡C,C≡N)的不饱和度为2,苯环的不饱和度为4(可理解为一个环加三个双键),但是应注意式中对二价原子不做考虑。此外对于稠环芳烃可用下面公式计算不饱和度,

U=4r - s

r为稠环芳烃的环数s为公用边数

红外光谱(FTIR)实验报告

红外光谱仪调查及实验报告 第一部分红外光谱仪调查 1.1 简介 傅里叶红外光谱仪: 全名为傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR Spectrometer),是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 滤光片型近红外光谱仪器: 滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。 色散型近红外光谱仪器: 色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。 傅里叶变换型近红外光谱仪器: 傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.78~300μm。通常又把这个波段分成三个区域,即近红外区:波长在0.78~2.5μm(波数在12820~

4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm-1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数(wavenumber)σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪 等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收

红外光谱分析实验报告

仪器分析实验 实验名称:红外光谱分析实验 学院:化学工程学院专业:化学工程与工艺班级: 姓名:学号: 指导教师: 日期:

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 三、仪器和试剂 1、仪器: 美国尼高立IR-6700 2、试剂: 溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 计算机检测器样品室干涉仪光源?→??→??→??→? 四、实验步骤 1、打开红外光谱仪并稳定大概5分钟,同时进入对应的计算机工作站。 2、波数检验:将聚乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm -1进行 波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配,分析得到最吻合的图谱,即可判断物质结构。 3、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg 苯甲酸,加入在红外灯下烘干的100-200mg 溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm ),使之混合均匀。取出约80mg 混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm -1进行波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配。 4、结束实验,关闭工作站和红外光谱仪。

美术鉴赏——著名画作赏析资料

美术鉴赏考试资料 一、名词解释 1、哥特式建筑:“哥特式”意思是“野蛮的、乏味的”。起源于十一世纪的法国,在中世纪时被称为“法国式”,其流行于十三、十四世纪的欧洲,文艺复兴以后被称为哥特式。哥特式建筑以尖拱取代罗马式圆拱,改变了罗马建筑的承重墙模式,以垂直向上的动势为特点,更加衬托了空间的高耸峻峭。宽大的窗子上饰以彩色玻璃宗教画,广泛运用簇柱、浮雕等层次丰富的装饰,高耸、轻盈、神秘,是一种宗教建筑审美风格。肋拱的穹隆工程,成肋骨状的穹隆可以建在更复杂的平面上。独立飞券是哥特式建筑的一个关键要素,这种飞券在建筑物的两侧凌空越过侧廊上方,抵住中殿十字拱的四角起点,承受其侧推力。 自公元12世纪到公元15世纪,城市已成为各个封建王国的政治、宗教、经济和文化中心,哥特式教堂是建在由城市保护的城市中,它已经不再具有罗马式建筑那样的城堡功能,而有了更宽阔、更高、更明亮的内部空间。标明在最黑暗的中世纪获得一点有限的自由,人们会发现一丝现实世界的阳光透进了黑暗的中世纪。其风格是教会的弃绝尘寰的宗教思想的体现,也是城市显示其强大向上蓬勃生机的精神反映。 2、印象派:印象派,也叫印象主义,19世纪60—90年代在法国兴起的画派。印象派画家发现了光与色的美妙,光与色成为画面唯一主题,轮廓线消失了,严谨的造型不见了,代之而起的是朦胧的光与色,微

妙的色彩变化。其舍弃了在平面上以透视、阴影造成虚构的立体感,只以明确的轮廓线条和强烈的色彩来表现立体感。印象主义的以粗放的笔法做画,作品缺乏修饰,是一种对笔法较草率的画法。印象主义采取在户外阳光下直接描绘景物,追求以思维来揣摩光与色的变化,并将瞬间的光感依据自己脑海中的处理附之于画布之上,这种对光线和色彩的揣摩也是达到了色彩和光感美的极致。 印象主义画家反对当时占正统地位的古典学院派,反对日益落入俗套、矫揉造作的浪漫主义绘画。作为一种美术思潮,印象主义绘画在世界美术史上具有重要地位,它推动了以后美术技法的革新与观念的转变,对欧美、日本乃至中国的画家产生过或大或小的影响。 3、现实主义:有时又称“写实主义”。是从文艺复兴到十九世纪这一特定历史时期形成的一种文艺思潮和创作方法。继法国浪漫主义之后,出现了以赞美大自然,描写现实普通人们生活的现实主义美术运动。现实主义是指表现生活真实的艺术,用忠实于对象的手法描写自己眼界所及的事物,是透过现象反映事物的本质。现实主义在题材上抛弃了新古典主义的神话传说与古代英雄人物、浪漫主义的中世纪传奇、异国情调和不切实际的幻想,把眼光指向现实生活,拓展了艺术创作的题材范围。在艺术表现上,它重视自然美和真实美,以追求写实手法为特点,如实地描绘大自然和反映现实生活,倡导对社会生活的评价,对普通人生活的关切,对大自然的亲切描绘。写实是现实主义油画的艺术手法,但现实主义油画比写实有更深刻的内涵。现实主义油画从写实主义的“历史深处”走来,但现实主义油画不能等同于

波谱分析

一、概述 元素分析:C.H.N.X.S.P ℅含量,经典分析:m.p ,b.p ,折光率 官能团特征反应:生成衍生物 缺点:繁琐,费时,不准确,有干扰 现代有机分析的两大支柱 1.色谱分析:GC, HPLC, TLC 裂解色谱成分分析2.波谱分析:UV,IR,NMR,MS (有机)结构分析 色谱分析:具有高效分离能力可以把复杂有机混合物分离成单一的纯组分。为有机结构分析服务 波谱分析:纯样品进行结构分析 微量化 测量快 结果准确 重复性好 除MS 之外,可回收样品 1.灵敏度:MS >UV >IR >1HNMR >13CNMR MS:微克级 UV: ppb 级 IR :毫克级(可微克级,FTIR )( 1HNMR :0.5mg 13CNMR : 0.5mg )可回收 质谱(MS )—分子量及部分结构信息、红外光谱(IR )—官能团种类、紫外—可见光谱(UV / Vis )—共轭结构、核磁共振谱(NMR )—C-H 骨架及所处化学环境 第二章 紫外-可见吸收光谱 有机化合物的UV 吸收位于200-400nm 之间(近紫外),V 吸收位于400-800nm 之间(可见),真空(远)U V :< 200 n m σ→ σ*跃迁吸收,石英器皿应用范围 :2 0 0 – 3 0 0 n m 、玻璃器皿应用范围 :> 3 0 0 n m 郎伯-比耳(Beer-Lambert)定理 A = l o g I 0 / I = l o g 1 / T = εc L 四种主要跃迁所需能量ΔΕ大小顺序:n →π*<π→π*< n →σ*< σ→σ* π→π* K 带(跃迁允许)ε 10 4~5 n →σ* R 带(跃迁禁阻) ε≯2 0 0 0 溶剂效应 溶剂极性增大,π—π*跃迁向红移,ΔE = h ν=h/λ、n —π*跃迁向蓝移,精细结构消失 有机化合物的电子吸收光谱:饱和烃 仅有σ→σ* 跃迁 吸收光谱 λ<200nm 含杂原子饱和烃 含O 、S 、 N 和卤素等的 饱和烃衍生物则有σ→σ* 及n →σ* 跃迁需能量大。 150~250nm 发(生)色团:能吸收紫外或可见光而跃迁的基团,主要为含有π键的不饱和基团。如-C=C-、-C=O 、-NO 2、—N =N —、乙炔基、腈基等。 增(助)色团: 含杂原子的饱和基团。如-OH 、-OR 、-NH 2、-NHR 、-X 、-SH,本身无增色功能,不能吸收λ>200nm 光,但当它们与发色团相连时, 会发生n-π*共轭,E π→π*降低,使发色团的吸收波长移向长波,吸收强度(ε)增加 不饱和烃:有σ→σ*, π→π* 跃迁 单个双键,λ在远紫外,含两个双键,但不共轭,则与单个双键类似 共轭双键,λ红移,共轭体系越大红移越明显。当双键与杂原子相联则π→π* 红移,吸收增强 当双键上含杂原子又与杂原子相联,则 n →π* 蓝移 醛、酮、羧酸、酯有σ→σ*,n →π*,λmax =270~300nm,ε10~20, R 带,醛酮的特征 n →σ*, λmax ~180nm,ε10~20, π→π* , λmax ~150nm,ε10~20 Woodward-Fieser 经验规律:(π-π* K 带) 5.α,β—不饱和醛、酮 C C C C C O αβγδ δC C C O αββ

固体红外光谱实验报告

KBr压片法测定固体样品的红外光谱 一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握Nicolet5700智能傅立叶红外光谱仪的操作方法。 3、掌握用KBr压片法制备固体样品进行红外光谱测定的技术和方法。 4、了解基本且常用的KBr压片制样技术在红外光谱测定中的应用。 5、通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 二、仪器及试剂 1 仪器:美国热电公司Nicolet5700智能傅立叶红外光谱仪;HY-12型手动液压式红外压片机及配套压片模具;磁性样品架;红外灯干燥器;玛瑙研钵。 2 试剂:苯甲酸样品(AR);KBr(光谱纯);无水丙酮;无水乙醇。 三、实验原理 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。

图1 仪器的基本结构 四、实验步骤 1. 红外光谱仪的准备 (1)打开红外光谱仪电源开关,待仪器稳定30 分钟以上,方可测定; (2)打开电脑,选择win98系统,打开OMNIC E.S.P软件;在Collect菜单下的Experiment Set-up 中设置实验参数; (3)实验参数设置:分辨率 4 cm-1,扫描次数32,扫描范围4000-400 cm-1;纵坐标为Transmittance 2.固体样品的制备 (1)取干燥的苯甲酸试样约1mg于干净的玛瑙研钵中,在红外灯下研磨成细粉,再加入约150mg干燥且已研磨成细粉的KBr一起研磨至二者完全混合均匀,混合物粒度约为2μm以下(样品与KBr的比例为1:100~1:200)。 (2)取适量的混合样品于干净的压片模具中,堆积均匀,用手压式压片机用力加压约30s,制成透明试样薄片。 3.样品的红外光谱测定 (3)小心取出试样薄片,装在磁性样品架上,放入Nicolet5700智能傅立叶红外光谱仪的样品室中,在选择的仪器程序下进行测定,通常先测KBr的空白

波谱分析知识全书总结

波谱分析(spectra analysis) 波谱分析的内涵与外延: 定义:利用特定的仪器,测试化合物的多种特征波谱图,通过分析推断化合物的分子结构。特定的仪器:紫外,红外,核磁,质谱,(X-射线,圆二色谱等) 特征波谱图: 四大谱;X-射线单晶衍射,圆二色谱等 化合物:一般为纯的有机化合物 分子结构:分子中原子的连接顺序、位置;构象,空间结构 仪器分析(定量),波谱分析(定性) 综合性、交叉科学(化学、物理、数学、自动化、计算机) 作用:波谱解析理论原理是物理学,主要应用于化学领域(天然产物化学和中药化学、有机化学、药物化学等),在药物、化工,石油,食品及其它工业部门有着广泛的应用;分析的主要对象是有机化合物。 课程要求:本课将在学生学习有机化学、分析化学、物理化学等课程的基础上,系统讲授紫外光谱(UV)、红外光谱(IR)、核磁共振光谱(NMR)和质谱(MS)这四大光谱的基本原理、特征、规律及图谱解析技术,并且介绍这四大光谱解析技术的综合运用,培养学生掌握解析简单有机化合物波谱图的能力。为学习中药化学有效成分的结构鉴定打下基础。 第一章紫外光谱(ultraviolet spectra,UV) 一、电磁波的基本性质和分类 1、波粒二象性 光的三要素:波长(λ),速度(c),频率(v) 电磁波的波动性 光速c:c=3.0 x 1010 cm/s 波长λ :电磁波相邻波峰间的距离。用nm,μm,cm,m 等表示 频率v:v=c/ λ,用Hz 表示。 电磁波的粒子性 光子具有能量,其能量大小由下式决定: E = hν = hc/λ(式中E为光子的能量,h为普朗克常数,其值为6.624× 10-34j.s ) 电磁波的分类

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

波谱分析技术

第四节波谱分析技术 一、专家评议 波谱包括核磁共振 (NMR),顺磁共振 (ESR),磁共振成像 (MRI),核电四级矩共振 (NQR),光磁共振 (LMR) 等几种. 其中核磁共振 NMR 是化学研究上鉴定化合物结构的利器,在波谱仪器中最主要与最常见,将继续是本次评议的重点。 本次对于核磁共振 NMR 的评议介绍有以下两个主题: 如何选购合适的核磁共振谱仪,谱仪探头的评议介绍。 核磁共振谱仪在市场供应方面,和色谱光谱等其它常见的仪器存在明显的不同。核磁共振谱仪由于价格比较昂贵(近百万到千万元人民币, 200-1000 兆超导谱仪),使用的单位少(几百),生产的厂家数目少(三家左右)。 目前生产检测化合物结构用的核磁共振谱仪的厂家有: 1.美国的 Varian 公司 (2009 年下半年为安捷伦公司收购,本评议仍以 Varian 公司 称呼); 2.德国在瑞士设厂的 Bruker 公司 (Bruker-Biospin): 3.日本电子公司 (JEOL,Ltd.) 在中国境内的核磁共振谱仪已将近 800 台,这些年来每年以近 80 台的速度增加之中。中国国产核磁共振谱仪正开展中。 中国自主研发核磁共振谱仪的进展是国人非常关注的事情。几年前列入国家"十一五科技支撑计划”,由中科院武汉物理与数学研究所领军,结合厦门大学等单位组成课题组,研发组装了两台 500 兆超导核磁共振谱仪,在2009 年底完成组装工作,2010 年初进行课题验收。我们展望下一次能进行国产核磁共振谱仪的评议介绍,期望国产谱仪能早日进入国内外市场。 二、应用报告及仪器介绍 1如何选购合适的核磁共振谱仪 波谱评议的专家组成员经常参与单位内外的核磁共振谱仪采购评鉴或认证工作。在评议会议上,专家们都很感慨购买单位普遍存在不知道如何正确选购核磁共振谱仪,有许多选错谱仪型号或部件,或由于经费充裕而选购了不必要的部件,觉得有必要借此次核磁共振谱仪的评议机会向大家阐明注意要点。 采购核磁共振谱仪,有以下事项需要进行评估与考虑:

红外光谱实验报告

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在~μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤

1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 谱带位置/cm-1吸收基团的振动形式 )n—C— n≥4) (—C—(CH 2

[参考实用]波谱分析

例1未知物分子式为C 6H 14,其IR 图谱如下,试推其结构。 例 2 未 知 物 分 子 式 为 C 4H 5N , 其 红 外 图谱 如 下 图 例3未知物分子式为C 7H 9N ,其红外图谱如下图所示,试推其结构。 例4未知物分子式为C 8H 8O 2,其红外图谱如下图所示,试推其结构。 1、未知物分子式为 C 14H 12,其 IR 图如下,试推其结构 2.分子式为C 8H 7N ,红外光谱如下,试推其结构。 3.分子式为C 4H 6O 2,红外光谱如下,试推其结构 例2,C 7 H 16 O 3 ,推断其结构:

例3:化合物C 10 H 12 O 2 ,推断结构 例4,化合物C 8 H 8 O 2 ,推断其结构: 例2:C 8 H 14 O 4 1、未知化合物的分子式为C 6H 12O 2,13 C-NMR 谱如下,求其结构 2、未知化合物的分子式为C 8H 8O,13C-NMR 谱如下,求其结构 结构为C6H5C(O)CH3 3、某含氮化合物,质谱显示分子离子峰m/z209,元素分析结果为C:57.4%,H:5.3%,N:6.7%,13 C-NMR 谱如下,推导其结构. 4、未知化合物的分子式为C 8H 18,13 C-NMR 谱如下,求其结构. 结构为(CH 3)3C-CH 2-CH(CH 3)2 5、分子式为C 9 H 10 O ,根据氢谱、碳谱推测其结构

【例题3.1】某未知化合物分子式为C 7H 9N ,碳谱数据如图3-例1所示,同时在氢谱的芳香区有一个明显的单峰,试推导其结构。 【例题3.2】某含氧五元环化合物,分子式为C 5H 10O ,由其碳谱图3-例2推测结构。 【例题3.3】某化合物分子式为C 7H 12O 3,由其氢谱和碳谱图3-例3推断结构 结构未知(C 6 H 12 O ,酮) 解析:100,分子离子峰;85,失去CH 3 (15)的产物;57,丰度最大,稳定结构,失去CO(28)后的产 物

分析实验报告-红外光谱测定苯甲酸---最终版

华南师范大学实验报告 学生姓名:杨秀琼学号:20082401129 专业:化学年级班级:08化二 实验类型:综合实验时间:2010/3/25 实验指导老师郭长娟老师实验评分: 红外光谱法测定苯甲酸 一、[ 实验目的] 1.了解苯甲酸的红外光谱特征,通过实践掌握有机化合物的红外光谱鉴定方法。 2.练习用KBr压片法制备样品的方法。 3.了解红外光谱仪的结构,熟悉红外光谱仪的使用方法。 二、[实验原理] 红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行测定。不同的化学键或官能团,其振动能级从基态跃迁到激发态所需的能量不同,因此要吸收不同的红外光,将在不同波长出现吸收峰,从而形成红外光谱。 三、[仪器与试剂] 仪器:傅里叶红外光谱仪 软件:IRSolution; 压片机、膜具和干燥器;玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末。 四、[实验步骤]

1.将所有的膜具用酒精擦拭干净,用电吹风先烘干,再在红外灯下烘烤; 2.用电子天平称量一定量的KBr粉末(每份约200mg),在红外灯下研钵中加入KBr进行研磨,直至KBr粉末颗粒足够小(注意KBr粉末的干燥); 3.将KBr装入膜具,在压片机上压片,压力上升至14Mpa左右,稳定30S; 4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试,得到背景的扫描谱图。 5. 取一定量的样品(样品:大约1.2-1.3g)放入研钵中研细,然后重复上述步骤得到试样的薄片; 6.将样品的薄片固定好,装入红外光谱仪,设置样品测试的各项参数后进行测试,得到苯甲酸的红外谱图; 7.然后删掉背景谱图,对样品谱图进行简单的编辑和修饰,并标注出吸收峰值,保存试样的红外谱图; 8.谱图分析:在测定的谱图中根据出现吸收带的位置、强度和形状,利用各种基团特征吸收的知识,确定吸收带的归属。若出现了某基团的吸收,应该查看该基团的相关峰是否也存在。应用谱图分析,结合其他分析数据,可以确定化合物的结构单元,在按照化学知识和解谱经验,提出可能的结构式。然后查找该化合物标准谱图来验证推定的化合物的结构式。 五、[结果与分析]

波谱图的分析原理方法和典型实例分析

波谱图的分析原理,方法和典型实例分析 (荆州市神舟纺织有限公司)欧怀林 一·波谱图分析的基本原理与方法: 1.机械波和牵伸波的概念与计算方法: ⑴.机械波在波谱图中,呈现“烟囱”柱形状,在一个或多个频道上出现。当宽度占据二个频道时称为双柱机械波;超过二个频道以上时称为多柱机械波。 ⑵.机械波长计算公式: a.牵伸倍数法:λ=πDxE。λ-产生机械波的回转部件的波长;Dx-产生机械波的回转部件的直径;E-输出罗拉(前罗拉)到产生机械波的回转部件的牵伸倍数。 b.传动比法:λ=πD1i。λ-产生机械波的回转部件的波长;D1-输出罗拉(前罗拉)的直径;i-产生机械波的回转部件到输出罗拉(前罗拉)之间的传动比。 c.速度法:λ=V/n。λ-产生机械波的回转部件的波长;V-出条速度;n-产生机械波的回转部件的转速。 下图为典型的机械波波谱图: 下面几张图例为前道工序产生的机械波,随后道工序牵伸后其波长变化情况: 上图为并条胶辊产生的机械波波谱图。

上图为对应的粗纱波谱图。 上图为对应的细纱波谱图。 ⑶.机械波危害程度的评价:当基本波谱上的峰高超过该峰所在波长处基本波谱高度的50%时,会对织物造成不良影响。对于连续两个或者多个机械波,其波峰必须叠加后来评价。机械波产生的疵点绝大多数呈现为规律性,机械波波峰越高,曲线图上的振幅就越大,疵点在布面体现越明显。 ⑷.牵伸波在波谱图中,跨越三个或三个以上频道,形成像小山形隆起状的波形。 ⑸.牵伸波计算公式:λ=KEL W。E-输出罗拉到产生牵伸波部位的牵伸倍数;L W-纤维的平均长度;K-常数,细纱2.75;粗纱3.5;并条4.0;精梳条4.0;气流纺5.0。 ⑹.牵伸波危害程度的评价:牵伸波波峰越高,曲线图上的振幅就越大,疵点在布面的体现越明显。牵伸波波长不像机械波波长那样基本固定,而在一定范围内波动,故触发多个频道,形成小山包状的波形。典型的牵伸波波谱图如下: 2.波谱仪及各种波形分解的基本原理及特点: 基于经济性的考虑,波谱仪对波谱的识别分析是建立在正弦波的基础上的。而纺纱过程中产生的机械波大多数是不完全遵循正弦规律波动的。遵照“傅里叶”公式,任何一个非正弦波都可以分解为多个正弦波,因此,波谱仪可以对这些非

美术作品意蕴

教学设计 备课时间:2014 年2月24 日 上课时间:2014 年3月 6 日

教学过程: 一、创境导入,引发兴趣展示图片《浪子回头》《亲吻婴儿》《面包》创设气氛,触发学生热爱艺术的情感。 师:同学们,今天这节课我们要小组内欣赏讨论,并回答以下问题:你是怎样体会艺术形象所蕴含的生气和生命活力的?这些作品的风格丰富多样记录着人类文明的足迹,凝聚着人类的思想情感,反映出不同的时代,对美的追求,具有独特的艺术魅力。你能联系其历史背景来分析作品的时代精神和思想感情吗? 二、启发引导阶段 ①展示不同类型的美术作品图片。选择题材类型相近而意蕴不同,或形式风格不同但意蕴相近的中外美术作品,以便于学生进行比较和鉴别。 ②可以用谈话的形式和学生共同讨论,“怎样才算看懂了美术作品”或“应该怎样欣赏美术名作”这样的问题,以启发学生探究美术作品深层意蕴和审美价值的动机。 ③根据需要,介绍所欣赏作品的创作背景和相关资料为学生的感性认识提供必要的知识基础。 ④引导学生浏览和初步阅读美术作品,根据自己的感受和兴趣,选择一些准备重点欣赏和评述作品。三、欣赏深入阶段 ①通过课件展示,让学生欣赏波普艺术、大地艺术、装置艺术等艺术流派的风格特点,教师围绕作者的感性形象特征比较鲜明的作品,《玛丽莲.梦露》《德国德绍包豪斯学校建筑》、《包裹海滩》《析世鉴—天书》进行情节描述。 组织学生讨论:1、作品给你什么感受?2、作者如何让你产生这样的感觉?3、作者想表达什么?4、你喜欢这件作品吗?引导学生感受与描述作品借助特定的物质材料和艺术语言所创造的生动形象的具体特征,从而体会艺术形象所蕴涵的内在生气和生命活力。然后,再联系其历史背景来分析认识作品所表现的时代精神和思想感情。

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除 无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】红外光是一种波长介于可见光区和微波区之间的电磁 波谱。波长在0.78?300卩m通常又把这个波段分成三个区域, 即近红外区:波长在0.78?2.5卩m (波数在12820?

4000cm-1),又称泛频区;中红外区:波长在2.5?25卩m(波数在4000?400cm-1),又称基频区;远红外区:波长在25?300卩m(波数在400?33cm-1)又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长入表征外,更常用波数 (wavenumber)c表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收 谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。

欧普艺术与波普艺术欣赏

By PetrelKing

欧普艺术----起源 欧普艺术(Optical Art)又被称为"光效应艺术"和"视幻艺术",它是继波普艺术之后,在西欧科学技术革命的推动下 出现的一种新的风格流派,兴起于西方二十世纪60年代。 首次使用“欧普”(Optical)这一名称是在1965年,当 时在纽约现代美术馆举办的一次主题为: "眼睛的反应“(The Responsive Eye) 展览会上,陈列出大量经过精心设计,按一定规律排列而成 的波纹或几何形绘画, 这些作品给参观者以强烈的视觉刺激,达到了震撼人心的艺术效果。 Optical的意思即视觉上的光学

欧普艺术----特征 这种艺术形式可以称得上是一种挑战人类视觉的智力游戏,它通过利用光学、物理学、心理学等科学原理,运用补色、透视、对比等艺术处理,欧普艺术家巧妙地以不同色彩几何图形,创造出引起立体、波动等错觉效果的美丽图案,从而带领观众进入一个变幻莫测的幻觉世界。 波纹图案是光效应画家创造幻觉时常用的传统素材和方法。这在中国传统图案中常见。较为典型的是波纹绸上的图案。印制两个完全相同的波纹图案,把它们的位置稍稍相互错开,当波纹绸处于实际的运动状态时,就会出现一种永恒的运动感和变化感。

欧普艺术----代表 欧普艺术几乎同时兴起于欧美各国。其最杰出的代表是法国画家维克托·瓦萨雷里,他从50年代起就开始创作具有运动感和闪烁效果的绘画,成为法国欧普艺术的主流。其他具有影响力的欧普艺术画家有美国的约瑟夫·艾伯斯 (Josef.Albers)和安德鲁基威斯(R.Anuskiewicz),英国的女艺术家瑞利(B.Riley)及以色列的阿格姆(Y.Agam)﹑委内瑞拉的萨图(J.R.Soto)等。 虽然欧普艺术盛行的时间并不是很久,到20世纪70年代就走向了衰落。但它变幻无穷的视觉印象,以强烈的刺激性和新奇感,广泛渗透于欧美和日本的建筑装饰、都市规划、家具设计、娱乐玩具、橱窗布置、广告宣传、纺织品印染,以及芭蕾舞、电视观赏等到多种设计领域,在国际上产生了很大影响。

波谱分析(完成)

一、名词解释(每小题5分,共30分) 1.化学位移:化学位移是用核磁共振仪可以记录到有关信号,处在不同化学环境中的氢原子因产生共振时吸收电磁波的频率不同,在谱图上出现的位置也不同,各类氢原子的这种差异被称为化学位移。 2.屏蔽效应:由于其他电子对某一电子的排斥作用而抵消了一部分核电荷对该电子的吸引力,从而引起有效核电荷的降低,削弱了核电荷对该电子的吸引,这种作用称为屏蔽作用或屏蔽效应。 3.相对丰度:相对丰度又称同位素丰度比,指气体中轻组分的丰度C与其余组分丰度之和的比值。在生态中相对丰度:群落内物种数目的多少。不同的群落中物种丰度是不同的,从赤道到南北极,群落的物种丰度逐渐减少。 4.氮律:氮律是质谱分析中判断分子离子峰质量数的规律。 5.分子离子:分子失去一个电子所形成的正离子称为分子离子,它的质荷比值即代表了试样分子所对应的分子量数值。 6.助色团:本身在200 nm以上不产生吸收,但其存在能增强生色团的生色能力(改变分子的吸收位置和增加吸收强度)的一类基团。

预知后题如何,请下载!

二、简答题(每小题8分,共40分) 1.色散型光谱仪主要有几部分组成及其作用; 答:由光源、分光系统、检测器三部分组成。光源产生的光分为两路:一路通过样品,一路通过参比溶液。切光器控制使参比光束和样品光束交替进入单色 器。检测器在样品吸收后破坏两束光的平衡下产生信号,该信号被放大后被记录。 2.紫外光谱在有机化合物结构鉴定中的主要贡献; 答:在有机结构鉴定中,紫外光谱在确定有机化合物的共轭体系、生色团和芳香性等方面有独到之处。 3.在质谱中亚稳离子是如何产生的?以及在碎片离子解析过程中的作用是什么? 答:离子m1在离子源主缝至分离器电场边界之间发生裂解,丢失中性碎片,得到新的离子m2。这个m2与在电离室中产生的m2具有相同的质量,但受到同m1一样的加速电压,运动速度与m1相同,在分离器中按m2偏转,因而质谱中记录的位置在m*处,m*是亚稳离子的表观质量,这样就产生了亚稳离子。 由于m*=m2/m1,用m*来确定m1与m2间的关系,是确定开裂途经最直接有效的方法。 4.下列化合物OH 的氢核,何者处于较低场?为什么? 答:(Ⅰ)中—OH 质子处于较低场,因为—HC=O 具有诱导效应。而(Ⅱ)中甲基则具有电子效应。 5.在CH3-CH2-COOH 的氢核磁共振谱图中可观察到其中有四重峰及三重峰各一组.(1)说明这些峰的产生原因;(2)哪一组峰处于较低场为什么? 答:(1)由于α, β 位质子之间的自旋偶合现象,根据 规律, (n+1)规律,CH3-质子核磁共振峰被亚甲基质子裂分为三重 规律 质子核磁共振峰被亚甲基质子裂分为三重 同样,亚甲基质子被邻近的甲基质子裂分为四重峰. 峰,同样,亚甲基质子被邻近的甲基质子裂分为四重峰. 位质子受到羧基的诱导作用比β 质子强。 (2)由于α-位质子受到羧基的诱导作用比β-质子强,所以亚 由于α 位质子受到羧基的诱导作用比 质子强 甲基质子峰在低场出峰(四重峰). 甲基质子峰在低场出峰(四重峰). 三、解析题(共30分) C H OH O C OH H 3 ( I ) ( I I )

苯甲酸红外光谱的测定实验报告

苯甲酸红外光谱的测定实验报告 一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握傅立叶红外光谱仪的结构和操作方法。 3、掌握基本且常用的KBr 压片制样技术。 4、通过实验巩固对常见有机化合物基团特征吸收峰的记忆。 二、仪器及试剂 1、仪器:Nexus 670型傅里叶变换红外光谱仪;BS 124S电子分析天平 2、试剂:苯甲酸样品(分析纯);KBr(光谱纯)。 三、实验原理 苯甲酸为无色,无味片状晶体。熔点122.13℃,沸点249℃,相对密度1.2659。苯甲酸是重要的酸型食品防腐剂。在酸性条件下,对霉菌、酵母和细菌均有抑制作用,但对产酸菌作用较弱。在食品工业用塑料桶装浓缩果蔬汁,最大使用量不得超过2.0g/kg;在果酱(不包括罐头)、果汁(味)型饮料、酱油、食醋中最大使用量1.0g/kg;在软糖、葡萄酒、果酒中最大使用量0.8g/kg;在低盐酱菜、酱类、蜜饯,最大使用量0.5g/kg;在碳酸饮料中最大使用量0.2g/kg。由于苯甲酸微溶于水,使用时可用少量乙醇使其溶解。 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; -1

光谱分析报告 实验报告材料

实 课程名称: 材料科学基础实验 指导老师: 乔旭升 成绩: 实验名称: 光谱分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)一、实验目的 通过本实验了解紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR )和荧光光谱仪的基本原理、主要用途和实际操作过程。掌握玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。学习分析影响测试结果的主要因素。 二、实验原理 电磁波可与多种物质相互作用。如果这种作用导致能量从电磁波转移至物质,就称为吸收。当光波与某一受体作用时,光子和接受体之间就存在碰撞。光子的能量可被传递给接受体而被吸收,由此产生吸收光谱。通常紫外和可见光的能量接近于某两个电子能级地能量差,故紫外与可见光吸收光谱起源于价电子在电子能级之间的跃迁,又称为电子光谱。 当一束平行单色光照射到非散射的均匀介质时,光的一部分将被介质所反射,一部分被介质吸收,一部分透过介质。如果入射光强度为I0.反射光强度为Ir ,吸收光强度为Ia ,透过光强度为It ,则有I0=Ir+Ia+It 投射光强度与入射光强度之比称为透光率 T=It/I0 当一束具有连续波长的红外光照射某化合物时,其分子要吸收一部分光能转变为分子的震动能量或转动能量。此时若将其透过的光用单色器进行色散,就可得到一带暗条的谱带。以红外光的波长或波数为横坐标,以吸收率或者透过率百分数为纵坐标,把该谱带记录下来,就可得到该化合物的红外吸收光谱图。不同的化合物均有标准特征谱,将实验所得的光谱与标准谱对照,就可进行分子结构的基础研究和化合组成的分析。可由吸收峰的位置和形状来推知被测物的结构,按照特征峰的强度来测定混合物中各组分的含量。 当分子吸收来自光辐射的能量后,其本身就由处于稳定的基态跃迁至不稳定的激发态: M+h ν→。激发态是不稳定的,寿命极短,激发态分子会迅速以向周围散热或再发射电磁 波(荧光或磷光)的方式回到基态: →M+荧光(或磷光)。任何能产生荧光(或磷光)的物质都具有两个特征光谱:激发光谱和发射光谱。 激发光谱:荧光(或磷光)为光致发光,因此必须选择合适的激发光波长,这可通过激发

相关文档
最新文档