版药典原子吸收分光光度法SOP

版药典原子吸收分光光度法SOP
版药典原子吸收分光光度法SOP

页次:1/10 XXXXX公司检验方法标准操作规程编号:SOP-

原子吸收分光光度法检查SOP

批准人/日期:年月日审核人/日期:年月日

制定人/日期:年月日生效日期:年月日

颁发部门:分发部门:

1. 目的

明确原子吸收分光光度法检查的标准操作。

2. 范围

适用于药品采用原子吸收分光光度法检查时的操作。

3. 职责

3.1. 化验员负责本程序的实施,

3.2. QC主管、质量保证部部长负责监督。

4. 定义

5. 规程

5.1. 简述

供试品在高温下经原子化产生原子蒸气时,如有一光辐射作用于原子,当辐射频率相应于原子中电子从基态跃迁到较髙能态所需要的能量时,即引起原子对特定波长的吸收。吸收通常发生在真空紫外、紫外及可见光区。原子吸收光谱为线光谱,通过测定该特征波长光谱线的吸光度可以计算出该待测元素的含量。原子吸收一般遵守吸收分光光度法的比尔定律。实验条件固定时特定波长处的吸光度值与样品中原子浓度成正比。但实验参数的变化会影响结果值。

原子吸收分光光度法测量对象是成原子状态的金属元素和部分非金属元素。测定的样品一般经高温破坏成原子态,在气态下利用自由原子的光谱性质进行测量,常用在药物中无机元素的测定。

仪器原子吸收分光光度计主要由光源、原子化器、单色器、检测器、记录显示系统和数据处理系统等部分组成。

光源由于原子光谱为线光谱,原子吸收分光光度计的光源应能在窄的光谱范围内有高强度的辐射,否则检测器得不到准确测量信号。因此,需要应用能满足上述要求的线光源。原子吸收分光光度计常用的光源为空心阴极灯。灯的阴极由待分析元素的物质构

成,工作时使该元素激发并发射特征光谱。被测元素只能用该元素的空心阴极灯进行分析。

原子化器常用的原子化器有火焰型、电热型、氢化物发生型和冷蒸气型四种。

火焰型原子化器样品溶液导人雾化器中使试样溶液雾化成气溶胶,并与燃气和助燃气充分混合后在燃烧器上成火焰燃烧,不同物质需要不同能量使其离子态转变成基态的原子。人射光通过基态原子时部分能量被吸收,并由传感器转变为电信号,用记录仪进行记录。

改变燃气和助燃气种类及比例可以控制火焰温度,以提供使供试品转变成原子状态所需的能量。最常用的混合气体为空气一乙炔。

电热型原子化器又称无火焰原子化器,其中又以石墨炉应用最广。石墨炉原子化器为用电流控制温度的炉子,其中放人可置放样品的石墨管或其他合适的样品置放装置。在测定过程中炉内通入氩或其他保护气体,以防止炉的氧化。以一定体积的样品溶液加入石墨管后用电加热使其原子化。电加热的过程至少有三个阶段:干燥阶段用略高于溶剂沸点的温度,以较长的时间使溶剂蒸发至干。灰化阶段是去掉比分析元素容易挥发的样品基体以减少背景吸收,根据具体情况选择合适的灰化温度及时间。最后阶段为原子化阶段。温度应升至能使样品转变成气态原子,该阶段的升温速度必须很快,加热时间应尽可能短,以延长石墨炉的寿命。原子蒸气迅速从人射光束通道中扩散出去,形成一个瞬态吸收信号,用记录仪记录。

氢化物发生原子化器利用某些元素易形成低沸点氢化物的性质而设计的氢化物发生原子化器可以减少或避免因高温导致的背景干扰与化学干扰。As、Sb、Bi、Ge、Sn、Pb、Se等元素在存在还原剂(除另有规定外,通常采用硼氢化钠)的酸性介质中易生成低沸点的易受热分解的氢化物,再依次由载气导人由石英管与加热器组成的原子吸收池中,在石英管中氢化物因受热而分解,并形成基态原子。

冷蒸气原子化器测汞时,在汞蒸气发生器中,汞离子被还原成汞,然后将汞蒸气直接导人原子吸收池中。

单色器通常用衍射光栅为色散元件。仪器光路应能保证有良好的光谱分辨率和在相当窄的光谱带下正常工作的能力。单色器的结构与一般紫外-可见分光光度计相同。

检测器一般采用对紫外及可见光敏感的宽光谱工作范围的光电倍增管作为检测元件。要求检测器的输出信号灵敏度高、噪声低、漂移小及稳定性好。

记录仪和数据处理系统原子吸收分光光度计常用绘图打印机记录测定结果。

数据处理系统需能测量信号积分值和制备标准曲线以及统计计算处理。有的仪器将参数设定操作系统和数据处理系统放在一起工作。

背景干扰的消除背景吸收干扰是原子吸收测定中常见的现象。造成背景干扰的原因多种多样,并往往随样品情况的变化而变化。一般认为,背景来源于样品中共存组分及其在原子化过程中形成的次生分子或原子的热发射、光吸收和光散射。其中有些干扰可以通过适当的样品前处理或优化原子化过程的条件得以消除或减少,但许多干扰仍难以避免。必须另辟蹊径,通过改进仪器设计予以克服。

背景校正的基本原理是将分析谱线两侧的读数作为背景读数,然后从分析线的峰值读数中扣除之。最常用的背景校正方法有三种:一是连续光源校正法,采用两个光源,主光源为线光源(即空心阴极灯),另一光源为连续光源,在紫外区通常用氘灯。来自线光源的样品光束通过样品时,其吸光度读数为待测元素与背景吸收之和,来自连续光源的参比光束通过样品时测定背景读数,二者之差即为校正的待测元素的吸光度。二是塞曼效应校正法,多电子原子的发射谱线通过强磁场时,由于空间量子化的缘故使谱线发生分裂,分裂后的中心线称Tt成分,两侧谱线称Z 成分。7T成分作为样品光束测定样品和背景的总吸光度,Z 成分作为参比光束测定背景吸收,二者之差即为样品吸收。三是强脉冲自吸校正法,在空心阴极灯的工作周期内依次施加两个不同强度的脉冲,在弱脉冲作用下发射正常的谱线,在强脉冲作用下多谱勒效应和阴极溅射增强,从而使谱线变宽而且引起明显的自吸收,造成辐射能在中心波长处缺失而分布于中心波长的两侧。将弱脉冲作用下的发射谱线作为样品光束,强脉冲作用下的自吸谱线作为参比光束,依次测定吸光度,以实施校正。连续光源校正由于使用双光源,样品光束和参比光束的准直较为困难,导致在高背景时校正不足或补偿过度;另外,当共存元素的吸收线邻近分析线时,也往往造成补偿过度。塞曼背景校正没有上述缺点,但当样品浓度较高时,工作曲线向浓度轴弯曲。强脉冲自吸校正效果较好,但仍存在高浓度时工作曲线弯曲及灯寿命缩短等缺点。

5.2. 原子吸收分光光度计的检定

5.2.1. 波长准确度与重复性根据中华人民共和国国家计量检定规程JJG694-90的规定,

双光束原子吸收分光光度计的波长示值误差应不大于±,波长重复性优于。

5.2.2. 波长准确度与重复性检定方法按空心阴极灯上规定的工作电流,将汞灯点亮稳定

后,在光谱带宽0. 2nm条件下,从汞、氖谱线、、、,、和中按均匀分布原则,选取3~5条逐一作3次单向(从短波长向长波长方向)测量最大能量波长示值,计算谱线波长测量值与标准值的平均误差。波长重复性为3次测定中最大值与最小值之差。

5.2.3. 分辨率仪器光谱带宽为时,应可分辨锰和的双线。

5.2.4. 分辨率检定方法将锰灯点亮,稳定后在光谱带宽为时调节光电倍增管的高压,使

谱线能量读数为100。扫描测量锰双线,应能分辨出和两条谱线,且两线间峰谷能量应不超过40% 。

5.2.5. 基线稳定性火焰原子化法测定30min内静态基线和点火基线的稳定度,应不大于

下表的指标。

火焰原子化法静态基线和点火基线的稳定度

项目使用中仪器(吸光度)

静态基线最大零漂士

最大瞬时噪声(峰-峰值) 0. 006

点火基线最大零漂士 0. 008

最大瞬时噪声(峰-峰值) 0. 008

5.2.5.1. 基线稳定性检定法

5.2.5.1.1. 静态基线稳定性的测定光谱带宽、量程扩展10倍,点亮铜灯,原子化器未工

作状态下测定。单光束仪器与铜灯同时预热30min,用“瞬时”测量方法,或

时间常数不大于,测定324. 7nm谱线的稳定性。双光束仪器预热30min、铜

灯预热3min后,按上述相同条件测定。

5.2.5.1.2. 点火基线稳定性的测定按测铜的最佳条件,用乙炔/空气火焰,吸喷去离子水

lOmin后,在吸喷状况下重复(5.2.5.的测量。

5.2.5.2. 边缘波长能量带宽为,响应时间不大于条件下,对砷和铯谱线进行测量,谱线的

峰值应能调到100%,背景值/峰值应不大于2 %。5min内谱线的最大瞬时噪声(峰-峰值)应不大于0.03A。谱线能量为100%时,光电倍增管的高压应不超过最大高压值的85% 。

5.2.

6. 火焰法测定铜的检出限[CL(n = 3)]和精密度(RSD)使用中的仪器应分别不大于

0. 02μg/ml 和 % 。

5.2.

6.1. 检出限的检定仪器参数调至最佳工作状态,用空白溶液L HNO3调零,分别对3

种铜标准溶液(、、μg/ml)各进行3次重复测定,取3次测定平均值,按线性回归法求出工作曲线的斜率,即为仪器测定铜的灵敏度(S)。

S = dA/dc [A/(μg/ml)]

在上述条件下,扩展标尺10倍,对空白溶液(或浓度3倍于检出限的溶液)进行11次吸光度测量,并求出其标准偏差(SA),计算铜的检出限如下

/S(μg /ml)

GL(n = 3)=3S

A

5.2.

6.2. 精密度的检定在(5.2.1)测定中选择标准溶液之一,其吸光度在~范围进行7次

测定,求出相对标准偏差CRSD),即为仪器测铜的精密度。

5.2.7. 石墨炉法测定镉的检出限[QL(n = 3)],特征量(.)和精密度(KSD),使用中的仪

器应分别不大于4pg、2pg和7% 。

5.2.7.1. 检出限和特征量的检定仪器参数调至最佳工作状态,分别对空白溶液 (0.

5mol/L HNO

3

)和3种镉标准溶液、、ml)各进行3次重复测定,取3次测定平均值后,按线性回归法求出工作曲线的斜率,即为仪器测定镉的灵敏度(S)。

S = d A/dQ=dA/d(c×V) (A/pg)

式中c为溶液浓度(ng/ml);

V 为取样体积(pi)。

在上述条件下对空白溶液进行11次吸光度测定,并求出其标准偏差(SA)。计算镉的检出限如下

QL(w = 3) = 3S

A

/S(g)

仪器测定镉的特征量计算如下 .

C. M. = (pg)

S

5.2.7.2. 精密度的检定在(5.2.

6.1)测定中,对ml的镉标准溶液进行7次重复测定,即

为仪器测镉的精密度。

5.2.8. 火焰法中样品溶液吸喷量(F)和表观雾化率(e) 应用本法可测定火焰原子化雾化

的效率,样品的吸喷量应不小于3ml/min;雾化率应不小于8% 。

5.2.8.1. 吸喷量和表观雾化率的检定在与2. 5相同条件下,于10ml量筒内注人去离子

水至10ml刻线,将毛细管插人筒底部,同时启动秒表,测量lmin时间内量筒

中水所减少的体积,即为吸喷量(F),取出进样毛细管,至废液管出口无废液排

出后,将该管放入有一段水封的10ml量筒(量筒1)内。另一量筒(量筒2)内注

入10ml水,在上述条件下将毛细管插人水中,至10ml水全部吸喷完毕,废液

管中无废液排出后,测量排出废液体积V(ml),并计算表观雾化率(ε)。

ε= 10-V

×100% 10

5.2.9. 背景校正能力背景信号约为1A时,校正后的信号应不大于该值的1/30。

5.2.9.1. 火焰原子化器的仪器在镉时先用无背景校正方式测量,调零后将吸光度约为1 A

的屏网插入光路读得吸光度A1,再在背景校正方式调零,插人屏网读取吸光度A2,1/A2值应符合5.2.9的规定。

5.2.9.2. 石墨炉原子化器的仪器参数调至测镉的最佳状态,先用无背景校正方式,用移

液管加人一定量的氯化钠(ml)溶液使产生1 A左右吸光度信号,读取吸光度(峰

高法)A1,再用有背景校正方式全样测定,读取吸光度A2, A1/ A2的值应符合

5.2.9的规定。

5.3. 样品测定操作方法

5.3.1. 标准曲线法先配制一个被测元素的标准贮备液,通常可用该元素的基准化合物或

纯金属按规定方法配制,亦可从有关单位中购得,用通常用作空白的溶液稀释成标准工作液。再按测定方法的操作步骤配制一组合适的系列标准溶液。在仪器推荐的浓度范围内,制备含待测元素的标准溶液至少3份,浓度依次递增,并分别加人供试品溶液配制中的相应试剂。除另有规定外,一般用去离子水制成水溶液。

将仪器按规定启动后,先将去离子水喷人火焰,调读数为零,再将最浓的标准溶液喷入火焰,调节仪器至近满量程的读数,然后依次喷入每一标准溶液,读数。

每喷完1份溶液后,均用去离子水喷人火焰充分冲洗灯头并调零。取每一浓度3次读数的平均值,与相应浓度作标准曲线。

5.3.1.1. 按各品种项下的规定制备供试品溶液,使待测元素的估计浓度在标准曲线浓度

范围内,将供试品溶液喷人火焰,取3次读数的平均值,从标准曲线上查得相

应的浓度,计算元素的含量。

5.3.1.2. 供试品溶液测定完后,应用与供试品溶液浓度接近的标准溶液进行回校。标准

曲线应取符合线性范围的浓度。样品的测定读数宜在线性范围中间或稍高处。

5.3.1.3. 石墨炉原子化器的标准曲线可以用相同体积不同浓度的系列标准溶液或用相同

浓度不同体积的标准液制备,一般以前者为佳。

5.3.2. 标准加人法取同体积按各品种项下规定制备的供试品溶液4份,分别加至4个同

体积的量瓶中,除(1)号瓶外,其他(2)、(3)、(4)号量瓶分别再准确加人比例量的待测元素标准液,均用去离子水稀释至刻度,形成标准液加入量从零开始递增的一系列溶液。按上述标准曲线法自“将仪器按规定启动后”操作,并依法将溶液喷入火焰,读数;将读数与相应的待测元素加入量作图,延长此直线至与含量轴的延长线相交,此交点与原点间的距离即相当于供试品溶液取用量中待测元素的含量(如图)。再以此计算供试品中待测元素的含量。

标准加入法仅适用于上述标准曲线法的工作曲线呈线性并通过原点的情况。

5.3.3. 杂质检查法取供试品,按各品种项下的规定,制备供试品溶液;另取等量的供

试品,加入限量的待测元素溶液,制备成对照溶液。照上述标准曲线法自“将仪器按规定启动后”操作,并将对照溶液喷人火焰,调节仪器使具合适的读数a, 在相同的操作条件下喷入供试品溶液,读数(b), (b)值应小于(a-b)。

5.3.4. 内标法在标准样品和供试品中分别加人第二元素作为内标元素。测定分析元素和

内标谱线的吸光度比值,并以此对被测元素的含量或浓度绘制工作曲线。内标元素要求与被测元素在基体或原子化器中表现的物理、化学、性质相同或相似。且试样中不应含有这种元素。该方法只适用于双通道原子吸收分光光度计。

5.4. 测量操作注意事项

5.4.1. 样品取样要有代表性,取样量应根据被测元素的性质、含量、分析方法及要求的

分析精度决定。标准样品的组成应尽可能与被测样品接近。

5.4.2. 仪器参数选择如空心阴极灯工作电流、光谱带宽、原子化条件等。火焰原子化器

中火焰条件的选择如火焰类型,燃气和助燃气的比例,供气压力和气体流量等。

石墨炉原子化器应注意干燥一灰化一原子化各阶段的温度、时间、升温情况等程序的合理编制。它们对测定的灵敏度、检出限及分析精度等都有很大的影响。许多仪器一般能提示或自动调节成常用的参数,使用时可按实验情况予以修改。5.4.3. 原子吸收分光光度法实验室要求有合适的环境,室内应保持空气洁净,较少灰尘,

应有充足、压力恒定的水源,仪器燃烧器上方应有符合厂方要求的排气罩,应能提供足够而恒定的排气量,排气速度应能调节,排气罩以耐腐蚀、不生锈的金属板制造为宜。

使用原子吸收分光光度计时对实验室安全应给予特别注意,如排气通风是否良好,突然停电、停水及气流不足或不稳定时的安全措施,高压燃气和助燃气使用安全问题等。_前仪器本身大多具有自动安全功能,发现故障后一般自动停止工作。但实验室环境的安全仍需使用者随时注意。

5.4.4. 原子吸收分光光度法灵敏度很高,极易受实验室各种用品的污染,常见的污染源

如下。

5.4.4.1. 水应用去离子水或用石英蒸溜器蒸馏的超纯水。钠、钾、镁、硅、铁等元素

最易沾污实验室水。贮藏水的容器一般用聚乙烯塑料等材料制成。玻璃瓶久贮

会将瓶中微量污染元素溶解在水中。

5.4.4.2. 试剂制备样品用的酸类、溶剂及有机萃取剂等亦为主要玷污来源之一,应采

用高纯试剂。

5.4.4.3. 实验室容量器皿烧杯、容量瓶、移液管等尽可能使用耐腐蚀塑料器皿,而不用

玻璃器皿。因为玻璃器皿易吸附或吸收其他金属离子,在使用过程中缓缓释出。

自动进样器应尽量不用能直接接触样品的金属附件及金属针头。样品前处理用

的通风橱可能有积尘、锈蚀物或粉尘、气流等影响。大气中尘埃的污染特别对

石墨炉的高灵敏度检测有很大的影响。样品处理过程及处理完后分析时应尽可

能防止外界尘埃落人,产生干扰。

5.4.5. 标准溶液一般浓度大于lOOOμg/ml的可以作为贮备液贮存在耐腐蚀的塑料容器

中,浓度低于lOμg/ml的工作溶液应注意稀释溶剂及试剂对其污染的影响,浓度低于1μg/ml的标准溶液应在使用当天配制使用,不宜贮存。

5.4.

6. 样品一般处理成溶液后进行分析,因此样品的前处理十分重要。处理方法很多,

无机物常用酸进行溶解,复杂基体的样品常需用熔融、有机萃取、加人改进剂等方法消除基体干扰及化学干扰等因素。生物样品往往需经湿法或干法灰化,萃取或加基体改进剂消除基体干扰等措施以使分析顺利进行。石墨炉的样品测试可以采用固体直接放在石墨管或石墨平面中进样。难以避免的干扰有时可用掩蔽剂消除。

5.4.7. 石墨炉的分析重现性及精度的关键操作之一为进样方法的重现性。从石墨管的小

孔中加人样品时,除石墨炉周围环境升温情况需要保持一致外,用微量吸管加人的角度、深度等均须一致,因此使用石墨炉分析样品最好用重现性好、可靠的自动进样器,手工进样欲得重现的结果需要较高而熟练的实验技术。

5.4.8. 原子化温度较高的元素宜用氧化亚氮-乙炔作为燃气,用专用的高温燃烧头进行火

焰法测定,该情况下以用无焰法石墨炉进行分析为宜。

5.4.9. 汞、砷、硒及碲等元素可以还原成氢化物在较低温度下测定,也可用专用仪器(如

测汞仪)进行测定。

5.4.10. 原子吸收分光光度法使用器皿的清洗不宜用含铬离子的清洗液,因铬离子容易

渗透入玻璃等容器中,而以硝酸或硝酸-盐酸混合液清洗后再用去离子水清洗为佳。

5.4.11. 样品中如存在比被分析元素更不易挥发的元素,而使用无焰石墨炉分析时,最

好在原子化升温完毕后用最高温度作极短期加热,以清洗残存于石墨管中的干扰元素。

5.4.12. 仪器及样品浓度情况差别很多,浓度过浓使信号达到饱和时则输出信号过强,

此时可以适当降低灵敏度或改用该元素的次要谱线以确保信号强度与被测元素浓度呈线性关系。

5.5. 定量分析结果判定

定量分析制备标准曲线时,标准曲线法制备含待测元素的标准溶液至少有3种不同浓度。每一浓度测定3次,求取3次读数平均值。以各浓度读数平均值制备标准曲线。标准加入法制备相同体积和浓度的供试品溶液4份。其中1份不加标准液,其他3份分别加入不同浓度的待测元素标准液,均稀释至相同体积,如上述制备标准曲线。供试品要求制备2份样品溶液,各测定3次。取平均值从标准曲线上求得相应的浓度。测定的

相对标准偏差(RSD)应不大于3%,石墨炉法可适当放宽。样品测定离散性大时应多测定几次,以增加读数的可靠性。

6. 参考及引用相关的文件

6.1. 《中国药典》2015年版四部通则0406

紫外分光光度法测定蛋白质含量

上海百贺仪器科技有限公司提供www.southhk.cn 紫外分光光度法测定蛋白质含量 摘要: 考马斯亮兰G250与蛋白质结合,在0-1000ug/ml范围内,于波长595nm 处的吸光度与蛋白质含量成正比,可用于蛋白质含量的测定。考马斯亮兰G250 与蛋白质结合迅速,结合产物在室温下10分钟内较为稳定,是一种较好的蛋白 质定量测定方法。 1.实验部分 1.1仪器与试剂: Labtech UV POWER紫外分光光度计;玻璃比色皿一套;考马斯亮蓝G250; 牛血清蛋白;超纯水。 1.2试液的制备: 牛血清蛋白标准溶液(1000ug/ml)的制备称取100mg牛血清蛋白置100ml 容量瓶中,加入超纯水溶解并定容。 考马斯亮兰G250试剂称取100mg考马斯亮兰G250,溶于50ml95%的乙 醇后,加入120ml85%的磷酸,用水稀释至1升。 2.结果与讨论 2.1校正曲线的绘制 准确吸取1000ug/ml牛血清蛋白标准溶液0.0、0.02、0.04、0.06、0.08、0.1ml 分别加入到6只10ml试管中,然后用超纯水补充到0.1ml,各试管分别加入5ml 考马斯亮兰G250试剂,混合均匀后,即可依次在595nm处测定吸光度。以浓度 为横坐标,吸光度为纵坐标绘制校正曲线如下图,校正曲线方程为 A=0.613556C+0.001008,R=0.9994。

上海百贺仪器科技有限公司www.southhk.cn 2.2精密度 配制0.6mg/ml牛血清蛋白的考马斯亮兰溶液连续进样6次,得到吸光度的 相对标准偏差。 表1精密度测定结果 次数123456RSD% A0.26260.26220.26200.26280.26290.26260.13 2.3稳定性 取1mg/ml牛血清蛋白标准溶液每十分钟测定一次,50分钟内的吸光度变化 如下表2。 表2稳定度测定结果 时间(min)A1A2A3A平均 00.55110.55230.55160.5517 100.52040.51840.51680.5185 200.49100.49010.49030.4905 300.47650.47160.47210.4734 400.45240.44750.44400.4480 500.39820.39350.40310.3983 3.结论 该方法测定快速、简便,干扰物少,是目前灵敏度较高的蛋白质含量测定 的紫外分光光度法。

吸收分光光度法

第十章 原子吸收分光光度法 ξ10-1 基本原理 一、概述:1955年发展起来的一种新方法,30多年来发展较快,已成为分析化学中重要的方法。和分光光度法比较,能做微量(ppm ,ppb ,10 -6,10 –9g )测定70多种金属元素,(3号~84号,镧系元素),还可做常量,所以从常量到ppb 级。 优点:灵敏度高,干扰少,分析不同元素时选用不同元素的灯,提高了分析的选择性,基体和待测元素间影响较少,鉴于这种情况,试样只需简单处理,可直接进行分析,避免复杂的分离和富集手续,低含量的分析中,能达到1~3%的准确度。这是比色及光度法所不能完成的。 缺点:1.换灯,不方便 2.各元素分析条件不同,不利于同时测多种元素。 3.不能分析固体及共振线在真空紫外区的 4.分析复杂样品时,干扰还是比较严重。 为解释清楚分析不同元素时选用不同元素的灯,下面谈一下基本原理。 基本原理:给一束特定的入射光I 0(υ),投射至被测元素的基态原子蒸气,原子蒸气对它有吸收,未被吸收的部分透过。N 越大,对光的吸收量越大,其I (υ)越小,于是根据样品中被测元素的浓度N ,I 0(υ),I (υ)三者间存在着一定的关系,并把它与被测元素已知浓度的标准溶液对光的吸收作比较,就求得试样中被测元素的含量。 分析流程:既然原子吸收分析是建立在基态原子对光的吸收的基础上,所以分析流程由光源、原子化系统、分光系统、检测系统等组成。 特径的入射光I 0(υ):特径谱线——共振线各元素的不同而显其特径性。 产生:①原子核外电子基态E 0, 从基态→激发态的能量 激发态E j λυc h h E E E j ==-=?0 ②电子从基态→第一个激发态(最低能量的),所产生的吸收谱线称共振吸收线。 从第一激发态→基态所产生辐射谱线称共振发射线。 以上统称共振线。 ③共振线:对应于共振能级和基态间跃迁的谱线,所需能量最低,称为最灵敏线。(这是分析所需要的)也是该元素的特径谱线。 因为:各元素的原子结构和外层电子排布不同,不同元素的原子从基态→第一激发态(或返回时)时,吸收(或发射)的能量不同。因此各元素的共振线不同而各有其特径。 例:镁 2852 o A ,铜 3247 o A 二、定量分析公式 1.朗伯定律:b K I I A ?==υυν)() (0lg K υ:原子蒸气对频率为υ的光线的吸收系数,与吸收介质性质和入射光频率有关 b K e I I ??=υυυ)(0)( 说明:①透过光的强度I (υ)随入射光的频率而改变,其变化规律 电磁辐射,原子对其吸收也不同,故I υ ,K υ 与入射光υ变化有关 υ0处有最大吸收,有最小透过。 ②当燃烧器的缝长一定时,b 一定,K (υ)是随入射光的频率而变化。其变化规律: a. a. 原子吸收线有一定的宽度——吸收线轮廓 b. b. 吸收系数有一极大值——υ0称中心 频率:υ0→K 0峰值吸收系数 c. c. 峰值吸收系数一半处,曲线宽度——吸收线半宽度,Δυ0。0.01~0.1o A

原子吸收分光光度法与紫外-可见分光光度法

1.试比较有哪些异同点? 答: 相同点: 二者都为吸收光谱,吸收有选择性,主要测量溶液,定量公式: A=kc,仪器结构具有相似性. 不同点: 原子吸收光谱法紫外――可见分光光度法 (1)原子吸收分子吸收 (2)线性光源连续光源 (3)吸收线窄,光栅作色散元件吸收带宽,光栅或棱镜作色散元件 (4)需要原子化装置(吸收xx不同)无 (5)背景常有影响,光源应调制 (6)定量分析定性分析、定量分析 (7)干扰较多,检出限较低干扰较少,检出限较低 2.试比较原子发射光谱法、原子吸收光谱法、原子荧光光谱法有哪些异同点? 答: 相同点: 属于原子光谱,对应于原子的外层电子的跃迁;是线光谱,用共振线灵敏度高,均可用于定量分析. 不同点:

原子发射光谱法原子吸收光谱法原子荧光光谱法 (1)原理发射原子线和离子线基态原子的吸收自由原子(光致发光)发射光谱吸收光谱发射光谱 (2)测量信号发射谱线强度吸光度荧光强度 (3)定量公式lgR=lgA + blgc A=kc If=kc (4)光源作用不同使样品蒸发和激发线光源产生锐线连续光源或线光源 (5)入射光路和检测光路直线直角 (6)谱线数目可用原子线和原子线(少)原子线(少) 离子线(谱线多) (7)分析对象多元素同时测定单元素、多元素 (8)应用可用作定性分析定量分析 (9)激发方式光源有原子化装置 (10)色散系统棱镜或光栅可不需要色散装置 (但有滤光装置) (11)干扰受温度影响严重温度影响较小受散射影响严重 (12)灵敏度高中高 (13)精密度稍差适中 按照电磁辐射的本质,光谱又可分为分子光谱和原子光谱。分子光谱是由于分子中电子能级变化而产生的。原子光谱可分为发射光谱、原子吸收光谱、原子荧光光谱和X-射线以及X-射线荧光光谱。前三种涉及原子外层电子跃迁,后两种涉及内层电子的跃迁。目前一般认为原子光谱仅包括前三种。原子发射光谱分析是基于光谱的发射现象;原子吸收光谱分析是基于对发射光谱的吸收现象;原子荧光光谱分析是基于被光致激发的原子的再发射现象。

紫外-可见分光光度法测定有色溶液 (2)

紫外-可见分光光度法测有色溶液最大吸收波波长 一、实验目的 1.学习紫外-可见分光光度法的原理; 2.掌握紫外-可见分光光度法测定的实验技术; 3.了解掌握U-3010型紫外-可见分光光度仪的构造及使用方法。 二、实验原理 1.紫外-可见吸收光谱法(称紫外-可见分光光度法)以溶液中物质的分子或离 子对紫外和可见光谱区辐射能的选择性吸收为基础而建立起来的一类分析法。根据最大吸收波长可做定性分析;根据朗伯-比尔定律(标准曲线法和标准加入法)可做定量分析。紫外-可见分光光度法定性分析原理:根据吸收曲线中吸收峰的数目、位置、相对强度以及吸收峰的形状进行定性分析。 2.紫外-可见分光光度法定量分析原理,根据朗伯-比耳定律:A=εbc,当入 射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。定量分析常用的方法是标准曲线法即只要绘出以吸光度A为纵坐标,浓度c为横坐标的标准曲线,测出试液的吸光度,就可以由标准曲线查得对应的浓度值,即未知样的含量。 3.仪器由五个部分组成:即光源、单色器、吸收池、检测器和信号显示记录装 置。 三、仪器与试剂 日立U-3010型紫外-可见分光光度仪;吸量管;乙醇;待测溶液;烧杯等。 四、实验步骤 1.接通电源,启动计算机,打开主机电源开关,启动工作站并初始化仪器,预 热半小时。 2.在工作接口上选择测量项目为光谱扫描,设置扫描参数(起点:650nm,终 点:250nm,速度:中,间隔:1.0nm,单次扫描) 3.将两个均装有无水乙醇的1cm石英比色皿放入测量池中,进行基线扫描。 4.基线做好后,按下面的顺序进行操作:做Baseline→换样(换上待测样品置 于Sample池)→进入Analysis Method对相关的参数进行设定→Sample命名→Ready→Measure进行测量,寻找待测溶液的最大吸收波长,再在最大吸收波长处分别测定待测溶液的吸光度。

原子吸收分光光度计使用说明书

GGX-5型火焰原子吸收分光光度计使用说明书 1 GGX-5火焰原子吸收分光光度计的使用 1.1 仪器特点 原子吸收是指基态自由原子对光辐射能的共振吸收。通过测量自由原子对光辐射能的吸收程度而推断出样品中的某一元素的量大小,根据这一原理研制的分析测试仪器称原子吸收分光光度计。仪器主要由原子化系统、光学系统、信号检测放大输出系统及附属设备组成。下面先将仪器部分结构的性能和特点概述一下: (1) 元素灯, 光源稳定, 寿命较长,我站较常使用的铜、铅、镉、锰、铁、镍等元素灯, 使用五至六年后才更换(具体点灯时间没有统计) 。在使用期内光源是十分稳定的,当一旦出现光能量下降得利害且光源不稳时,需反接处理或更换元素灯。 (2) 原子化系统, 现在很多生产厂家采用石英玻璃喷雾器, 玻璃喷雾器具有耐腐蚀、干扰小的优点, 出厂前已将玻璃喷雾器出口的碰撞球的位置调节固定好, 无须使用者再调节球的位置。同时配有各种口径的毛细吸液管, 使用者可根据需要选择提升量大小, 以调节最灵敏、最稳定的雾化率达到理想的检测效果。(3) GGX-5型, 由于生产厂吸取了国外同行的先进电子线路和技术, 仪器的数据输出相当稳定, 工作曲线线性、数据重复性和准确性等技术指标都能达到比较理想的水平, 部分使用同型号仪器的用户亦有同感。 1.2 原子吸收分光光度计的开关机原则“先开后关, 后开先关”原则。如开机程序“电源→A 键→B 键→C 键”, 关机时必须是“C 键→B 键→A 键→电源”。气路必须先开空气压缩机, 待一定空气压力和流量后, 才能开乙炔气点火, 关机时必须关闭(切断) 乙炔气源后, 才关空气压缩机。如果开关机程序操作混乱, 极容易损伤或烧毁电气设备, 甚至发生严重安全事故。GGX-5型采用了燃气安全阀系统, 该系统只有当仪器主机电源开通后, 空气压力和流量达到一定的条件下, 燃气阀门才能撞开, 这种装备为安全使用仪器加了一道非常实用有效的防线。开关机除了要严格按程序外, 还必须严格地、准确地将各功能键调到应处的位置。要

HJ 597-2011 水质 总汞的测定 冷原子吸收分光光度法

中华人民共和国国家环境保护标准 HJ 597—2011 代替GB 7468—87 水质 总汞的测定 冷原子吸收分光光度法 Water quality—Determination of Total mercury —Cold atomic absorption spectrophotometry 本电子版为发布稿。请以中国环境科学出版社出版的正式标准文本为准。 2011-02-10发布 2011-06-01实施 环 境 保 护 部 发布

目 次 前言..............................................................................................................................................II 1 适用范围 (1) 2 术语和定义 (1) 3 方法原理 (1) 4 干扰和消除 (1) 5 试剂和材料 (1) 6 仪器和设备 (3) 7 样品 (3) 8 分析步骤 (5) 9 结果计算与表示 (6) 10 精密度和准确度 (6) 11 质量保证和质量控制 (7) 12 废物处理 (7) 13 注意事项 (7) 附录A(资料性附录)密闭式反应装置 (9)

前言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范水中总汞的测定方法,制定本标准。 本标准规定了测定地表水、地下水、工业废水和生活污水中总汞的冷原子吸收分光光度法。 本标准是对《水质总汞的测定冷原子吸收分光光度法》(GB7468—87)的修订。 本标准首次发布于1987年,原标准起草单位为湖南省环境保护监测站。本次为第一次修订。修订的主要内容如下: ——增加了方法检出限; ——增加了干扰和消除条款; ——增加了微波消解的前处理方法; ——增加了质量保证和质量控制条款; ——增加了废物处理和注意事项条款。 自本标准实施之日起,原国家环境保护局1987年3月14日批准、发布的国家环境保护标准《水质总汞的测定冷原子吸收分光光度法》(GB7468—87)废止。 本标准的附录A为资料性附录。 本标准由环境保护部科技标准司组织制订。 本标准主要起草单位:大连市环境监测中心。 本标准验证单位:沈阳市环境监测中心站、鞍山市环境监测中心站、抚顺市环境监测中心站、丹东市环境监测中心站、长春市环境监测中心站和哈尔滨市环境监测中心站。 本标准环境保护部2011年2月10日批准。 本标准自2011年6月1日起实施。 本标准由环境保护部解释。

原子吸收分光光度法

原子吸收分光光度法(附答案) 一、填空题 1. 原子吸收光谱仪由光源、_____、_____和检测系统四部分组成。答案:原子化器分光系统 2. 原子吸收光谱仪的火焰原子化装置包括_____和_____。答案:雾化器燃烧器 3. 火焰原子吸收光谱仪的原子化器的作用是___,用以吸收来自锐线源的___。 答案:产生基态原子共振辐射 4. 火焰原子吸收光度法常用的锐线光源有___、__和蒸气放电灯3种。答案:空心阴极灯无极放电灯 5. 火焰原子吸收光度法分析过程中主要干扰有:物理干扰、化学干扰、_____和_____等。 答案:电离干扰光谱干扰 6. 火焰原子吸收光度法分析样品时,灯电流太高会导致_____和_____,使灵敏度下降。 答案:谱线变宽谱线自吸收 7. 火焰原子吸收光度法中扣除背景干扰的主要方法有:双波长法、_____、 _____和自吸收法。 答案:氘灯法塞曼效应法 8. 火焰原子吸收光度法分析样品时,确定空心阴极灯达到预热效果的标志是观察_____是否稳定、_____是否稳定和灵敏度是否稳定。答案:发射能量仪器的基线 9. 原子吸收光度法分析样品时,物理干扰是指试样在转移、_____和 _____过程中,由于试样的任何物理特性的变化而引起的吸收强度下降的效应。答案:蒸发原子化 10. 火焰原子吸收光度法中光谱干扰是指待测元素_____的光谱与干扰物的_____不能完全分离所引起的干扰。答案:发射或吸收辐射光谱 11. 石墨炉原子吸收光度法分析程序通常有__、__、_和__4个阶段。答案:干燥灰化原子化除残12.石墨炉原子吸收分析阶段,灰化的含义在于___和__的灰化清除,保留分析元素。答案:基体干扰物 13. 石墨炉原子吸收光度法测定样品时,载气流量的大小对_和__有影响。答案:分析灵敏度石墨管寿命 二、判断1. 火焰原子吸收光谱仪中,大多数空心阴极灯一般都是工作电流越小,分析灵敏度越低。( )答案:错误正确答案为:大多数空心阴极灯一般都是工作电流越小,分析灵敏度越高。 2. 火焰原子吸收光谱仪中,分光系统单色器所起的作用是将待分析元素的共振线与光源中的其他发射线分开。( 答案:正确 3. 火焰原子吸收光度法分析中,用10HNO3-HF-HClO4消解试样,在驱赶HClO4时,如将试样蒸干会使测定结果偏高。( 答案:错误正确答案为:在驱赶HClO4时,如将试样蒸干会使测定结果偏低。 4. 火焰原子吸收光度法中,空气-乙炔火焰适于低温金属的测定。( )答案:正确 5. 火焰原子吸收光度法分析样品时,为避免稀释误差,在测定含量较高的水样时,可选用次灵敏线测量。( )答案:正确 6. 石墨炉原子吸收光度法测定样品时,干燥阶段石墨炉升温过快会使结果偏低。( )答案:正确 7.石墨炉原子吸收光度法适用于元素的痕量分析。( )答案:正确

常用紫外分光光度法测定蛋白质含量

6种方法测定蛋白质含量 一、微量凯氏(kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下:nh2ch2cooh+3h2so4——2co2+3so2+4h2o+nh3 (1) 2nh3+h2so4——(nh4)2so4 (2) (nh4)2so4+2naoh——2h2o+na2so4+2nh3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret法) (一)实验原理 双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材 1. 试剂: (1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正

原子吸收分光光度计操作方法

原子吸收分光光度法测定溶液中CU含量 一、实验目的 1.掌握原子吸收分光光度法的特点及应用; 2.了解原子吸收分光光度计的结构及其使用方法。 二、实验原理 原子吸收光谱分析是基于从光源中辐射出的待测元素的特征光波通过样品的原子蒸气时,被蒸气中待测元素的基态原子所吸收,使通过的光波强度减弱,根据光波强度减弱的程度,可以求出样品中待测元素的含量。 利用锐线光源在低浓度的条件下,基态原子蒸气对共振线的吸收符合朗伯—比尔定律,即: A=lg(I0/I)=KLN0 (1) 式中,A为吸光度,I0为入射光强度,I为经原子蒸气吸收后的透射光强度,K为吸光系数,L为辐射光穿过原子蒸气的光程长度,N0为基态原子密度。 当试样原子化,火焰的绝对温度低于3000K时,可以认为原子蒸气中基态原子的数目实际上接近原子总数。在固定的实验条件下,原子总数与试样浓度c的比例是恒定的,则等式(1)可记为 A==K’c (2) 式(2)就是原子吸收分光光度法定量分析的基本关系式。常用标准曲线法、标准加入法进行定量分析。 三、仪器与试剂 1.原子吸收分光光度计 2.标准溶液1~4号 3.样品溶液1~2号 四、操作步骤 1.开机前先检查水封是否有水,乙炔管道有无泄漏(空气中有无乙炔气味) 2.打开抽风机 3.打开电脑以及原子吸收分光光度计电源开关 4.分析方法设计

进入软件→点文件→选择新建→选择分析方法(火焰法、石墨法、氢化物法等)→分析任务选择(Cu、Pb、Ca等)→填写数据表(批数、个数、测量次数、稀释倍数)→展开→完成→仪器控制→点击自动波长→精调→完成→检测(准备两杯水,一杯调零,另一杯洗样管) 5.将元素灯预热30min 6.打开空压机,将压力调到0.3Mpa 7.打开乙炔钢瓶阀,将出气阀压力调到0.05~0.06Mpa之间 8.调整燃烧器高度,对好光路 9.旋开仪器上的乙炔伐,按点火开关,点火,调节火焰大小,开始检测 10.标准空白(纯水)读数5次,平均 11.标液1~标液4各读数5次,平均 12.建立标准曲线,相关系数应在0.995以上。 13.未知样品读数5次,平均。从标准曲线中求得结果。 14.检测完毕后,保存数据 15.点火吸去离子水10min,在关乙炔伐,使管道中气体烧完再关仪器、电脑、空压机。 五、结果处理 1.记录操作条件 灯电流 燃烧器高度 狭缝宽度 乙炔流量 空气流量 2.根据标准曲线计算样品中Cu含量。

紫外可见分光光度法含量测定

【含量测定】照紫外-可见分光光度法(附录V A)测定。 1.仪器与测定条件:室温:____℃相对湿度:____% 分析天平编号:;水浴锅编号:; 紫外可见分光光度计编号:; 2.对照品溶液的制备: 取西贝母碱对照品适量,精密称定,加三氯甲烷制成每1ml含_______mg的溶液,即得。 3. 供试品溶液的制备: 取本品粉末(过三号筛)约______g,精密称定,置具塞锥形瓶中,加浓氨试液3ml,浸润1小时。加三氯甲烷-甲醇(4:1)混合溶液40ml,置80℃水浴加热回流2小时,放冷,滤过,滤液置50ml量瓶中,用适量三氯甲烷-甲醇(4:1)混合溶液洗涤药渣2~3次,洗液并入同一量瓶中,加三氯甲烷-甲醇(4:1)混合溶液至刻度,摇匀,即得。 4.标准曲线的制备: 精密量取对照品溶液0.1ml、0.2ml、0.4ml、0.6ml、1.0ml,置25ml具塞试管中,分别补加三氯甲烷至10.0ml,精密加水5ml、再精密加0.05%溴甲酚绿缓冲液(取溴甲酚绿0.05g,用0.2mol/L氢氧化钠溶液6ml使溶解,加磷酸二氢钾1g,加水使溶解并稀释至100ml,即得)2ml,密塞,剧烈振摇,转移至分液漏斗中,放置30分钟。取三氯甲烷液,用干燥滤纸滤过,取续滤液,以相应的试剂为空白。 5.测定法: 照紫外-可见分光光度法(附录ⅤA),在nm波长处测定吸光度,以吸光度为纵坐标,浓度为横坐标,绘制标准曲线。依法测定吸光度,从标准曲线上读出供试品溶液中含西贝母碱的重量,计算,即得。 6.结果与计算 6.1 标准曲线制备:

对照品批号 纯 度 S 对照品来源 干燥条件 对照品称重W 对(mg) 各浓度点稀释倍数f 对 溶液浓度C 对(ug/ml) 吸光度A 对 线性回归方程 A=( )C +/-( ) r =( ) 计算公式: W S C f ?= 对对对 C 对= 6.2 样品测定: 水分Q 取样量W 样(g ) 样品稀释倍数f 样 样品吸光度A 样 样品平均吸光度A 样 浓度C(ug/ml) 含量X (%) 平均含量X (%) 计算公式:() %100Q 110W f C X 6 ?-???= 样样 样 X 1= X 2= 7.本品按干燥品计算,含总生物碱以西贝母碱(C 27H 43NO 3)计,不得少于0.050%。 结果: 规定 检验人: 检验日期: 复核人: 复核日期:

紫外分光光度法测定未知物

紫外分光光度法测定未知物 1.仪器 1.1紫外分光光度计(UV-1801型);配石英比色皿(1cm)2个 1.2容量瓶(100mL):10个;容量瓶(250mL)1个 1.3吸量管(10mL、5mL):各1支 1.4移液管(20mL、25mL、50mL):各1支 2.试剂 2.1标准溶液(1mg/mL):维生素C、水杨酸、苯甲酸、山梨酸、邻二氮菲分别配成1mg/mL的标准溶液,作为储备液。 2.2未知液:浓度约为(40~60ug/mL)。(其必为给出的五种物质之一) 3.实验操作 3.1比色皿配套性检查 石英比色皿装蒸馏水,以一只比色皿为参比,在测定波长下调节透射比为100%,测定其余比色皿的透射比,其偏差应小于0.5%,可配成一套使用。 3.2未知物的定性分析 将五种标准储备液均稀释成10ug/mL的试液(配制方法由选手自定)。以蒸馏水为参比,于波长200~350nm范围内扫描五种溶液,绘制吸收曲线,根据所得到的吸收曲线对照标准谱图,确定被测物质的名称,并依据吸收曲线确定测定波长。五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参考考考考附图附图附图附图。。。。 3.3未知物定量分析 根据未知液吸收曲线上测定波长处的吸光度,确定未知液的稀释倍数,并配制待测溶液3份,进行平行测定。 推荐方法 3.3.1维生素C含量的测定:准确吸取1mg/mL的维生素C标准储备液50.00mL,在250mL容量瓶中定容(此溶液的浓度为200ug/mL)。再分别准确移取1、2、4、6、8、10mL上述溶液,在100mL容量瓶中定容(浓度分别为2、4、8、12、16、20 ug/mL)。准确移取20.00mL维生素C未知液,在100mL容量瓶中定容,于

固体废物 总汞的测定 冷原子吸收分光光度法

固体废物总汞的测定冷原子吸收分光光度法 作业指导书 1 主题内容与适用范围 1.1 本标准规定了测定固体废物浸出液中总汞的高锰酸钾-过硫酸钾消解冷原子吸收分光光度法。 1.2 本标准方法适用于固体废物浸出液中总汞的测定。 1.2.1 在最佳条件下(测汞仪灵敏度高,基线漂移及试剂空白值极小),当试样体积为200m L时,最低检出浓度可达0.05μg/L。在一般情况下,测定范围为0.2~50μg/L。 1.2.2 干扰 碘离子浓度等于或大于3.8μg/L时明显影响精密度和回收率。若有机物含量较高,规定的消解试剂最大量不足以氧化样品中的有机物,则方法不适用。 2 原理 汞原子蒸气对波长253.7nm的紫外光具有强烈的吸收作用,汞蒸气浓度与吸收 值成正比。在硫酸-硝酸介质及加热条件下,用高锰酸钾和过硫酸钾将试样消解:或 用溴酸钾和溴化钾混合试剂,在20℃以上室温和0.6~2mol/L的酸性介质中产生溴,将试样消解,使所含汞全部转化为二价汞。用盐酸羟胺将过剩的氧化剂还原,再用氯化亚锡鼗二价汞还原成金属汞。在室温通入空气或氮气流,将金属汞汽化,载入冷原子吸收测汞仪,测量吸收值,可求得试样中汞的含量。 3 试剂 除另有说明,分析中仅使用符合国家标准或专业标准的分析纯试剂,其中汞含量要尽可能少。如采用的试剂导致空白值偏高,应改用级别更高或选择某些工厂生产的汞含量更低的试剂,或自行提纯精制。配制试剂或试样稀释定容,均使用无汞蒸馏水(3.1)。试样一律盛于磨口玻璃试剂瓶。 3.1 无汞蒸馏水。二次重蒸馏水或电渗析去离子水通常可达到此纯度。也可将蒸馏水加盐酸酸化至PH3,然后通过巯基棉纤维管(3.2)除汞。

原子吸收分光光度法

新疆医科大学卫生化学教学大纲供预防医学类专业用) 编写者:哈及尼沙 药学院分析/ 药分教研室 2012年12月

I 前言 课程名称:卫生化学英文名称:Sanitary Chemistry 课程类别:专业基础课(必修) 面向专业:预防医学专业(本科)选用教材:《卫生化学》(第六版),郭爱民主编出版单位:人民卫生出版社 学时:54 学时(理论课36 学时,实验课18 学时) 卫生化学(Sanitary chemistry)是高等医学教育预防医学专业学生必修的专业基础课。是探讨和研究预防医学中所需要的检验方法、理论和新分析技术的一门学科。其主要任务是为学生讲授专业课和生产实习所必需的分析课学基础理论、基本知识及基本技能。在医学教育中,卫生化学与分析化学、仪器分析和统计学等前期基础课程有着密切联系,并为环境卫生学、营养与食品卫生学、劳动卫生学及流行病学等后期专业课程提供基础理论和相关知识。 本大纲适用于预防医学类专业五年制汉、民族本科学生使用。现将大纲使用中有关问题说明如下: 1、为了使教师和学生更好地掌握教材,大纲每一章节均由教学目的、教学要求和教学内容三部分组成。教学目的注明教学目标,教学要求分掌握、熟悉和了解三个级别,教学内容与教学要求级别对应,并统一标示(重点掌握内容下画实线,熟悉内容下画虚线,一般内容不作标示)便于学生重点学习。 2、教师在保证大纲核心内容的前提下,可根据本专业的要求与教学手段,讲授重点内容和介绍一般内容。 3、总教学参考学时为54 学时,分12 周,理论与实验比值2:1,即讲课36 学时,实验18 学时。 II正文 第一章绪论 一、教学目的:通过本章学习,了解卫生化学的性质及发展,掌握卫生化学中分析方法的分类与作用,熟悉卫生化学的基本内容、相关参考书和文献。 二、教学要求 1、了解卫生化学的学科性质。

紫外分光光度法测定蛋白质含量实验报告.docx

紫外分光光度法测定蛋白质含量 一、实验目的 1.学习紫外光度法测定蛋白质含量的原理; 2.掌握紫外分光光度法测蛋白质含量的实验技术。 二、实验原理 1.测蛋白质含量的方法主要有:①测参数法:折射率、相对密度、紫外吸收等;②基于化学反应:定氮法、双缩脲法、Folin―酚试剂法等。本实验采用紫外分光光度法。 2.蛋白质中的酪氨酸和色氨酸残基的苯环中含有共轭双键,因此,蛋白质具有吸收紫外光的性质,其最大吸收峰位于280nm附近(不同蛋白质略有不同)。在最大吸收波长处,吸光度与蛋白质溶液的浓度服从朗伯―比尔定律。 利用紫外吸收法测蛋白质含量的准确度较差,原因有二:①对于测定那些与标准蛋白质中酪氨酸和色氨酸含量差异较大的蛋白质,有一定误差,故该法适于测定与标准蛋白质氨基酸组成相似的蛋白质;②样品中含有的嘌呤、嘧啶等吸收紫外光的物质,会出现较大干扰。 三、仪器与试剂 TU―1901紫外可见分光光度计、标准蛋白质溶液3.00mg·mL-1、0.9%NaCl 溶液、试样蛋白质溶液。 10mL比色管、1cm石英比色皿、吸量管。 四、实验步骤 1.绘制吸收曲线 用吸量管吸取2mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在190~400nm间每隔5nm测一次吸光度Abs,记录数据并作图。 2.绘制标准曲线 用吸量管分别吸取1.0、1.5、2.0、2.5、3.0mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在波长280nm处分别测其吸光度,记录数据并作图。 3.样品测定 取适量浓度试样蛋白质溶液,在波长280nm处测其吸光度,重复三次。在已经得到标准曲线的情况下,为了使测量结果准确度高,待测溶液的浓度需在标准曲线的线性范围内,所以,先测定试样蛋白质原液的吸光度(1.363),估算浓度为2.0960 mg·mL-1,再将原试液稀释至5倍(即取2mL试液,用0.9%NaCl 溶液稀释至刻度,摇匀),估算浓度为0.4192 mg·mL-1,测吸光度,重复三次五、数据处理与结果分析

原子吸收分光光度法与紫外-可见分光光度法

1.试比较原子吸收分光光度法与紫外-可见分光光度法有哪些异同点? 答:相同点:二者都为吸收光谱,吸收有选择性,主要测量溶液,定量公式:A=kc,仪器结构具有相似性. 不同点:原子吸收光谱法紫外――可见分光光度法 (1) 原子吸收分子吸收 (2) 线性光源连续光源 (3) 吸收线窄,光栅作色散元件吸收带宽,光栅或棱镜作色散元件 (4) 需要原子化装置(吸收池不同)无 (5) 背景常有影响,光源应调制 (6) 定量分析定性分析、定量分析 (7) 干扰较多,检出限较低干扰较少,检出限较低 2.试比较原子发射光谱法、原子吸收光谱法、原子荧光光谱法有哪些异同点? 答:相同点:属于原子光谱,对应于原子的外层电子的跃迁;是线光谱,用共振线灵敏度高,均可用于定量分析. 不同点:原子发射光谱法原子吸收光谱法原子荧光光谱法 (1)原理发射原子线和离子线基态原子的吸收自由原子(光致发光) 发射光谱吸收光谱发射光谱 (2)测量信号发射谱线强度吸光度荧光强度 (3)定量公式lgR=lgA + blgc A=kc If=kc (4)光源作用不同使样品蒸发和激发线光源产生锐线连续光源或线光源 (5)入射光路和检测光路直线直线直角 (6)谱线数目可用原子线和原子线(少)原子线(少) 离子线(谱线多) (7)分析对象多元素同时测定单元素单元素、多元素 (8)应用可用作定性分析定量分析定量分析 (9)激发方式光源有原子化装置有原子化装置 (10)色散系统棱镜或光栅光栅可不需要色散装置 (但有滤光装置)

(11)干扰受温度影响严重温度影响较小受散射影响严重 (12)灵敏度高中高 (13)精密度稍差适中适中 按照电磁辐射的本质,光谱又可分为分子光谱和原子光谱。分子光谱是由于分子中电子能级变化而产生的。原子光谱可分为发射光谱、原子吸收光谱、原子荧光光谱和X- 射线以及X- 射线荧光光谱。前三种涉及原子外层电子跃迁,后两种涉及内层电子的跃迁。目前一般认为原子光谱仅包括前三种。原子发射光谱分析是基于光谱的发射现象;原子吸收光谱分析是基于对发射光谱的吸收现象;原子荧光光谱分析是基于被光致激发的原子的再发射现象。

实验一 紫外分光光度法测定苯甲酸

实验一紫外分光光度法测定苯甲酸 一、实验目的 学习、了解紫外分光光度法原理 了解紫外分光光度计的结构和使用方法 二、实验原理 当辐射能(光)通过吸光物质时,物质的分子对辐射能选择性的吸收而得到的光谱称为分子吸收光谱。分子吸收光谱的产生与物质的分子结构、物质所在状态、溶剂和溶液的PH等因素有关。分子吸收光谱的强度与吸光物质的浓度有关。表示物质对光的吸收程度,通常采用“吸光度”这一概念来量度。 根据朗伯-比尔定律,在一定的条件下,吸光物质的吸光度A 与该物质的浓度C和液层厚度成正比。即A= LC 因此,只要选择一定的波长测定溶液的吸光度,即可求出该溶液浓度,这就是紫外-可见分光光度计的基本原理。 在碱性条件下,苯甲酸形成苯甲酸盐,对紫外光有选择性吸收,其吸收光谱的最大吸收波长为225nm。因此,采用紫外分光光度计测定苯甲酸在225nm处的吸收度就能进行定量分析。 三、仪器与主要试剂 TU-1810紫外可见分光光度计1cm石英比色皿 0.1M氢氧化钠溶液 苯甲酸(AR) 四、实验步骤 1、苯甲酸标准溶液的制备 称取苯甲酸(105℃烘干)100mg,用0.1M氢氧化钠溶液100ml溶解后,转入1000ml容量瓶中,用蒸馏水稀释至刻度.此溶液1ml含0.1mg 苯甲酸. 2、制作苯甲酸吸收曲线,选择最大吸收波长 ①移取苯甲酸标准溶液4.00ml于50ml容量瓶中,用0.01M氢氧化钠溶液定容,摇匀,此溶液1ml含苯甲酸8ug. 以氘灯为光源,用0.01M氢氧化钠溶液作为参比,改变测量波长(从210-240nm)测量8ug/ml苯甲酸的吸光度. ②以波长为横坐标,吸光度为纵坐标,绘制苯甲酸的紫外吸收曲线,并找出最大的吸收波长 (是否是225nm). 3﹑样品的测定 ①取10.00ml苯甲酸样品,放入50ml容量瓶中,用0.01M氢氧化钠

原子吸收分光光度计的四大应用

原子吸收分光光度计的四大应用 原子吸收分光光度计是一种常用的分光计产品,根据物质基态原子蒸汽对特征辐射吸收的作用来进行金属元素分析,被广泛用于多个领域中。今天我们主要来介绍一下原子吸收分光光度计的四大应用,希望可以帮助用户更好的应用产品。 1. 理论研究中的应用: 原子吸收可作为物理和物理化学的一种实验手段,对物质的一些基本性能进行测定和研究。电热原子化器容易做到控制蒸发过程和原子化过程,所以用它测定一些基本参数有很多优点。用电热原子化器所测定的一些有元素离开机体的活化能、气态原子扩散系数、解离能、振子强度、光谱线轮廓的变宽、溶解度、蒸气压等。 2. 元素分析中的应用: 原子吸收光谱分析,由于其灵敏度高、干扰少、分析方法简单快速,现巳广泛地应用于工业、农业、生化、地质、冶金、食品、环保等各个领域,目前原子吸收巳成为金属元素分析的强有力工具之一,而且在许多领域巳作为标准分析方法。原子吸收光谱分析的特点决定了它在地质和冶金分析中的重要地位,它不仅取代了许多一般的湿法化学分析,而且还与X- 射线荧光分析,甚至与中子活化分析有着同等的地位。目前原子吸收法巳用来测定地质样品中70多种元素,并且大部分能够达到足够的灵敏度和很好的精密度。钢铁、合金和高纯金属中多种痕量元素的分析现在也多用原子吸收法。原子吸收在食品分析中越来越广泛。食品和饮料中的20多种元素巳有满意的原子吸收分析方法。生化和临床样品中必需元素和有害元素的分析现巳采用原子吸收法。有关石油产品、陶瓷、农业样品、药物和涂料中金属元素的原子吸收分析的文献报道近些年来越来越多。水体和大气等环境样品的微量金属元素分析巳成为原子吸收分析的重要领域之一。利用间接原子吸收法尚可测定某些非金属元素。 3. 有机物分析中的应用: 利用间接法可以测定多种有机物。8- 羟基喹啉(Cu)、醇类(Cr)、醛类(Ag)、酯类(Fe)、酚类(Fe)、联乙酰(Ni)、酞酸(Cu)、脂肪胺(co)、氨基酸(Cu)、维生素C(Ni)、氨茴酸(Co)、雷米封(Cu)、甲酸奎宁(Zn)、有机酸酐(Fe)、苯甲基青霉素(Cu)、葡萄糖(Ca)、环氧化物水解酶(PbO、含卤素的有机化合物(Ag)等多种有机物,均通过与相应的金属元素之间的化学计量反应而间接测定。 4. 金属化学形态分析中的应用: 通过气相色谱和液体色谱分离然后以原子吸收光谱加以测定,可以分析同种金属元素的不同有机化合物。例如汽油中5种烷基铅,大气中的5种烷基铅、烷基硒、烷基胂、烷基锡,水体中的烷基胂、烷基铅、烷基揭、烷基汞、有机铬,生物中的烷基铅、烷基汞、有机锌、有机铜等多种金属有机化合物,均可通过不同类型的光谱原子吸收联用方式加以鉴别和测定。 (责任编辑:耀华仪器总汇)

土壤和固体废物冷原子吸收分光光度法测定汞题库及答案

冷原子吸收分光光度法测定汞 分类号:SS9 主要内容 ①固体废物总汞的测定冷原于吸收分光光度法(GB/T15555.1-1995) ②城市生活垃圾汞的测定冷原子吸收分光光度法(CJ/T98-1999) ③土壤质量总汞的测定冷原子吸收分光光度法(GB/T17136-1997) ④城市生活垃圾采样和物理分析方法(CJ/T3039-1995) 一、填空题 1.根据《土壤质量总汞的测定冷原子吸收分光光度法》 (GB/T 17136-1997),用硫酸-硝酸,高锰酸钾消解法消解土壤样品时,若样品中含有机质较多,可预先加_____加热回流消解,然后加______和高锰酸钾溶液继续消解。③ 答案:硝酸硫酸 2.根据《城市生活垃圾汞的测定冷原子吸收分光光度法》 (CJ/T 98-1999),垃圾样品消解所得混合物,在临测定前滴加10%盐酸羟胺溶液还原过剩的高锰酸钾时,应边滴边摇,直至褪尽,定容,保留_______用于汞的测定。② 答案:紫红色和棕色上清液 3.根据《固体废物总汞的测定冷原子吸收分光光度法》(GB/T 15555.1-1995),样品消解所用的试剂依次为是:1.5mL______、4ml___ ____和4ml 。① 答案:硫酸高锰酸钾溶液过硫酸钾溶液 4.根据《城市生活垃圾汞的测定冷原子吸收分光光度法》 (CJ/T 98-1999),样品的_____、_____和_______的测定及样品的保存,均按《城市生活垃圾采样和物理分析方法》(CJ/ T3039-1995)规定执行。②④ 答案:采集制备含水率 5.根据《固体废物总汞的测定冷原子吸收分光光度法》(GB/T 15555.1-1995),加入固定液的浸出液样品应在____℃下保存,最长不超过____d。① 答案:40 28 6.制备无汞蒸馏水时,可将蒸馏水用酸化至____,然后通过____ ___除汞。①③ 答案:优级纯盐酸 pH=3 巯基棉纤维管 二、判断题

原子吸收分光光度法原理

原子吸收分光光度法测定矿石中的铜 原子吸收光谱法基于从光源发出的被测元素的特征辐射通过样品蒸气时,被待测元素基态原子所吸收,由辐射的减弱程度求得样品中被测元素的含量。 在锐线光源条件下,光源的发射线通过一定厚度的原子蒸气,并被基态原子所吸收,吸光度与原子蒸气中待测元素的基态原子数间的关系遵循朗伯-比耳定律: A=log I0/I =KLN 式中A为吸光度;I0为入射光强度;I为经过原子蒸气吸收后的透射光强度;K 为吸光系数,L为光波所经过的原子蒸气的光程长度,N为基态原子密度。 在火焰温度低于3000K的条件下,可以认为原子蒸气中基态原子的数目实际上接近于原子总数。特定的实验条件下,原子总数与试样浓度c B的比例是恒定的,所以,上式又可以写成: 这就是原子吸收分光光度法的定量基础。常用的定量方法为标准曲线法和标准加入法等。 原子吸收分光光度计主要组成部分包括光源、原子化器、分光系统和检测系统。

其光路如图32-1所示。 图32-1 原子吸收分光光度计光路图 1.空心阴极灯;2.火焰;3.入射狭缝;4.凹面反射镜;5.光栅;6.出射 狭缝;7.检测器 原子吸收分光光度计的光源用空心阴极灯,它是一种锐线光源。灯管由硬质玻璃制成,一端由石英或玻璃制成光学窗口,两根钨棒封入管内,一根连有由钛、锆、钽等有吸气性能金属制成的阳极,另一根上镶有一个圆筒形的空心阴极。筒内衬上或熔入被测元素,管内充有几百Pa低压载气,常用氖或氩气。当在阴阳两极间加上电压时,气体发生电离,带正电荷的气体离子在电场作用下轰击阴极,使阴极表面的金属离子溅射出来,金属原子与电子、惰性气体的原子及离子碰撞激发而发出辐射。最后,金属原子又扩散回阴极表面而重新沉积下来。通常,改变空心阴极灯的电流可以改变灯的发射强度。在忽略自吸收的前提下,其经验公式为I=ai n,其中a、n均为常数,i为电流强度。n与阴极材料、灯内所充气体及谱线的性质有关。对于Ne、Ar等气体,n值在2~3之间,由此可见,灯的发光强度受灯电流的影响较大,影响吸光度值。

环境监测人员持证上岗考试冷原子吸收分光光度法测定汞试题集

环境监测人员持证上岗考试冷原子吸收分光光度法测定汞 试题集 分类号:SS9 主要内容 ①固体废物总汞的测定冷原于吸收分光光度法(GB/T15555.1-1995) ②城市生活垃圾汞的测定冷原子吸收分光光度法(CJ/T98-1999) ③土壤质量总汞的测定冷原子吸收分光光度法(GB/T17136-1997) ④城市生活垃圾采样和物理分析方法(CJ/T3039-1995) 一、填空题 1.根据《土壤质量总汞的测定冷原子吸收分光光度法》 (GB /T 17136-1997),用硫酸-硝酸,高锰酸钾消解法消解土壤样品时,若样品中含有机质较多,可预先加_____加热回流消解,然后加______和高锰酸钾溶液继续消解。③ 答案:硝酸硫酸 2.根据《城市生活垃圾汞的测定冷原子吸收分光光度法》 (CJ/T 98-1999),垃圾样品消解所得混合物,在临测定前滴加10%盐酸羟胺溶液还原过剩的高锰酸钾时,应边滴边摇,直至褪尽,定容,保留_______用于

汞的测定。② 答案:紫红色和棕色上清液 3.根据《固体废物总汞的测定冷原子吸收分光光度法》(GB /T 15555.1-1995),样品消解所用的试剂依次为是:1.5mL______、4ml___ ____和4ml 。① 答案:硫酸高锰酸钾溶液过硫酸钾溶液 4.根据《城市生活垃圾汞的测定冷原子吸收分光光度法》 (CJ/T 98-1999),样品的_____、_____和_______的测定及样品的保存,均按《城市生活垃圾采样和物理分析方法》(CJ/T3039-1995)规定执行。②④ 答案:采集制备含水率 5.根据《固体废物总汞的测定冷原子吸收分光光度法》(GB/T 15555.1-1995),加入固定液的浸出液样品应在____℃下保存,最长不超过____d。① 答案:40 28 6.制备无汞蒸馏水时,可将蒸馏水用酸化至____,然后通过____ ___除汞。①③ 答案:优级纯盐酸 pH=3 巯基棉纤维管 二、判断题 1.根据《土壤质量总汞的测定冷原子吸收分光光度法》 (GB /T 17136-1997)测定土壤中总汞时,硫酸—硝酸-高锰酸钾

相关文档
最新文档