2017-2018学年江苏省南通市启东中学高二(下)期中数学试卷(文科)
江苏省启东中学高二数学下学期期中试题(文)

江苏省启东中学2013-2014学年高二数学下学期期中试题(文)一.填空题:1.命题{}:2135p A x a x a =+<<-非空集合,命题{}:(3)(22)0q B x x x =--≤,若p ⌝是q ⌝的必要不充分条件,则实数a 的取值范围 ▲ 。
2.已知(1)5z z i =-+,则复数z = ▲ 。
3.对于任意的()12,0,x x ∈+∞,若函数()lg f x x =,满足1212()()()22f x f x x xf ++≤,运用类比的思想方法,当12,,2x x ππ⎛⎫∈ ⎪⎝⎭时,试比较12cos cos 2x x +与12cos 2x x +的大小关系 ▲ 。
4.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如图所示).则分数在[70,80)内的人数是 ▲ 。
5.执行如图所示的程序框图,若输入10,n S ==则输出的 ▲6.如图所示,墙上挂有一边长为a 的正方形木板,它的四个角的空白部分都是以正方形第4题图 第5题图的顶点为圆心,半径为2a的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是▲.7.某篮球运动员在7天中进行投篮训练的时间(单位:分钟)用茎叶图表示(如图),图中左列表示训练时间的十位数,右列表示训练时间的个位数,则该运动员这7天的平均训练时间为 ▲ 分钟.8.某单位有职工52人,现将所有职工按l 、2、3、…、52随机编号,若采用系统抽样的方法抽取一个容量为4的样本,已知5号、31号、44号职工在样本中,则样本中还有一个职工的编号是 ▲9.已知200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,利用组中值计算200辆汽车的平均时速为 ▲ km/h .10.设数列{}n a 满足:44=a ,0)2()2(11=-⋅--++n n n n a a a a )(*N n ∈,则1a 的值小于4的概率为 ▲ . 11.观察下列等式:①cos 2α=2cos 2α-1; ②cos 4α=8cos 4α-8cos 2α+1;③cos 6α=32cos 6α-48cos 4α+18cos 2α-1;④cos 8α=128cos 8α-256cos 6α+160cos 4α-32cos 2α+1;第6题图 第9题图第7题图⑤cos 10α=m cos 10α-1280cos 8α+1120cos 6α+n cos 4α+p cos 2α-1. 可以推测,m -n +p =___▲_____.12.已知扇形的圆心角为2α(定值), 半径为R (定值),分别按图一、二 作扇形的内接矩形,若按图一作出的矩形面积的最大值为21tan 2R α, 则按图二作出的矩形面积的最大值为 ▲ .13.(1)给出下列四个命题:①设123,,z z z C ∈,若221223()()0z z z z -+-=,则13z z =; ②两个复数不能比较大小;③若,z C ∈则z z -是纯虚数; ④设12,z z C ∈,则 “12z z R +∈”是“1z 与2z 互为共轭复数”的必要不充分条件. 其中,真命题的序号为 ▲ .14.△ABC 内有任意三点都不共线的2 014个点,加上A 、B 、C 三个顶点,共2 017个点,把这2 017个点连线形成互不重叠的小三角形,则一共可以形成小三角形的个数为 ▲ .二.解答题15. (14分)已知命题p :方程x 2+mx +1=0有负实数根;命题q :方程4x 2+4(m -2)x +1=0无实数根,若“p 或q ”为真命题,“p 且q ”为假命题,求实数m 的取值范围。
2017-2018学年江苏省南通市启东中学高一(下)期中数学试卷

.
,且
,求实数 的取值范围;
,且 ,求实数 的取值范围.
3
天才出自勤奋。
18.
已知Sn是数列{an}的前n项和,bn=
.
(1)已知{an}是等比数列,a2=1,b3= ,求{an}的通项公式; (2)已知{an}是公差为d(d≠0)的等差数列,若{bn}也是等差数列,求
的值.
19. 如图,有一壁画,最高点 距离地面 为 米,最低点 距离地面 为 米.
∴an=16+(n-1)×(- )= (67-3n),
由an>0,得67-3n>0,解得n<22 ,
∴a22= >0,a23=- <0, ∴由ak•ak+1<0,得k=22. 故答案为:22.
7解析: , ,,, ,,
成等比数列,
根据等比数列的通项得:
,
.
故答案为: .
8解析:
如图,由已知可得,
在
中,
12
天才出自勤奋。
2017-2018学年江苏省南通市启 东中学高一(下)期中数学试卷
1
天才出自勤奋。
1. 在
中,若
,则 ___.
2. 设直线 的方程为 值为___.
,当直线 垂直于 轴时, 的
3. 在等差数列{an}中,a7=6,则S13═______. 4. 在△ABC中,已知sinA=2sinBcosC,则该三角形的形状为______三角形.
13解析:α 为锐角,则ta nα >0,
(
)
2tanα+
=2ta nα +
=
+
≥2
=,
当且仅当tanα= 即α= 时取得等号,
则2ta nα +
江苏省启东中学2017-2018学年高二数学下学期第二次月考试题 理

江苏省启东中学2017-2018学年度第二学期月考高二理科数学试卷数学I 2018.06(满分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上... 1.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 是 ▲ . 2.函数)2lg(1x y -=的定义域是 ▲ .3.函数y =12x 2-ln x 的单调递减区间是 ▲ .4.曲线y =sin xsin x +cos x +1在点)23,4π(M 处的切线的斜率是 ▲ .5.已知命题p :若函数2()||f x x x a =+-是偶函数,则0a =;命题q :(0,)m ∀∈+∞,关于x 的方程2210mx x -+=有解.下列命题为真命题的是 ▲ .(填序号)①p q ∨;②p q ∧;③()p q ⌝∧;④()()p q ⌝∨⌝6.若函数f (x )=k -2x1+k ·2x 在定义域上为奇函数,则实数k = ▲ .7.已知x x g 21)(-=,)0(1)]([22≠-=x xx x g f ,则)21(f = ▲ . 8.已知f (x )是定义在R 上的奇函数,当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示是 ▲ .9.设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是 ▲ .10.“0a ≤”是“函数()1|()|f x ax x -=在区间(0,)+∞内单调递增”的 ▲ 条件。
(填“充分不必要”、“必要不充分”、“充分必要”、“既不充分也不必要”) 11.已知函数()f x 是定义在R 上的周期为4的奇函数,当02≤<-x 时, a x f x +=2)(,则=⎪⎭⎫ ⎝⎛-213f ▲ . 12.已知函数f (x )=x 2(x -a ).若若存在(2,3),∈t s , 且t s ≠,使得)()(t f s f ≠成立,则实数a 的取值范围是 ▲ .13.定义在R 上的奇函数()f x 的导函数满足()()'f x f x <,且()()31f x f x ⋅+=-, 若ef 1)2018(-=,则不等式1)(+<x e x f 的解集是 ▲ .14. 定义域为R 的函数f (x )满足f (x+2)=3f (x ),当[0,2]x ∈时,x x x f 2)(2-=, 若[4,2]x ∈--时,⎪⎭⎫ ⎝⎛-≥t t x f 3181)(恒成立,则实数t 的取值范围是 ▲ . 二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知命题p :指数函数x a x f )62()(-=在R 上是单调减函数;命题q :关于x 的方程012322=++-a ax x 的两根均大于3.若p 或q 为真,p 且q 为假,求实数a 的范围.16.(本小题满分14分)已知函数,R (11lg )(∈--=k x kx x f 且k >0). (1) 求函数)(x f 的定义域;(2) 若函数)(x f 在[10,+∞)上单调递增,求k 的取值范围.17.(本小题满分15分)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.18.(本小题满分15分)已知函数)0(32ln )(≠+-=a ax x a x f . (1)设1-=a ,求函数)(x f 的极值;(2)在(1)的条件下,若函数m x f x x x g +'+=)(31)(23(其中)(x f '为)(x f 的导数)在区间(1,3)上不是单调函数,求实数m 的取值范围.19.(本小题满分16分)已知某手机品牌公司生产某款手机的年固定成本为40万元,每生产1万部还需另投入16万元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x-40 000x 2,x >40.(1)写出年利润W (万元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.20.(本小题满分16分)已知函数().ln xxxf=(1)求函数()x f的极值点;(2)若直线l过点(0,—1),并且与曲线()x fy=相切,求直线l的方程;(3)设函数()()()1--=xaxfxg,其中Ra∈,求函数()x g在[]e,1上的最小值.(其中e为自然对数的底数)数学Ⅱ(附加题)1.(本小题满分10分)求下列函数的导数:(1)y=ln xx2+1; (2)y=ln(2x-5).2.(本小题满分10分)为了做好阅兵人员的运输,从某运输公司抽调车辆支援,该运输公司有7个车队,每个车队的车辆均多于4辆.现从这个公司中抽调10辆车,并且每个车队至少抽调1辆,那么共有多少种不同的抽调方法?3.(本小题满分10分)在一袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4),现从袋中任取一球,X 表示所取球的标号.(1)求X 的分布列、期望;(2)若Y =aX +b ,E (Y )=1,V (Y )=11,试求a ,b 的值.4.(本小题满分10分)设(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,n ∈N *,n ≥2.(1)若n =11,求a 6+a 7+a 8+a 9+a 10+a 11的值;(2)设b k =2k a k (k ∈N ,k ≤n ),S n =b 0+b 1+b 2+…+b n ,求S n 的值.江苏省启东中学2017-2018学年度第二学期月考理数学I一、填空题:1.{0,2,4};2.)2,1()1,(⋃-∞;3. (0,1];4. 21;5.①④;6. ±1;7. 15;8.()()5,05,-+∞;9. (-∞,2];10.充分必要;11. 424-;12. ⎝ ⎛⎭⎪⎫3,92 ; 13.),2(+∞- ;14.10t -≤<或3t ≥二、解答题: 15.(本小题满分14分)已知命题p :指数函数f (x )=(2a -6)x在R 上是单调减函数;命题q :关于x 的方程x 2-3ax +2a 2+1=0的两根均大于3.若p 或q 为真,p 且q 为假,求实数a 的范围. 解:由p 真得0<2a -6<1,即3<a <72; ……………4分由q 真得⎩⎪⎨⎪⎧9a 2-4(2a 2+1)≥0,3a2>3,9-9a +2a 2+1>0,解得a >52;……………8分若p 或q 为真,p 且q 为假,则p 、q 一真一假.若p 真q 假,则⎩⎪⎨⎪⎧3<a<72,a ≤52.解集为∅; ……………10分若p 假q 真,则⎩⎪⎨⎪⎧a≤3或a≥72,a>52,解得52<a ≤3或a ≥72. ……12分综上所述52<a ≤3或a ≥72. ……………14分16.(本小题满分14分)已知函数f (x )=lg kx -1x -1(k ∈R ,且k >0).(1) 求函数f (x )的定义域;(2) 若函数f (x )在[10,+∞)上单调递增,求k 的取值范围. 解:(1) 由kx -1x -1>0,k >0,得x -1k x -1>0,当0<k <1时,得x <1或x >1k;当k =1时,得x ∈R 且x ≠1;当k >1时,得x <1k或x >1.综上,当0<k <1时,函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x<1或x>1k ;当k ≥1时,函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x<1k 或x>1. …………… 7分(2) 由函数f (x )在[10,+∞)上单调递增,知10k -110-1>0,∴ k >110.又f (x )=lg kx -1x -1=lg ⎝ ⎛⎭⎪⎫k +k -1x -1,由题意,对任意的x 1、x 2,当10≤x 1<x 2,有f (x 1)<f (x 2),即lg ⎝ ⎛⎭⎪⎫k +k -1x 1-1<lg ⎝ ⎛⎭⎪⎫k +k -1x 2-1,得k -1x 1-1<k -1x 2-1(k -1)(1x 1-1-1x 2-1)<0. ∵ x 1<x 2,∴ 1x 1-1>1x 2-1,∴ k -1<0,即k <1.综上可知,k 的取值范围是⎝ ⎛⎭⎪⎫110,1. ……………14分 17.(本小题满分15分)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.解 (1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0. ……………5分(2)f (x )为偶函数. ……………7分 证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0.令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )为偶函数. ……………10分 (3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数, ∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数. ∴0<|x -1|<16,解之得-15<x <17且x ≠1.∴x 的取值范围是{x |-15<x <17且x ≠1}. ……………15分 18.(本小题满分15分)已知函数)0(32ln )(≠+-=a ax x a x f . (1)设1-=a ,求函数)(x f 的极值;(2)在(1)的条件下,若函数m x f x x x g +'+=)(31)(23(其中)(x f '为)(x f 的导数)在区间(1,3)上不是单调函数,求实数m 的取值范围.解:(1)当1-=a ,32ln )(++-=x x x f )0(>x ,'1()2f x x -=+, …2分∴ ()f x 的单调递减区间为(0,21),单调递增区间为(21,)∞+ ………4分111() ln 23ln 2 4.222f x f =-+⨯+=+的极小值是(). …………7分(2)23)21(31)(x m x x x g ++-+=,1)24()(2'-++=∴x m x x g , 1)0(31)('-=g x g )上不是单调函数,且,在区间( , ………………9分⎪⎩⎪⎨⎧><∴0)3(0)1(''g g ⎩⎨⎧>+<+∴0620024m m 即:2310-<<-m . …………………12分m 的取值范围10(,2)3-- . ………14分19.(本小题满分16分)已知某手机品牌公司生产某款手机的年固定成本为40万元,每生产1万部还需另投入16万元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x-40 000x 2,x >40.(1)写出年利润W (万元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润. 解 (1)当0<x ≤40时,W =xR (x )-(16x +40)=-6x 2+384x -40, 当x >40时,W =xR (x )-(16x +40)=-40 000x-16x +7 360.所以W =⎩⎪⎨⎪⎧-6x 2+384x -40,0<x ≤40,-40 000x -16x +7 360,x >40. ……………8分(2)①当0<x ≤40时,W =-6(x -32)2+6 104,所以W max =W (32)=6 104; ……………10分 ②当x >40时,W =-40 000x-16x +7 360,由于40 000x+16x ≥240 000x×16x =1 600,当且仅当40 000x=16x ,即x =50∈(40,+∞)时,取等号,……12分所以W 取最大值为5 760.综合①②知,当x =32时,W 取得最大值6 104万元.…………16分 20.(本小题满分16分) 已知函数().ln x x x f = (1)求函数()x f 的极值点;(2)若直线l 过点(0,—1),并且与曲线()x f y =相切,求直线l 的方程;(3)设函数()()()1--=x a x f x g ,其中R a ∈,求函数()x g 在[]e ,1上的最小值.(其中e 为自然对数的底数)解:(1)()x x x f ,1ln +='>0. 而()x f '>0⇔lnx+1>0⇔x >()x f e ',1<0⇔1ln +x <0⇔0<x <,1e所以()x f 在⎪⎭⎫ ⎝⎛e 1,0上单调递减,在⎪⎭⎫ ⎝⎛+∞,1e上单调递增. 所以e x 1=是函数()x f 的极小值点,极大值点不存在.…………………5分(2)设切点坐标为()00,y x ,则,ln 000x x y =切线的斜率为,1ln 0+x所以切线l 的方程为()().1ln ln 0000x x x x x y -+=-………………7分又切线l 过点()1,0-,所以有()().01ln ln 10000x x x x -+=--解得.0,100==y x 所以直线l 的方程为.1-=x y …………………10分(3)()()1ln --=x a x x x g ,则().1ln a x x g -+='()x g '<0a x -+⇔1ln <0⇔0<x <()x g e a '-,1>0x ⇔>,1-a e 所以()x g 在()1,0-a e上单调递减,在()+∞-,1a e上单调递增.①当,11≤-a e 即1≤a 时,()x g 在[]e ,1上单调递增, 所以()x g 在[]e ,1上的最小值为().01=g ……12分②当1<1-a e <e ,即1<a <2时,()x g 在[)1,1-a e上单调递减,在(]e ea ,1-上单调递增.()x g 在[]e ,1上的最小值为().11---=a a e a e g ……14分 ③当,1-≤a e e 即2≥a 时,()x g 在[]e ,1上单调递减, 所以()x g 在[]e ,1上的最小值为().ae a e e g -+=综上,当1≤a 时,()x g 的最小值为0;当1<a <2时,()x g 的最小值为1--a e a ;当2≥a 时,()x g 的最小值为.ae e a -+ ………………16分数学Ⅱ(附加题)1.(本小题满分10分)求下列函数的导数:(1)y =ln xx 2+1; (2)y =ln(2x -5).解 (1)y ′=xx 2+-ln x x 2+x 2+2=1xx 2+-2x ln xx 2+2=x 2+1-2x 2ln x x x 2+2.(2)令u =2x -5,y =ln u ,则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.2.(本小题满分10分)为了做好阅兵人员的运输,从某运输公司抽调车辆支援,该运输公司有7个车队,每个车队的车辆均多于4辆.现从这个公司中抽调10辆车,并且每个车队至少抽调1辆,那么共有多少种不同的抽调方法?解 在每个车队抽调1辆车的基础上,还需抽调3辆车.可分成三类:一类是从某1个车队抽调3辆,有C 17种抽调方法;一类是从2个车队中抽调,其中1个车队抽调1辆,另1个车队抽调2辆,有A 27种抽调方法;一类是从3个车队中各抽调1辆,有C 37种抽调方法.故共有C 17+A 27+C 37=84种抽调方法.3.(本小题满分10分)在一袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4),现从袋中任取一球,X 表示所取球的标号.(1)求X 的分布列、期望;(2)若Y =aX +b ,E (Y )=1,V (Y )=11,试求a ,b 的值. 解:(1)X 的取值为0,1,2,3,4,其分布列为所以E (X )=0×12+1×20+2×10+3×20+4×5=1.5,(2)由V (Y )=a 2V (X )得2.75a 2=11,得a =±2,又E (Y )=aE (X )+b , 所以当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4, 所以⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =-2,b =4.4.(本小题满分10分)设(1+x )n=a 0+a 1x +a 2x 2+…+a n x n ,n ∈N *,n ≥2.(1)若n =11,求a 6+a 7+a 8+a 9+a 10+a 11的值;(2)设b k =2k a k (k ∈N ,k ≤n ),S n =b 0+b 1+b 2+…+b n ,求S n 的值. 解:(1)因为a k =C kn ,当n =11时,a 6+a 7+a 8+a 9+a 10+a 11=C 611+C 711+C 811+C 911+C 1011+C 1111 =12(C 011+C 111+…+C 1011+C 1111)=210=1 024. (2)左边=21111111111111[(1)]n n n n n kk k k k nn n n n k k k k k k C knC n kC n C k C --------========+-∑∑∑∑∑. 1212122222[2(1)][2(1)]2(1)2n n n k n k n n n n k k n n Cn n C n n n --------===+-=+-=+-∑∑ 2(1)2n n n -=+证法二求导积分赋值法:1121(1)2n n n n n n n x C C x nC x --+=++⋅⋅⋅+ 两边同时乘以x 1122(1)2n n n n n n nx x C x C x nC x -+=++⋅⋅⋅+两边再对x 求导可得2112221(1)(1)(1)2n n n n n n n n n x n x C C x n C x ----+++=++⋅⋅⋅+令1x =可得22212223212()2123(1)n n n n n n n n n n C C C n C n C --+=++++-+L。
江苏省启东中学2017-2018学年高二下学期期中考试数学(理)试题 (1)

【题文】(本小题满分16分) 已知函数21()2ln (R)2f x x x ax a =+-∈. (1)当3=a 时,求函数)(x f 的单调区间;(2)若函数)(x f 有两个极值点21x x ,,且]10(1,∈x ,求证:2ln 223)()(21-≥-x f x f ; (3)设ax x f x g ln )()(-=,对于任意)2,0(∈a 时,总存在]2,1[∈x ,使2)2()(-->a k x g 成立,求实数k 的取值范围.【答案】 解:)0(22)(2>+-=-+='x xax x a x x x f (1)当3=a 时,xx x x x x x f )1)(2(23)(2--=+-=', …………………………2分 令100)(<<⇒>'x x f 或2>x ,令210)(<<⇒<'x x f ,所以)(x f 的递增区间为)1,0(和),2(+∞,递减区间为)2,1(.…………………………4分(2)由于)(x f 有两个极值点21,x x ,则022=+-ax x 在),0(+∞∈x 上有两个不等的实根21,x x ,⎪⎪⎩⎪⎪⎨⎧=+=>⇒≤<⎪⎪⎪⎩⎪⎪⎪⎨⎧>==+>-=∆∴1221121212222)10(02208x x x x a a x a x x a x x a…………………………7分 )21ln 2()21ln 2()()(2222121121ax x x ax x x x f x f -+--+=- ))((2121)ln (ln 22121222121x x x x x x x x -+--+-=21211121)2(21)2ln (ln 2x x x x -+-= )10(2ln 222ln 4121211≤<--+=x x x x 设)10(2ln 222ln 4)(22≤<--+=x x x x x F , 所以0)2(4444)(3223423<--=--=--='xx x x x x x x x F 所以)(x F 在]1,0(上递减,所以2ln 223)1()(-=≥F x F 即2ln 223)()(21-≥-x f x f . …………………………10分(3)由题意知:只需2)2()(max -->a k x g 成立即可.因为a ax x x x g ln 21ln )(2--+=,所以a xx x g -+='1)(,因为]2,1[∈x ,所以⎥⎦⎤⎢⎣⎡∈+25,21x x ,而)2,0(∈a , 所以0)(>'x g ,所以)(x g 在]2,1[∈x 递增,当2=x 时,a a g x g ln 222ln )2()(max +-+==.所以2)2(ln 222ln -->--+a k a a 在上)2,0(∈a 恒成立,………………………12分 令42ln )2(2ln )(++----=a k a a a h ,则0)(>a h 在上)2,0(∈a 恒成立, aa k k a a h 1)2(21)(---=---=',又0)2(=h 当02≤--k 时,0)(<'a h ,)(a h 在)2,0(∈a 递减,当0→a 时,+∞→)(a h , 所以0)2()(=>h a h ,所以2-≥k ;当02>--k 即2-<k 时,k a a h --=⇒='210)( ①2210<--<k 即25-<k 时,)(a h 在)2,21(k --上递增, 存在k a --=21,使得0)2()(=<h a h ,不合; ②221≥--k 即225-<≤-k 时,0)(<'a h ,)(a h 在)2,0(∈a 递减, 当0→a 时,+∞→)(a h ,所以0)2()(=>h a h , 所以225-<≤-k 综上, 实数k 的取值范围为),25[+∞-.………………………16分【解析】【标题】江苏省启东中学2017-2018学年高二下学期期中考试数学(理)试题【结束】。
2017-2018学年江苏省南通市启东中学高二上学期期中数学试卷与解析

2017-2018学年江苏省南通市启东中学高二(上)期中数学试卷一、填空题(本大题共14小题,每小题5分,共70分)1.(5分)命题:∀x∈R,sinx≤1的否定为.2.(5分)抛物线x2=2y的准线方程为.3.(5分)已知复数z满足(z﹣2)(1﹣i)=1+i(i为虚数单位),则复数z的模是.4.(5分)已知p:x>2,q:x≥1,则p是q的条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一)5.(5分)已知双曲线﹣=1的左、右焦点分别为F1,F2,点P在双曲线上,且PF1=4,则PF2的长为.6.(5分)已知点A(﹣1,0),B(5,0),C(1,4),则△ABC的外接圆的方程为.7.(5分)设A,F是椭圆+=1(a>b>0)的上顶点和右焦点,AF的延长线交椭圆右准线于点B,若=λ,则λ的值为.8.(5分)设F1,F2是椭圆+=1(a>b>0)的左、右焦点,A为椭圆的上顶点,M为AF2的中点,若MF1⊥AF2,则该椭圆的离心率为.9.(5分)已知点P是直线y=x上一个动点,过点P作圆(x+2)2+(y﹣2)2=1的切线,切点为T,则线段PT长度的最小值为.10.(5分)已知F是抛物线C:y2=12x的焦点,M是C上一点,FM的延长线交y轴于点N,若M是FN的中点,则FN的长度为.11.(5分)已知双曲线﹣=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF的边长为6的等边三角形(O为坐标原点),则该双曲线的方程为.12.(5分)“求1+q+q2+q3+…(0<q<1)的值时,采用了如下的方式:令1+q+q2+q3+…=x,则有x=1+q(1+q+q2+…)=1+q•x,解得x=”,用类比的方法可以求得:的值为.13.(5分)已知P为椭圆+=1上的动点,M,N为圆(x﹣2)2+y2=1上两点,且MN=,则|+|的取值范围是.14.(5分)在平面直角坐标系xOy中,已知直线y=x+2与x轴,y轴分别交于M、N两点,点P在圆(x﹣a)2+y2=2上运动,若∠MPN恒为锐角,则a的取值范围是.二、解答题(本题共70分)15.(14分)命题p:方程+=1表示双曲线;命题q:∃x∈R,使得x2+mx+m+3<0成立.若“p且¬q”为真命题,求实数m的取值范围.16.(14分)用合适的方法证明下面两个问题:(1)已知n∈N*,求证:﹣1≥﹣;(2),,不能构成等差数列.17.(14分)在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)与双曲线﹣y2=1有相同的焦点F1,F2,抛物线x2=2py(p>0)的焦点为F,且与椭圆在第一象限的交点为M,若MF1+MF2=2.(1)求椭圆的方程;(2)若MF=,求抛物线的方程.18.(16分)在平面直角坐标系xOy中,已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,且椭圆经过点A(2,0)和点(1,3e),其中e为椭圆的离心率.(1)求椭圆的方程;(2)过点A的直线l交椭圆于另一点B,点M在直线l上,且OM=MA,若MF1⊥BF 2,求直线l的斜率.19.(16分)已知方程C:x2+y2+8x﹣m+1=0表示圆(m∈R).(1)求实数m的取值范围;(2)若圆C与直线x+y+1=0相交于A、B,若△ABC为等边三角形,求m的值;(3)已知点A(﹣2,0),B(4,0),P是与圆C上任意一点,若为定值,求m的值.20.(16分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,AB为椭圆的一条弦,直线y=kx(k>0)经过弦AB的中点M,与椭圆C交于P,Q两点,设直线AB的斜率为k1.(1)若点P的坐标为(1,),求椭圆C的方程;(2)求证:k1k为定值;(3)若直线AB过椭圆的右焦点F,线段FO上一点D满足AB=4FD,求证:以FD为直径的圆恰好经过点M.【附加题】21.(12分)用数学归纳法证明:1+++…+<n(n∈N*,且n>1).22.(12分)如图,在直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,AB⊥AC,M是棱BC的中点,点P在线段A1B上.(1)若P是线段A 1B的中点,求直线MP与直线AC所成的角的大小;(2)是否存在点P,使得直线MP与平面ABC所成角的大小为,若存在,求出线段BP的长度;若不存在,请说明理由.23.(16分)已知抛物线C:y2=4x,过直线l:x=﹣2上任一点A向抛物线C引两条切线AS,AT(切点为S,T,且点S在x轴上方).(1)求证:直线ST过定点,并求出该定点;(2)抛物线C上是否存在点B,使得BS⊥BT.2017-2018学年江苏省南通市启东中学高二(上)期中数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分)1.(5分)命题:∀x∈R,sinx≤1的否定为∃x0∈R,使得sinx0>1.【解答】解:∵命题:∀x∈R,sinx≤1,∴命题的否定为:∃x0∈R,使得sinx0>1,故答案为:∃x0∈R,使得sinx0>12.(5分)抛物线x2=2y的准线方程为y=﹣.【解答】解:根据题意,抛物线的方程为x2=2y,其开口向上,且p=1,则抛物线的准线方程y=﹣,故答案为:y=﹣.3.(5分)已知复数z满足(z﹣2)(1﹣i)=1+i(i为虚数单位),则复数z的模是.【解答】解:由(z﹣2)(1﹣i)=1+i,得z﹣2=,∴z=2+i,则|z|=.故答案为:.4.(5分)已知p:x>2,q:x≥1,则p是q的充分不必要条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一)【解答】解:∵p:x>2,q:x≥1,∴p⇒q,反之不成立.则p是q的充分不必要条件.故答案为:充分不必要.5.(5分)已知双曲线﹣=1的左、右焦点分别为F1,F2,点P在双曲线上,且PF1=4,则PF2的长为10.【解答】解:根据题意,双曲线的标准方程为﹣=1,其中a==3,点P在双曲线上,则有||PF1|﹣|PF2||=2a=6,又由|PF1|=4,解可得|PF2|=10或﹣2(舍),则|PF 2|=10;故答案为:10.6.(5分)已知点A(﹣1,0),B(5,0),C(1,4),则△ABC的外接圆的方程为x2+y2﹣4x﹣2y﹣5=0.【解答】解:已知点A(﹣1,0),B(5,0),C(1,4),设△ABC的外接圆的方程为x2+y2+Dx+Ey+F=0,则有,求得,∴△ABC的外接圆的方程为x2+y2﹣4x﹣2y﹣5=0,故答案为:x2+y2﹣4x﹣2y﹣5=0.7.(5分)设A,F是椭圆+=1(a>b>0)的上顶点和右焦点,AF的延长线交椭圆右准线于点B,若=λ,则λ的值为.【解答】解:如图,由题意+=1,得A(0,),c=,则F(1,0),右准线方程为x=.直线AF的方程为,取x=4,得B(4,﹣),,,由=λ,得,即.故答案为:.8.(5分)设F1,F2是椭圆+=1(a>b>0)的左、右焦点,A为椭圆的上顶点,M为AF2的中点,若MF1⊥AF2,则该椭圆的离心率为.【解答】解:∵F1,F2是椭圆+=1(a>b>0)的左、右焦点,A为椭圆的上顶点,若M为AF2的中点,且MF1⊥AF2,则△F1F2A是等腰三角形,F1F2=F1A,即2c=a,故该椭圆的离心率e==,故答案为:.9.(5分)已知点P是直线y=x上一个动点,过点P作圆(x+2)2+(y﹣2)2=1的切线,切点为T,则线段PT长度的最小值为.【解答】解:圆心坐标C(﹣2,2),半径R=1,则切线长|PT|=,则要使PT最小,则只需要PC最小即可,此时CP垂直直线y=x,则C到直线x﹣y=0的距离d===2,此时|PT|===,故答案为:.10.(5分)已知F是抛物线C:y2=12x的焦点,M是C上一点,FM的延长线交y轴于点N,若M是FN的中点,则FN的长度为9.【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1.5,则FN|=1.5+3=4.5,|FN|=2|FM|=2×4.5=9.故答案为:9.11.(5分)已知双曲线﹣=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF的边长为6的等边三角形(O为坐标原点),则该双曲线的方程为﹣=1.【解答】解:由题意可知,解得a=3,b=3,∴双曲线方程为=1.故答案为:=1.12.(5分)“求1+q+q2+q3+…(0<q<1)的值时,采用了如下的方式:令1+q+q2+q3+…=x,则有x=1+q(1+q+q2+…)=1+q•x,解得x=”,用类比的方法可以求得:的值为.【解答】解:令=x(x>0)则有x=∴x2=1+x∴x2﹣x﹣1=0解得x=或x=∵x>0,∴舍去.故答案为:.13.(5分)已知P为椭圆+=1上的动点,M,N为圆(x﹣2)2+y2=1上两点,且MN=,则|+|的取值范围是[3,13] .【解答】解:令Q为MN中的中点,则圆(x﹣2)2+y2=1的圆心C到MN的距离CQ==,又由C为椭圆+=1的焦点,故|PC|∈[2,6],则PQ|∈[2﹣,6+]=[,],|+|=|2|∈[3,13],故答案为:[3,13].14.(5分)在平面直角坐标系xOy中,已知直线y=x+2与x轴,y轴分别交于M、N两点,点P在圆(x﹣a)2+y2=2上运动,若∠MPN恒为锐角,则a的取值范围是a>或a<﹣.【解答】解:设以MN为直径的圆的圆心为A,则M(﹣2,0),N(0,2),所以中点A(﹣1,1);点P与M,N构成∠MPN恒为锐角,则点P恒在圆A之外,又两个圆半径相等,所以两圆外离,所以(a+1)2+12>(2)2,解得a>或a<﹣;所以a的取值范围是a>或a<﹣;故答案为:a>或a<﹣.二、解答题(本题共70分)15.(14分)命题p:方程+=1表示双曲线;命题q:∃x∈R,使得x2+mx+m+3<0成立.若“p且¬q”为真命题,求实数m的取值范围.【解答】解:若p为真命题,则(m+3)(m﹣4)<0,解得:﹣3<m<4,¬q:∀x∈R,使得x2+mx+m+3≥0,若¬q是真命题,则m2﹣4(m+3)≤0,解得:﹣2≤m≤6,若“p且¬q”为真命题,则p是真命题且¬q也是真命题,故﹣2≤m<4.16.(14分)用合适的方法证明下面两个问题:(1)已知n∈N*,求证:﹣1≥﹣;(2),,不能构成等差数列.【解答】解:(1)要证:﹣1≥﹣,只要+≥+1,只要证(+)2≥(+1)2,只要证n+2+2≥n+2+2,只要证≥,只要证2n≥n+1,只要证n≥1,显然对于n∈N*,成立,故﹣1≥﹣;(2)假设,,能构成等差数列,则2=+,即(2)2=(+)2,即12=7+2,即5=2,显然不成立,故假设不成立,故,,不能构成等差数列17.(14分)在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)与双曲线﹣y2=1有相同的焦点F1,F2,抛物线x2=2py(p>0)的焦点为F,且与椭圆在第一象限的交点为M,若MF1+MF2=2.(1)求椭圆的方程;(2)若MF=,求抛物线的方程.【解答】解:(1)由条件得,解得a=,b=,∴椭圆方程为=1.(2)设M(x0,y0),则MF=y0+=,即p=﹣2y0,又M在椭圆上,∴x02+3y02=6,且x02=2py0,∴(7﹣4y0)y0+3y02=6,解得y0=1或y0=6(舍),∴p=,∴抛物线方程为x2=3y.18.(16分)在平面直角坐标系xOy中,已知F 1,F2分别为椭圆+=1(a>b>0)的左、右焦点,且椭圆经过点A(2,0)和点(1,3e),其中e为椭圆的离心率.(1)求椭圆的方程;(2)过点A的直线l交椭圆于另一点B,点M在直线l上,且OM=MA,若MF1⊥BF2,求直线l的斜率.【解答】解:(1)∵椭圆E经过点A(2,0)和(1,3e),∴,解得a=2,b=,c=1.∴椭圆方程为;(2)由(1)知,F1(﹣1,0),F2(1,0).设直线l的斜率为k,则直线l的方程是y=k(x﹣2).联立,可得(4k2+3)x2﹣16k2x+16k2﹣12=0,解得x=2,或x=,点B坐标为(,).由OM=MA知,点M在OA的中垂线x=1上,又点M在直线l上,∴点M的坐标为(1,﹣k).从而=(2,k),=(,).∵MF1⊥BF2,∴,∴,解得k=±,故直线l的斜率是±.19.(16分)已知方程C:x2+y2+8x﹣m+1=0表示圆(m∈R).(1)求实数m的取值范围;(2)若圆C与直线x+y+1=0相交于A、B,若△ABC为等边三角形,求m的值;(3)已知点A(﹣2,0),B(4,0),P是与圆C上任意一点,若为定值,求m的值.【解答】解:(1)若方程C:x2+y2+8x﹣m+1=0表示圆,必有82﹣4(﹣m+1)>0,解可得:m>﹣15;即m的取值范围是(﹣15,+∞);(2)圆C的方程为x2+y2+8x﹣m+1=0,变形可得(x+4)2+y2=15+m,圆心为(﹣4,0),半径r=,圆心C到直线x+y+1=0的距离d==,又由圆C与直线x+y+1=0相交于A、B,若△ABC为等边三角形,则圆心C到直线的距离d=r,则有=×,解可得m=﹣11;(3)根据题意,如图,连接PC,设圆C的半径为r,则PC=r,设∠PCA=θ,则有CA=2,CB=8,由余弦定理可得:PA=,PB=,若为定值,则设=,则有=即=k,变形可得:r2+4﹣4rcosθ=k(r2+64﹣16rcosθ),分析可得:k=,r2=16,又由圆的标准方程为:(x+4)2+y2=15+m,则有15+m=16,解可得m=1;则m=1.20.(16分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,AB为椭圆的一条弦,直线y=kx(k>0)经过弦AB的中点M,与椭圆C交于P,Q两点,设直线AB的斜率为k1.(1)若点P的坐标为(1,),求椭圆C的方程;(2)求证:k1k为定值;(3)若直线AB过椭圆的右焦点F,线段FO上一点D满足AB=4FD,求证:以FD为直径的圆恰好经过点M.【解答】(1)解:由题意,,解得a=2,b=,∴椭圆方程为;(2)证明:设AB的中点为(x0,y0),A(x1,y1),B(x2,y2),由于A,B为椭圆上的点,∴,,两式相减得:,即=﹣,∵k1=,k=,∴k1k=﹣;(3)证明:由(2)知,AB所在直线的斜率为,又直线AB过点F(1,0),则AB:y=,联立,得(3+4k2)x2﹣6x+3﹣16k2=0.则,.=.∴M().|AB|===.则|FD|==,设D(n,0),则1﹣n=,得n=.∴D(,0),而=,∴,∴以FD为直径的圆恰好经过点M.【附加题】21.(12分)用数学归纳法证明:1+++…+<n(n∈N*,且n>1).【解答】证明:(1)当n=2时,显然1++=<2,不等式成立;(2)假设当n=k(k≥2)时,不等式成立,即1+++…+<k,则当n=k+1时,1+++…++++…+<k++…+<k+++…=k+1,∴当n=k+1时,不等式成立,综上,对于n∈N*,n>1,1+++…+<n.22.(12分)如图,在直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,AB⊥AC,M是棱BC的中点,点P在线段A1B上.(1)若P是线段A1B的中点,求直线MP与直线AC所成的角的大小;(2)是否存在点P,使得直线MP与平面ABC所成角的大小为,若存在,求出线段BP的长度;若不存在,请说明理由.【解答】解:(1)∵在直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,AB⊥AC,M是棱BC的中点,P是线段A1B的中点,∴以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,A(0,0,0),B(2,0,0),C(0,2,0),M(1,1,0),A1(0,0,2),P(1,0,1),=(0,﹣1,1),=(0,2,0),设直线MP与直线AC所成的角为θ,则cosθ===,∴θ=,∴直线MP与直线AC所成的角为.(2)假设存在点P(a,b,c),,(0≤λ≤1),使得直线MP与平面ABC所成角的大小为,则(a﹣2,b,c)=(﹣2λ,0,2λ),解得P(2﹣2λ,0,2λ),=(1﹣2λ,﹣1,2λ),平面ABC的法向量=(0,0,1),∵直线MP与平面ABC所成角的大小为,∴sin==,由0≤λ≤1,解得.∴BP=×=.∴存在点P,使得直线MP与平面ABC所成角的大小为,线段BP的长度为.23.(16分)已知抛物线C:y2=4x,过直线l:x=﹣2上任一点A向抛物线C引两条切线AS,AT(切点为S,T,且点S在x轴上方).(1)求证:直线ST过定点,并求出该定点;(2)抛物线C上是否存在点B,使得BS⊥BT.:y﹣t=k(x+2),【解答】解:(1)方法一:(1)设A(﹣2,t),过点A的切线:l切联立,整理得:ky2﹣4y+4(t+2k)=0,由,则得2k2+tk﹣1=0,即k(2k+t)=1,则k+2t=,则k1k2=﹣,且有ky2﹣4y+=0,即(ky﹣2)2=0,得y=,因此S(,),T(,),l ST:y﹣=(x﹣)=(x ﹣)=﹣x﹣,∴y=﹣x+=﹣(x﹣2),即有l ST:y=﹣(x﹣2),∴直线ST过定点P(2,0);方法二:设S(x1,y1),T(x2,y2),由y2=4x,根据复合函数求导法则2yy′=4,则y′=,则直线AS的斜率k=,方程为:y﹣y1=(x﹣x1),由y12=4x1,整理得:yy1=2(x+x1),同理可得:直线AT:yy2=2(x+x2),设A(﹣2,y A),则y A y1=2(x1﹣2),y A y2=2(x2﹣2),即y A y1﹣2x1+4=0,y A y2﹣2x2+4=0,∴S(x1,y1),T(x2,y2)是方程y A y﹣2(x﹣2)=0解,则直线ST:y A y﹣2(x﹣2)=0∴直线ST恒过点(2,0);(2)假设存在点B,使得BS⊥BT,设B(m,n),由直线ST:y A y﹣2(x﹣2)=0,∴,整理得:y2﹣2y A y﹣8=0,则y1+y2=2y A,y1y2=﹣8,则x1+x2=y A2+4,x1x2=×(y1y2)2=4,由BS⊥BT,则•=0,即(x1﹣m,y1﹣n)•(x2﹣m,y2﹣n)=0,整理得:x1x2﹣m(x1+x2)+m2+y1y2﹣n(y1+y2)+n2=0,∴4﹣my A2﹣4m+m2﹣8﹣2ny A+n2=0,my A2+2ny A+4m+4﹣m2﹣n2=0,由4m=n2,代入整理得:y A2+2ny A+4﹣=0,令4﹣=0,即n2=8,当n=2则y A2+2y A=0,解得:y A=0或y A=﹣2,当n=﹣2则y A2﹣2y A=0,解得:y A=0(舍去)或y A=2,∴当B(2,2)或(2,﹣2)时,A(﹣2,±2)时,BS⊥BT.。
2017年江苏省南通市启东中学高二下学期期中数学试卷与解析答案(理科)

2016-2017学年江苏省南通市启东中学高二(下)期中数学试卷(理科)一、填空题:本题共14小题,每小题5分,共70分.请把答案填写在答题纸相应位置上.1.(5分)已知全集U={﹣1,2,3,a},集合M={﹣1,3}.若∁U M={2,5},则实数a的值为.2.(5分)从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为.3.(5分)随机变量X的概率分布规律为P(X=k)=,k=1,2,3,4,其中c是常数,则P(<X<)的值为.4.(5分)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是.5.(5分)我市开展的“魅力教师”学生原创网文大赛,各校上传文章的时间为3月1日到30日,评委会把各校上传的文章按5天一组分组统计,绘制了频率分布直方图(如图).已知从左至右各长方形的高的比为2:3:4:6:4:1,第二组的频数为180.那么本次活动收到的文章数是.6.(5分)曲线y=x3﹣2x+4在(1,3)处的切线的倾斜角为.7.(5分)已知命题p:∃x∈[0,1],a≤e x,命题q:∀x∈R,x2+x+a>0,若命题p∧q是真命题,则实数a的取值范围是.8.(5分)下列有关命题的说法中正确的是.(填序号)①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件;③命题“存在x∈R,使得x2+x+1=0”的否定是“对任意的x∈R,均有x2+x+1<0”;④命题“若x=y,则sinx=siny”的逆否命题为真命题.9.(5分)在0,1,2,3,…,9这十个自然数中,任取三个不同的数字.则组成的三位数中是3的倍数的有个.10.(5分)学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节课至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有种.11.(5分)已知一个公园的形状如图所示,现有3种不同的植物要种在此公园的A,B,C,D,E这五个区域内,要求有公共边界的两块相邻区域种不同的植物,则不同的种法共有种.12.(5分)2016年国庆节前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是.13.(5分)已知,则的值是.14.(5分)=.二、解答题:本大题共6小题,共计90分,请在答题纸指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(15分)4名男同学和3名女同学站成一排照相,计算下列情况各有多少种不同的站法?(1)男生甲必须站在两端;(2)两名女生乙和丙不相邻;(3)女生乙不站在两端,且女生丙不站在正中间.16.(15分)记函数f(x)=lg(x2﹣x﹣2)的定义域为集合A,函数g(x)=的定义域为集合B.(1)求①A∩B;②(∁R A)∪B;(2)若C={x|(x﹣m+1)(x﹣2m﹣1)<0},C⊆B,求实数m的取值范围.17.(15分)对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.p:f(x)=m+2x为定义在[﹣1,2]上的“局部奇函数”;q:曲线g(x)=x2+(5m+1)x+1与x轴交于不同的两点;若“p∧q”为假命题,“p∨q”为真命题,求m的取值范围.18.(15分)某房屋开发公司根据市场调查,计划在2017年开发的楼盘中设计“特大套”、“大套”、“经济适用房”三类商品房,每类房型中均有舒适和标准两种型号.某年产量如表:若按分层抽样的方法在这一年生产的套房中抽取50套进行检测,则必须抽取“特大套”套房10套,“大套”15套.(1)求x,y的值;(2)在年终促销活动中,奖给了某优秀销售公司2套舒适型和3套标准型“经济适用型”套房,该销售公司又从中随机抽取了2套作为奖品回馈消费者.求至少有一套是舒适型套房的概率;(3)今从“大套”类套房中抽取6套,进行各项指标综合评价,并打分如下:9.0 9.2 9.5 8.8 9.6 9.7现从上面6个分值中随机的一个一个地不放回抽取,规定抽到数9.6或9.7,抽取工作即停止.记在抽取到数9.6或9.7所进行抽取的次数为ξ,求ξ的分布列及数学期望.19.(15分)已知数列{a n}的前n项和为S n,数列是公比为2的等比数列.求证:数列{a n}成等比数列的充要条件是a1=3.20.(15分)设函数,(1)①当m=2时,求f(4,y)的展开式中二项式系数最大的项;②若,且a1=﹣12,求;(2)利用二项式定理求的值(n≥1,n∈N*).2016-2017学年江苏省南通市启东中学高二(下)期中数学试卷(理科)参考答案与试题解析一、填空题:本题共14小题,每小题5分,共70分.请把答案填写在答题纸相应位置上.1.(5分)已知全集U={﹣1,2,3,a},集合M={﹣1,3}.若∁U M={2,5},则实数a的值为5.【解答】解:∵集合M={﹣1,3},∴∁U M={2,5}={2,a},故a=5,故答案为:5.2.(5分)从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为482.【解答】解:∵样本中编号最小的两个编号分别为007,032,∴样本数据组距为32﹣7=25,则样本容量为=20,则对应的号码数x=7+25(n﹣1),当n=20时,x取得最大值为x=7+25×19=482,故答案为:482.3.(5分)随机变量X的概率分布规律为P(X=k)=,k=1,2,3,4,其中c是常数,则P(<X<)的值为.【解答】解:∵P(X=k)=)=,k=1,2,3,4,∴=1,∴c=,∵P(<X<)=P(X=1)+P(X=2)=;4.(5分)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是.【解答】解:由题意知,本题是一个古典概型,试验发生包含的事件是从中随机取出2个小球,共有C52=10种结果,满足条件的事件是取出的小球标注的数字之和为3或6,可以列举出所有的事件:1,2;1,5;2,4,共有3种结果,根据古典概型概率公式得到P=,故答案为:5.(5分)我市开展的“魅力教师”学生原创网文大赛,各校上传文章的时间为3月1日到30日,评委会把各校上传的文章按5天一组分组统计,绘制了频率分布直方图(如图).已知从左至右各长方形的高的比为2:3:4:6:4:1,第二组的频数为180.那么本次活动收到的文章数是1200.【解答】解:∵频率分布直方图中,从左至右各长方形的高的比为2:3:4:6:4:1,且二组的频数为180,∴本次活动收到的文章数是180÷=1200.故答案为:1200.6.(5分)曲线y=x3﹣2x+4在(1,3)处的切线的倾斜角为45°.【解答】解:y′=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.7.(5分)已知命题p:∃x∈[0,1],a≤e x,命题q:∀x∈R,x2+x+a>0,若命题p∧q是真命题,则实数a的取值范围是<a≤e.【解答】解∵命题p:∃x∈[0,1],a≤e x∴若p为真,那么a≤(e x)max∴a≤e又∵命题q:∀x∈R,x2+x+a>0,∴若q为真,那么△=1﹣4a<0∴∵命题p∧q是真命题∴p真,q真综上,实数a的取值范围是:<a≤e故答案为:<a≤e8.(5分)下列有关命题的说法中正确的是④.(填序号)①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件;③命题“存在x∈R,使得x2+x+1=0”的否定是“对任意的x∈R,均有x2+x+1<0”;④命题“若x=y,则sinx=siny”的逆否命题为真命题.【解答】解:①命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”;故①错误,②由x2﹣5x﹣6=0得x=﹣1或x=6,则“x=﹣1”是“x2﹣5x﹣6=0”的充分不必要条件;故②错误③命题“存在x∈R,使得x2+x+1=0”的否定是“对任意的x∈R,均有x2+x+1≠0”;故③错误,④命题“若x=y,则sinx=siny”为真命题.,则命题的逆否命题为真命题.故④正确,故答案为:④.9.(5分)在0,1,2,3,…,9这十个自然数中,任取三个不同的数字.则组成的三位数中是3的倍数的有228个.【解答】解:要想组成的三位数能被3整除,把0,1,2,3,…,9这十个自然数中分为三组:0,3,6,9;1,4,7;2,5,8.若每组中各取一个数,含0,共有C31C31C21A22=36种;若每组中各取一个数不含0,共有C31C31C31A33=162种;若从每组中各取三个数,共有3A33+C32A22A22=30种.所以组成的三位数能被3整除,共有36+162+30=228种.故答案为:228.10.(5分)学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节课至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有30种.【解答】解:根据题意,由于4科的专题讲座每科一节课,每节至少有一科,必有两科在同一节,先从4个专题讲座中任选2个看作整体,然后与其他2个讲座全排列,共C42A33=36种情况,再从中排除数学、理综安排在同一节的情形,将数学、理综看成一个整体,然后与其他2个讲座全排列,共A33=6种情况,故总的方法种数为:36﹣6=30;故答案为:3011.(5分)已知一个公园的形状如图所示,现有3种不同的植物要种在此公园的A,B,C,D,E这五个区域内,要求有公共边界的两块相邻区域种不同的植物,则不同的种法共有18种.【解答】解:根据题意,分2步进行分析:①、对于A、B、C区域,三个区域两两相邻,种的植物都不能相同,将3种不同的植物全排列,安排在A、B、C区域,有A33=6种情况,②、对于D、E区域,分2种情况讨论:若A,E种的植物相同,则D有2种种法,若A,E种的植物不同,则E有1种情况,D也有1种种法,则D、E区域共有2+1=3种不同情况,则不同的种法共有6×3=18种;故答案为:18.12.(5分)2016年国庆节前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是.【解答】解:设两串彩灯第一次闪亮的时刻分别为x,y,由题意可得0≤x≤4,0≤y≤4,它们第一次闪亮的时候相差不超过2秒,则|x﹣y|≤2,由几何概型可得所求概率为上述两平面区域的面积之比,由图可知所求的概率为:;故答案为:.13.(5分)已知,则的值是()2018.【解答】解:∵(x+1)2(x+2)2016=a0+a1(x+2)+a2(x+2)+…+a2018(x+2)2018,∴令x=﹣2,得a0=0再令x=﹣,得到a0+=(﹣+1)2(﹣+2)2016=()2018,∴=,故答案为:()2018,14.(5分)=.【解答】解:C n m﹣1===C n+1m,则1=C n+11,Cn1=Cn+12,…,Cnn=Cn+1n+1,则=[(﹣1)0C n+11+(﹣1)1C n+11+(﹣1)2C n+13+…+(﹣1)n C n+1n+1]=﹣[(﹣1)1C n+11+(﹣1)2C n+12+(﹣1)3C n+13+…+(﹣1)n+1C n+1n+1]=﹣[(1﹣1)n﹣1]=.二、解答题:本大题共6小题,共计90分,请在答题纸指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(15分)4名男同学和3名女同学站成一排照相,计算下列情况各有多少种不同的站法?(1)男生甲必须站在两端;(2)两名女生乙和丙不相邻;(3)女生乙不站在两端,且女生丙不站在正中间.【解答】解:(1)男生甲必须站在两端,其余的进行全排列即可,故有=1440种.(2)利用插空法,先排除乙丙之外的另外5人,然后在这5人形成的6个间隔中插入乙和丙即可,故有=3600种.(3)分两类,若乙在正中间,则有=720种,若乙不站在正中间,乙不站在两端,则乙从另外4个位置任选一个,丙从另外5个位置选一个,其他任意排,故有=2400种,根据分类计数原理得共有720+2400=3120种.16.(15分)记函数f(x)=lg(x2﹣x﹣2)的定义域为集合A,函数g(x)=的定义域为集合B.(1)求①A∩B;②(∁R A)∪B;(2)若C={x|(x﹣m+1)(x﹣2m﹣1)<0},C⊆B,求实数m的取值范围.【解答】解:(1)依题意,得A={x|x2﹣x﹣2>0}=(﹣∞,﹣1)∪(2,+∞)B={x||3﹣x|x|≥0}=[﹣3,3],①A∩B=[﹣3,﹣1)∪(2,3]②(∁R A)∪B=[﹣3,3],(2)∵(x﹣m+1)(x﹣2m﹣1)<0,∴[x﹣(m﹣1)][x﹣(2m+1)]<0①当m﹣1=2m+1,即m=﹣2时,C=∅,满足C⊆B②当m﹣1<2m+1,即m>﹣2时,C=(m﹣1,2m+1),要使C⊆B,只要得﹣2<m≤1③当2m+1<m﹣1,即m<﹣2时,C=(2m+1,m﹣1),要使C⊆B,只要得m∈∅综上,m 的取值范围是[﹣2,1]17.(15分)对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.p:f(x)=m+2x为定义在[﹣1,2]上的“局部奇函数”;q:曲线g(x)=x2+(5m+1)x+1与x轴交于不同的两点;若“p∧q”为假命题,“p∨q”为真命题,求m的取值范围.【解答】解:∵p:f(x)=m+2x为定义在[﹣1,2]上的“局部奇函数”,∴∃x∈[﹣1,2],使得m+2﹣x=﹣(m+2x),化为:m=﹣(2x+2﹣x)∈.q:曲线g(x)=x2+(5m+1)x+1与x轴交于不同的两点,则(5m+1)2﹣4>0,解得或;∵“p∧q”为假命题,“p∨q”为真命题,则p或q一真一假.p真q假,则,得无交集;若p假q真,则,得或或.综上知m的取值范围为:或或.18.(15分)某房屋开发公司根据市场调查,计划在2017年开发的楼盘中设计“特大套”、“大套”、“经济适用房”三类商品房,每类房型中均有舒适和标准两种型号.某年产量如表:若按分层抽样的方法在这一年生产的套房中抽取50套进行检测,则必须抽取“特大套”套房10套,“大套”15套.(1)求x,y的值;(2)在年终促销活动中,奖给了某优秀销售公司2套舒适型和3套标准型“经济适用型”套房,该销售公司又从中随机抽取了2套作为奖品回馈消费者.求至少有一套是舒适型套房的概率;(3)今从“大套”类套房中抽取6套,进行各项指标综合评价,并打分如下:9.0 9.2 9.5 8.8 9.6 9.7现从上面6个分值中随机的一个一个地不放回抽取,规定抽到数9.6或9.7,抽取工作即停止.记在抽取到数9.6或9.7所进行抽取的次数为ξ,求ξ的分布列及数学期望.【解答】解:(1)由题设知==,解得y=450,x=400;(2)设至少有一套舒适型套房记为事件A,事件A发生的个数为:,基本事件的总和为,故所求的概率为;(3)根据题意,ξ可能的取值为1,2,3,4,5,则,,,,;所以ξ的分布列为:数学期望为E(ξ)=1×+2×+3×+4×+5×=.19.(15分)已知数列{a n}的前n项和为S n,数列是公比为2的等比数列.求证:数列{a n}成等比数列的充要条件是a1=3.【解答】证明:∵数列是公比为2的等比数列,∴.即.∵,∴显然当n≥2时=4.①充分性:当a1=3时,,∴对n∈N*,都有,即数列{a n}是等比数列.②必要性:∵{a n}是等比数列,∴,即,解得a1=3.20.(15分)设函数,(1)①当m=2时,求f(4,y)的展开式中二项式系数最大的项;②若,且a1=﹣12,求;(2)利用二项式定理求的值(n≥1,n∈N*).【解答】解:(1)①当m=2时,f(4,y)=的展开式中共有5项,二项式系数最大的项为第三项,∴T3=•12•=;②f(6,y)=的通项公式为T r+1=••(﹣1)r•=(﹣1)r••26﹣r•m2r﹣6•,且f(6,y)=a0++…+,∴的系数为a1=﹣6×32×m﹣4=﹣12,解得m=2;∴f(6,y)==的通项公式为T r+1=(﹣1)r••2r•,∴a r=(﹣1)r••2r ,r=0,1,2, (6)∴=﹣•2+•22﹣•23+…+•26=﹣•2+•22﹣•23+…+•26﹣=(1﹣2)6﹣1=0;(2)∵=﹣+22•﹣32•+42•+…+(﹣1)n•n2•,∴设f(x)=(1﹣x)n=C n0﹣C n1x+C n2x2﹣C n3x3+…+(﹣1)n•C n n x n…①,①式两边求导得:﹣n(1﹣x)n﹣1=﹣C n1+2C n2x﹣3C n3x2+…+(n﹣1)•(﹣1)n﹣1•C n n﹣1x n﹣2+n•(﹣1)n x n﹣1…②,n•Cn②的两边同乘x得:﹣nx(1﹣x)n﹣1=﹣xC n1+2C n2x2﹣3C n3x3+…+(n﹣1)•(﹣1)n﹣1•C n n﹣1x n﹣1+n•(﹣1)n•C n n x n…③,③式两边求导得:﹣n(1﹣x)n﹣1﹣n(n﹣1)x(1﹣x)n﹣2=﹣C n1+22C n2x﹣32C n3x2+…+(n﹣1)2•(﹣1)n﹣1•C n n﹣1x n﹣2+n2•(﹣1)n•C n n x n﹣1…④,④中令x=1,得﹣+22•﹣32•+42•+…+(﹣1)n•n2•=0,即=0.赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
人教A版数学高二弧度制精选试卷练习(含答案)2
人教A 版数学高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知扇形的周长是5cm ,面积是322cm ,则扇形的中心角的弧度数是( ) A .3B .43C .433或 D .2【来源】江西省九江第一中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】C2.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为( ) A .1B .2C .4D .5【来源】四川省双流中学2017-2018学年高一1月月考数学试题 【答案】C3.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米【来源】安徽省五校(怀远一中、蒙城一中、淮南一中、颍上一中、淮南一中、涡阳一中)2019-2020学年高三联考数学(理)试题 【答案】B4.已知扇形的周长为4,圆心角所对的弧长为2,则这个扇形的面积是( ) A .2B .1C .sin 2D .sin1【来源】福建省泉州市南安侨光中学2019-2020学年高一上学期第二次阶段考试数学试题 【答案】B5.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题 【答案】B6.如图,2弧度的圆心角所对的弦长为2,这个圆心角所对应的扇形面积是( )A .1sin1B .21sin 1C .21cos 1D .tan1【来源】广西河池市高级中学2017-2018学年高一下学期第二次月考数学试题 【答案】B7.半径为10cm ,面积为2100cm 的扇形中,弧所对的圆心角为( ) A .2 radB .2︒C .2π radD .10 rad【来源】第一章滚动习题(一) 【答案】A8.若一扇形的圆心角为72︒,半径为20cm ,则扇形的面积为( ). A .240πcmB .280πcmC .240cmD .280cm【来源】陕西省西安市长安区第一中学2016-2017学年高一下学期第一次月考数学试题 【答案】D9.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为1S ,正八边形外侧八个扇形(阴影部分)面积之和为2S ,则12S S =( )A .34B .35C .23D .1【来源】广西省南宁市马山县金伦中学、武鸣县华侨中学等四校2017-2018学年高一10月月考数学试题. 【答案】B10.在-360°到0°内与角1250°终边相同的角是( ) . A .170° B .190° C .-190°D .-170°【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(一)(带解析) 【答案】C11.下列各角中,终边相同的角是 ( ) A .23π和240o B .5π-和314oC .79π-和299π D .3和3o【来源】新疆伊西哈拉镇中学2018-2019学年高一上学期第二次月考数学试题 【答案】C12.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是( ) A .sin 2B .2sin 2C .sin1D .2sin1【来源】广东省东莞市2018-2019学年高一第二学期期末教学质量检查数学试题 【答案】D13,弧长是半径的3π倍,则扇形的面积等于( ) A .223cm πB .26cm πC .243cm πD .23cm π【来源】河北省隆华存瑞中学(存瑞部)2018-2019学年高一上学期第二次数学试题 【答案】D14.如图所示,用两种方案将一块顶角为120︒,腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二扇形的面积分别为12S , S ,周长分别为12,l l ,则( )A .12S S =,12l l >B .12S S =,12l l <C .12S S >,12l l =D .12S S <,12l l =【来源】浙江省省丽水市2018-2019学年高一下学期期末数学试题 【答案】A15.已知sin sin αβ>,那么下列命题成立的是( ) A .若,αβ是第一象限角,则cos cos αβ> B .若,αβ是第二象限角,则tan tan αβ> C .若,αβ是第三象限角,则cos cos αβ> D .若,αβ是第四象限角,则tan tan αβ>【来源】正定中学2010高三下学期第一次考试(数学文) 【答案】D16.半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【来源】宁夏石嘴山市第三中学2018-2019学年高一5月月考数学试题 【答案】D 17.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D18.扇形的中心角为120o )A .πB .45πC D 2【来源】辽宁省大连市第八中学2016-2017学年高一下学期期中考试数学试题【答案】A19.若扇形的周长为8,圆心角为2rad ,则该扇形的面积为( ) A .2B .4C .8D .16【来源】河南省洛阳市2018-2019学年高一下学期期中考试数学试卷 【答案】B20.-300° 化为弧度是( ) A .-43πB .-53πC .-54πD .-76π【来源】2014-2015学年山东省宁阳四中高一下学期期中学分认定考试数学试卷(带解析) 【答案】B21.一个扇形的面积为3π,弧长为2π,则这个扇形的圆心角为( ) A .3π B .4π C .6π D .23π 【来源】湖北省荆门市2017-2018学年高一(上)期末数学试题 【答案】D22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为23π,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3π≈,1.73≈)A .15B .16C .17D .18【来源】湖北省2018届高三5月冲刺数学(理)试题 【答案】B23.下列各式不正确的是( ) A .-210°=76π-B .405°=49πC .335°=2312πD .705°=4712π【来源】河南信阳市息县第一高级中学、第二高级中学、息县高中2018-2019学年高一下学期期中联考数学(文)试题 【答案】C24.下列函数中,最小正周期为π2的是( )A .y =sin (2x −π3)B .y =tan (2x −π3)C .y =cos (2x +π6) D .y =tan (4x +π6)【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】B25.已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的弧长为 ( ) A .4cmB .6cmC .8cmD .10cm【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(理)试卷 【答案】C二、填空题26.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【来源】上海市黄浦区2018-2019学年高一下学期期末数学试题 【答案】3π 27.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的底面半径为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】128.一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数为__________. 【来源】河南省灵宝市实验高中2017-2018学年高一下学期第一次月考考数学试题 【答案】5229.已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为65π、面积为15π,则该圆锥的体积为________.【来源】上海市杨浦区2019-2020学年高三上学期期中质量调研数学试题 【答案】12π30.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【来源】2015届山东省日照市高三3月模拟考试理科数学试卷(带解析)31.已知扇形的圆心角为1弧度,扇形半径为2,则此扇形的面积为______. 【来源】上海市复兴高级中学2018-2019学年高一下学期3月份质量检测数学试题 【答案】232.一个球夹在120°的二面角内,且与二面角的两个面都相切,两切点在球面上的最短距离为π,则这个球的半径为_______ .【来源】上海市七宝中学2017-2018学年高二下学期期中数学试题 【答案】333.用半径为,面积为cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 .【来源】2012届江苏省泗阳中学高三上学期第一次调研考试数学试卷(实验班) 【答案】31000cm 3π34.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积12=(弦⨯矢+矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为43π米,半径等于2米的弧田,则弧所对的弦AB 的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.【来源】山东省济南市2018-2019学年高一下学期期末学习质量评估数学试题【答案】1235.设扇形的半径长为2cm ,面积为24cm ,则扇形的圆心角的弧度数是 【来源】2013-2014学年山东济南商河弘德中学高一下学期第二次月考数学试卷(带解析) 【答案】236.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120o ,弧长为2π,底面圆的半径为1,则该圆锥的体积为__________.【来源】2018年春高考数学(文)二轮专题复习训练:专题三 立体几何【答案】337.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【来源】江苏省苏州市2018届高三调研测试(三)数学试题 【答案】128π38.已知扇形的周长为6,圆心角为1,则扇形的半径为___;扇形的面积为____. 【来源】浙江省宁波市镇海区镇海中学2018-2019学年高一上学期期中数学试题 【答案】2 2 39.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若sin sin αβ=,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号)【来源】江苏省南通市启东中学2018-2019学年高二5月月考数学(文)试题 【答案】③40.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是________. 【来源】广东省中山市第一中学2016-2017学年高一下学期第一次段考(3月)数学(理)试题 【答案】2三、解答题41.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小.(2)求该扇形的面积取得最大时,圆心角的大小和弦长AB .【来源】2015-2016学年四川省雅安市天全中学高一11月月考数学试卷(带解析) 【答案】(1)或;(2);.42.已知一扇形的中心角是120︒,所在圆的半径是10cm ,求: (1)扇形的弧长; (2)该弧所在的弓形的面积【来源】福建省福州市平潭县新世纪学校2019-2020学年高一上学期第二次月考数学试题【答案】(1)203π;(2)1003π-43.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB 、CD 所在圆的半径分别为()f x 、R 米,圆心角为θ(弧度).(1)若3πθ=,13r =,26=r ,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?【来源】江苏省泰州市泰州中学2019~2020学年高一上学期期中数学试题 【答案】(1)292m π(2)当线段AD 的长为5米时,花坛的面积最大44.已知一个扇形的周长为30厘米,求扇形面积S 的最大值,并求此时扇形的半径和圆心角的弧度数.【来源】上海市华东师范大学第二附属中学2018-2019学年高一上学期期末数学试题 【答案】()2rad α= 152r =45.如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图,已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m ,设油罐横截面圆心为O ,半径为5m ,56D ∠=︒,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin530.8︒≈,tan56 1.5︒≈,3π≈,结果保留整数)【来源】上海市闵行区七宝中学2019-2020学年高一上学期9月月考数学试题 【答案】202m46.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”某教师根据这首词的思想设计如下图形,已知CE l ⊥,DF l ⊥,CB CD =,AD BC ⊥,5DF =,2BE =,AD =则在扇形BCD 中随机取一点求此点取自阴影部分的概率.【来源】山西省阳泉市2018-2019学年高一第一学期期末考试试题数学试题【答案】1)4(P A π=-47.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由试卷第11页,总11页 扇形OAD 挖去扇形OBC 后构成的).已知10, (0<<10)OA=OB =x x ,线段BA 、CD与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.【来源】上海市黄浦区2018届高三4月模拟(二模)数学试题【答案】(1)210(010)10x x x θ+=<<+;(2)当52x =米时铭牌的面积最大,且最大面积为2254平方米. 48.已知一扇形的圆心角为()0αα>,所在圆的半径为R .(1)若90,10R cm α==o ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值()0C C >,当α为多少弧度时,该扇形有最大面积?【来源】2019高考备考一轮复习精品资料 专题十五 任意角和弧度制及任意角的三角函数 教学案【答案】(1)2550π-;(2)见解析49.已知在半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α(0<α<π)的大小;(2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S .【来源】(人教A 版必修四)1.1.2弧度制(第一课时)同步练习02【答案】(1)π3(2)10π3;50(π3−√32) 50.已知在半径为6的圆O 中,弦AB 的长为6,(1)求弦AB 所对圆心角α的大小;(2)求α所在的扇形的弧长l 以及扇形的面积S.【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】(1)3π ;(2)2l π= ,6S π=。
江苏省启东中学2017-2018学年高二下学期期中考试数学(理)试题 (3)
【题文】
(本小题满分16分)
已知函数()f x =13
x 3-2x 2+3x (x ∈R)的图象为曲线C . (1)求过曲线C 上任意一点的切线倾斜角的取值范围;
(2)求()f x 在区间[-1,4]上的最值;
(3)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.
【答案】
解:(1)由题意得f ′(x )=x 2-4x +3,则f ′(x )=(x -2)2-1≥-1,…………2分
即过曲线C 上任意一点切线倾斜角的取值范围是3,0,42πππ⎡⎫⎡⎫⎪⎪⎢
⎢⎣⎭⎣⎭ …………4分 (2)()f x 的最大值为4(1)(4)3f f ==;()f x 的最小值为16(1)3
f -=- …………………………9分
(3)设曲线C 的其中一条切线的斜率为k ,
则由(2)中条件并结合(1)中结论可知, 111k k
≥-⎧⎪⎨-≥-⎪⎩…………………………12分 解得-1≤k <0或k ≥1,
故由-1≤x 2-4x +3<0或x 2-
4x +3≥1,
得x ∈(-∞
,2]∪(1,3)∪[2,+∞). …………………………16分
【解析】
【标题】江苏省启东中学2017-2018学年高二下学期期中考试数学(理)试题
【结束】。
江苏省南通市启东中学2017-2018学年高二(上)期初数学试卷(含解析)
2017-2018学年江苏省南通市启东中学高二(上)期初数学试卷 一、填空题:本大题共14小题,每小题5分,共70分.1.命题“若a2+b2=0,则a=0且b=0”的逆否命题是 .2.已知数列{a n}满足:a=a+3,且a1=2,若a n>0,则a n= .3.等比数列x,3x+3,6x+6,…的前四项和等于 .4.已知O是坐标原点,点A(﹣2,1),若点M(x,y)为平面区域上的一个动点,则•的取值范围是 .5.已知直线l1的方程为3x+4y﹣7=0,直线l2的方程为6x+8y+1=0,则直线l1与l 2的距离为 .6.设直线l,m,平面α,β,下列条件能得出α∥β的是 ①l⊂α,m⊂α,且l∥β,m∥β;②l⊂α,m⊂β且l∥m;③l⊥α,m⊥β,且l∥m;④l∥α,m∥β,且l∥m.7.在△ABC中,角A,B,C的对边分别是边a,b,c,且满足bcos C=(4a﹣c)cos B.则sinB= .8.在△ABC中,∠C=90°,且CA=CB=3,点M满足=3,则•= .9.已知函数f(x)=sin(x+θ)+cos(x+θ)是偶函数,则θ的值为 .10.设g(x)=则g= .11.下列命题:①x=2是x2﹣4x+4=0的必要不充分条件;②圆心到直线的距离等于半径是这条直线为圆的切线的充分必要条件;③sin α=sinβ是α=β的充要条件;④ab≠0是a≠0的充分不必要条件.其中为真命题的是 .(填序号).12.已知两点A(﹣2,0),B(0,1),点P是圆(x﹣1)2+y2=1上任意一点,则△PAB面积的最大值是 .13.已知正实数x,y满足x+3y=1,则的最小值为 .14.设a1,a2,…,a n∈R,n≥3.若p:a1,a2,…,a n成等比数列;q:(a+a+…+a)(a+a+…+a)=(a1a2+a2a3+…+a n﹣1a n)2,则p 是q的 条件.二、解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.15.设函数f(x)=cos(2x+)+2cos2x,x∈R.(1)求函数f(x)的最小正周期和单调增区间;(2)将函数f(x)的图象向右平移个单位长度后得到函数g(x)的图象,求函数g(x)在区间上的值域.16.如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.17.设p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m﹣2)x﹣3m+10=0无实根.则使p∨q为真,p∧q为假的实数m的取值范围是 .18.已知首项为的等比数列{a n}不是递减数列,其前n项和为S n(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(1)求数列{a n}的通项公式;(2)若实数a使得a>S n+对任意n∈N*恒成立,求a的取值范围.19.已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴、y轴上的截距相等,求切线的方程;(2)从圆C外一点P(x1,y1)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P的坐标.20.已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,.(Ⅰ)求函数f(x)在(﹣1,1)上的解析式;(Ⅱ)判断f(x)在(0,1)上的单调性;(Ⅲ)当λ取何值时,方程f(x)=λ在(﹣1,1)上有实数解?2017-2018学年江苏省南通市启东中学高二(上)期初数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.1.命题“若a2+b2=0,则a=0且b=0”的逆否命题是 “若a≠0或b≠0,则a2+b2≠0” .【考点】21:四种命题.【分析】根据命题“若p,则q”的逆否命题是“若¬q,则¬p”,写出即可.【解答】解:命题“若a2+b2=0,则a=0且b=0”的逆否命题是“若a≠0或b≠0,则a2+b2≠0”.故答案为:“若a≠0或b≠0,则a2+b2≠0”.2.已知数列{a n}满足:a=a+3,且a1=2,若a n>0,则a n= .【考点】8H:数列递推式.【分析】利用等差数列的通项公式即可得出.【解答】解:由a=a+3,即a﹣a=3,∴数列为等差数列,公差为3,首项为4.∴=4+3(n﹣1)=3n+1.∵a n>0,则a n=.故答案为:.3.等比数列x,3x+3,6x+6,…的前四项和等于 ﹣45 .【考点】88:等比数列的通项公式.【分析】利用等比数列的通项公式与求和公式即可得出.【解答】解:由等比数列的性质可得:(3x+3)2=x(6x+6),化为:x2+4x+3=0,解得x=﹣1或﹣3.当x=﹣1时,3x+3=0,舍去.∴首项为﹣3,公比为: =2.∴前四项和==﹣45.故答案为:﹣45.4.已知O是坐标原点,点A(﹣2,1),若点M(x,y)为平面区域上的一个动点,则•的取值范围是 [﹣1,2] .【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,设z=•,求出z的表达式,利用z的几何意义,利用数形结合即可得到结论.【解答】解:作出不等式组对应的平面区域如图:设z=•,∵A(﹣2,1),M(x,y),∴z=•=﹣2x+y,即y=2x+z,平移直线y=2x+z,由图象可知当y=2x+z,经过点A(1,1)时,直线截距最小,此时z最小为z=﹣2+1=﹣1.经过点B(0,2)时,直线截距最大,此时z最大.此时z=2,即﹣1≤z≤2,故答案为:[﹣1,2]5.已知直线l1的方程为3x+4y﹣7=0,直线l2的方程为6x+8y+1=0,则直线l1与l2的距离为 .【考点】IU:两条平行直线间的距离.【分析】首先使直线l1方程中x,y的系数与直线l2方程的系数统一,再根据两条平行线间的距离公式可得答案.【解答】解:由题意可得:直线l1的方程为6x+8y﹣14=0,因为直线l2的方程为6x+8y+1=0,所以根据两条平行线间的距离公式可得:直线l1与l2的距离为=.故答案为.6.设直线l,m,平面α,β,下列条件能得出α∥β的是 ③ ①l⊂α,m⊂α,且l∥β,m∥β;②l⊂α,m⊂β且l∥m;③l⊥α,m⊥β,且l∥m;④l∥α,m∥β,且l∥m.【考点】LP:空间中直线与平面之间的位置关系.【分析】利用平面平行的判定定理即可得出.【解答】解:设直线l,m,平面α,β,①l⊂α,m⊂α,且l∥β,m∥β;l与m不相交时不能得出α∥β.②l⊂α,m⊂β且l∥m;α与β可能相交.③l⊥α,m⊥β,且l∥m;能得出α∥β.④l∥α,m∥β,且l∥m.可能得出α与β相交.故答案为:③.7.在△ABC中,角A,B,C的对边分别是边a,b,c,且满足bcos C=(4a﹣c)cos B.则sinB= .【考点】HP:正弦定理.【分析】根据正弦定理和两角和的正弦公式可求cosB的值,进而利用同角三角函数基本关系式即可计算得解.【解答】解:∵bcosC=(4a﹣c)cos B,∴由正弦定理,得:(4sinA﹣sinC)cosB=sinBcosC,即4sin Acos B=sinCcosB+sinBcosC=sin(C+B)=sin A.在△ABC中,0<A<π,sin A>0,所以cosB=.又因为0<B<π,故sinB==.故答案为:.8.在△ABC中,∠C=90°,且CA=CB=3,点M满足=3,则•= .【考点】9R:平面向量数量积的运算.【分析】由题意画出图形,把用表示,代入•得答案.【解答】解:如图,∵=3,CA=CB=3,∴=.∴•=.故答案为:.9.已知函数f(x)=sin(x+θ)+cos(x+θ)是偶函数,则θ的值为 .【考点】GI:三角函数的化简求值.【分析】由题意可得f(﹣x)=f(x),利用出公式可得:sin(x+θ+)=0,上式对于任意实数x∈R都成立,可得cosθ=0,即可得出.【解答】解:∵函数函数f(x)=sin(x+θ)+cos(x+θ)=2sin(x+θ+)是偶函数,∴,.∴θ=.故答案为:.10.设g(x)=则g= .【考点】3T:函数的值.【分析】利用自变量的范围首先求得的值,然后求解所要求解的函数的值即可.【解答】解:由函数的解析式可得:,则.故答案为:.11.下列命题:①x=2是x2﹣4x+4=0的必要不充分条件;②圆心到直线的距离等于半径是这条直线为圆的切线的充分必要条件;③sin α=sinβ是α=β的充要条件;④ab≠0是a≠0的充分不必要条件.其中为真命题的是 ②④ .(填序号).【考点】2L:必要条件、充分条件与充要条件的判断.【分析】利用充要条件的判定方法及其有关知识即可得出命题的真假.【解答】解:①x=2是x2﹣4x+4=0的充要条件,因此是假命题;②圆心到直线的距离等于半径是这条直线为圆的切线的充分必要条件,是真命题;③sin α=sinβ是α=β的必要不充分条件,是假命题;④ab≠0是a≠0的充分不必要条件,是真命题.其中为真命题的是②④.故答案为:②④.12.已知两点A(﹣2,0),B(0,1),点P是圆(x﹣1)2+y2=1上任意一点,则△PAB面积的最大值是 .【考点】J9:直线与圆的位置关系.【分析】求出BA的直线方程和|AB|的长度,点P到直线AB的距离最大值时,可得△PAB面积的最大值.【解答】解:两点A(﹣2,0),B(0,1),∴BA的直线方程为:x﹣2y+2=0,|AB|=.点P到直线AB的距离最大值为圆心到直线的距离d+r,圆(x﹣1)2+y2=1,其圆心为(1,0)d==.∴点P到直线AB的距离最大值为:.△PAB面积的最大值S=|AB|•=.故答案为:.13.已知正实数x,y满足x+3y=1,则的最小值为 .【考点】7F:基本不等式.【分析】利用题意结合代数式的特点构造均值不等式,然后利用均值不等式的结论求解最值即可.【解答】解:由题意可得:===.当且仅当时等号成立.即代数式的最小值为.故答案为:.14.设a1,a2,…,a n∈R,n≥3.若p:a1,a2,…,a n成等比数列;q:(a+a+…+a)(a+a+…+a)=(a1a2+a2a3+…+a n﹣1a n)2,则p 是q的 充分不必要 条件.【考点】2L:必要条件、充分条件与充要条件的判断.【分析】运用柯西不等式,可得:(a12+a22+…+a n﹣12)(a22+a32+…+a n2)≥(a1a2+a2a3+…+a n﹣1a n)2,讨论等号成立的条件,结合等比数列的定义和充分必要条件的定义,即可得到.【解答】解:由a1,a2,…,a n∈R,n≥3.由柯西不等式,可得:(a12+a22+…+a n﹣12)(a22+a32+…+a n2)≥(a1a2+a2a3+…+a n﹣1a n)2,若a1,a2,…,a n成等比数列,即有==…=,则(a12+a22+…+a n﹣12)(a22+a32+…+a n2)=(a1a2+a2a3+…+a n﹣1a n)2,即由p推得q,但由q推不到p,比如a1=a2=a3=…=a n=0,则a1,a2,…,a n不成等比数列.故p是q的充分不必要条件.故答案为:充分不必要.二、解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.15.设函数f(x)=cos(2x+)+2cos2x,x∈R.(1)求函数f(x)的最小正周期和单调增区间;(2)将函数f(x)的图象向右平移个单位长度后得到函数g(x)的图象,求函数g(x)在区间上的值域.【考点】HJ:函数y=Asin(ωx+φ)的图象变换;H2:正弦函数的图象.【分析】(1)利用三角函数的恒等变换化简函数的解析式,再利用余弦函数的周期性和单调性,得出结论.(2)利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用余弦函数的定义域和值域,求得g(x)在区间[0,]上的值域.【解答】解:(1)函数f(x)=cos(2x+)+2cos2x=cos2xcos﹣sin2xsin +cos2x+1=cos2x﹣sin2x+1=cos(2x+)+1,故函数的最小正周期为T==π,令2kπ+π≤2x+≤2kπ+2π,求得kπ+≤x≤kπ+,求得函数的增区间为[kπ+,kπ+],k∈Z.(2)将函数f(x)的图象向右平移个单位长度后得到函数g(x)=cos[2(x﹣)+]+1=cos(2x﹣+)+1=cos(2x﹣)+1的图象,由x∈[0,],可得:2x﹣∈[﹣,],可得:cos(2x﹣)∈[﹣,1],解得:g(x)=cos(2x﹣)+1∈[,2].16.如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.【考点】LY:平面与平面垂直的判定;LW:直线与平面垂直的判定.【分析】(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可.【解答】证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.17.设p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m﹣2)x﹣3m+10=0无实根.则使p∨q为真,p∧q为假的实数m的取值范围是 (﹣∞,﹣2]∪[﹣1,3) .【考点】25:四种命题间的逆否关系;57:函数与方程的综合运用.【分析】由使p∨q为真,P∧q为假,则p,q中必然一真一假,故我们可以根据p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m﹣2)x﹣3m+10=0无实根.求出各种情况下,m的取值范围,综合分析后,即可得到使p∨q为真,P∧q为假的实数m的取值范围.【解答】解:∵p∨q为真,P∧q为假∴p与q一个为真,一个为假由p:方程x2+2mx+1=0有两个不相等的正根当P为真时,m<﹣1,则p为假时,m≥﹣1由q:方程x2+2(m﹣2)x﹣3m+10=0无实根当q为真时,﹣2<m<3,则q为假时,m≤﹣2,或m≥3当p真q假时,m≤﹣2当p假q真时,﹣1≤m<3故使p∨q为真,P∧q为假的实数m的取值范围是(﹣∞,﹣2]∪[﹣1,3)故答案为:(﹣∞,﹣2]∪[﹣1,3)18.已知首项为的等比数列{a n}不是递减数列,其前n项和为S n(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(1)求数列{a n}的通项公式;(2)若实数a使得a>S n+对任意n∈N*恒成立,求a的取值范围.【考点】8E:数列的求和;8H:数列递推式.【分析】(1)设等比数列{a n}的公比为q,运用等差数列的中项的性质,结合等比数列的通项公式,即可得到所求;(2)由(1)得S n=1﹣(﹣)n=,当n为奇数时,S n随n的增大而减小,所以1<S n≤S1=;当n为偶数时,S n随n的增大而增大,所以1>S n≥S2=求出S n+的最大值即可.【解答】解:(1)设等比数列{a n}的公比为q,由S3+a3,S5+a5,S4+a4成等差数列,可得:2(S5+a5)=S3+a3+S4+a4,即2(S3+a4+2a5)=2S3+a3+2a4,即有4a5=a3,即为q2=,解得q=±,由等比数列{a n}不是递减数列,可得q=﹣,即a n=.(2)由(1)得S n=1﹣(﹣)n=当n为奇数时,S n随n的增大而减小,所以1<S n≤S1=S n+.当n为偶数时,S n随n的增大而增大,所以1>S n≥S2=S n+∴实数a使得a>S n+对任意n∈N*恒成立,则a的取值范围为(,+∞) 19.已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴、y轴上的截距相等,求切线的方程;(2)从圆C外一点P(x1,y1)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P的坐标.【考点】JE:直线和圆的方程的应用.【分析】(1)圆的方程化为标准方程,求出圆心与半径,再分类讨论,设出切线方程,利用直线是切线建立方程,即可得出结论;(2)先确定P的轨迹方程,再利用要使|PM|最小,只要|PO|最小即可.【解答】解:(1)由方程x2+y2+2x﹣4y+3=0知(x+1)2+(y﹣2)2=2,所以圆心为(﹣1,2),半径为.当切线过原点时,设切线方程为y=kx,则=,所以k=2±,即切线方程为y=(2±)x.当切线不过原点时,设切线方程为x+y=a,则=,所以a=﹣1或a=3,即切线方程为x+y+1=0或x+y﹣3=0.综上知,切线方程为y=(2±)x或x+y+1=0或x+y﹣3=0;(2)因为|PO|2+r2=|PC|2,所以x12+y12+2=(x1+1)2+(y1﹣2)2,即2x1﹣4y1+3=0.要使|PM|最小,只要|PO|最小即可.当直线PO垂直于直线2x﹣4y+3=0时,即直线PO的方程为2x+y=0时,|PM|最小,此时P点即为两直线的交点,得P点坐标(﹣,).20.已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,.(Ⅰ)求函数f(x)在(﹣1,1)上的解析式;(Ⅱ)判断f(x)在(0,1)上的单调性;(Ⅲ)当λ取何值时,方程f(x)=λ在(﹣1,1)上有实数解?【考点】3N:奇偶性与单调性的综合;3L:函数奇偶性的性质;3Q:函数的周期性;54:根的存在性及根的个数判断.【分析】(I)由f(x)是x∈R上的奇函数,得f(0)=0.再由最小正周期为2,得到(1)和f(﹣1)的值.然后求(﹣1,0)上的解析式,通过在(﹣1,0)上取变量,转化到(0,1)上,应用其解析式求解.(II)用定义,先任取两个变量,且界定大小,再作差变形看符号.(III)根据题意,求得f(x)在(﹣1,1)上的值域即可.【解答】(Ⅰ)解:∵f(x)是x∈R上的奇函数,∴f(0)=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣设x∈(﹣1,0),则﹣x∈(0,1),==﹣f(x)∴﹣﹣﹣﹣﹣﹣﹣﹣﹣∴﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)证明:设0<x1<x2<1,则,﹣﹣﹣﹣﹣﹣∵0<x1<x2<1,∴,,﹣﹣﹣﹣﹣﹣﹣﹣﹣∴f(x1)﹣f(x2)>0∴f(x)在(0,1)上为减函数.﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)解:∵f(x)在(0,1)上为减函数,∴f(1)<f(x)<f(0)即﹣﹣﹣﹣﹣﹣﹣﹣﹣同理,f(x)在(﹣1,0)上时,f(x)﹣﹣﹣﹣﹣﹣﹣﹣﹣又f(0)=0当或或λ=0时方程f(x)=λ在(﹣1,1)上有实数解.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣。
2017-2018学年江苏省南通市启东中学高一(下)期中数学试卷
2017-2018学年江苏省南通市启东中学高一(下)期中数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)在△ABC中,若b2﹣bc=a2﹣c2,则A=.2.(5分)设直线l的方程为mx+(m+1)y+3=0,当直线l垂直于x轴时,m的值为.3.(5分)在等差数列{a n}中,a7=6,则S13═.4.(5分)在△ABC中,已知sinA=2sinBcosC,则该三角形的形状为三角形.5.(5分)已知直线上一点向右平移2个单位长度,再向下平移4个单位长度后,仍在该直线上,则直线的斜率k=6.(5分)已知数列{a n}满足a1=16,且4a n+1=4a n﹣3.若a k•a k+1<0,则正整数k=.7.(5分)在1和512中插入5个数,使这7个数成等比数列,则公比q为.8.(5分)小华同学骑电动自行车以24km/h的速度沿着正北方向的公路行驶,在点A处望见电视塔S在电动车的北偏东30°方向上,15min后到点B处望见电视塔在电动车的北偏东75°方向上,则电动车在点B时与电视塔S的距离是km.9.(5分)已知P(m,n)是直线2x+5y=20在第一象限部分上的一点,则lg5m+lg2n 的最大值为10.(5分)已知各项不为0的等差数列{a n}满足a6﹣a72+a8=0,数列{b n}是等比数列,且b7=a7,则b2b8b11=.11.(5分)△ABC中,内角A、B、C对的边分别为a、b、c,如果△ABC的面积等于8,a=5,tanB=﹣,那么=.12.(5分)已知关于x的不等式ax2+bx+c>0的解集是{x|﹣1<x<2},则关于x 的不等式ax++b<0的解集为13.(5分)已知α为锐角,则2tanα+的最小值为.14.(5分)已知数列{a n}满足:a n=,若S2018=3027,则a1=.二、解答题:本大题共6小题,共计90分.15.(14分)已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程:(1)过定点A(﹣3,4);(2)斜率为.16.(14分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.17.(14分)已知集合A={x|x2﹣3x+2≥0}.(1)若集合B={x|x≤t},且A∪B=R,求实数t的取值范围;(2)若集合B={x|x2﹣ax+b≤0},且A∩B={x|2≤x≤3},求实数a的取值范围.18.(16分)已知S n是数列{a n}的前n项和,b n=.(1)已知{a n}是等比数列,a2=1,b3=,求{a n}的通项公式;(2)已知{a n}是公差为d(d≠0)的等差数列,若{b n}也是等差数列,求的值.19.(16分)如图,有一壁画,最高点A距离地面AE为4米,最低点B距离地面BE为2米.如果在距离地面高CF为1.5米、与墙壁距离EF为4米的C处观赏壁画,但效果不佳.为了提高欣赏效果(视角∠ACB=θ越大,效果越好),现在有两种方案可供选择:①与壁画距离EF不变,调节高度CF;②与地面距离CF不变,调节与壁画的距离EF.(1)按照方案①,设CF为h米(2<h<4),当h为何值时,视角θ最大?(2)按照方案②,设EF为x米(x<4),当x为何值时,视角θ最大?20.(16分)已知数列{a n}中,a1=a(a>0),其前n项和为S n满足:S n=a2S n﹣1+a (n≥2,n∈N*).(1)证明:数列{a n}为等比数列,并求出{a n}的通项公式;(2)设T n为数列{a}的前n项和,是否存在实数t,使得S2n=tT n,n∈N*,若存在求出t的最小值,若不存在说明理由.2017-2018学年江苏省南通市启东中学高一(下)期中数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)在△ABC中,若b2﹣bc=a2﹣c2,则A=.【分析】利用余弦定理求得cosA的值,再根据特殊角的三角函数值求出A.【解答】解:△ABC中,b2﹣bc=a2﹣c2,∴b2+c2﹣a2=bc,∴cosA===,又A∈(0,π),∴A=.故答案为:.【点评】本题考查了余弦定理的应用问题,是基础题.2.(5分)设直线l的方程为mx+(m+1)y+3=0,当直线l垂直于x轴时,m的值为﹣1.【分析】由直线l的方程为mx+(m+1)y+3=0,直线l垂直于x轴,得m+1=0,由此能求出m的值.【解答】解:∵直线l的方程为mx+(m+1)y+3=0,直线l垂直于x轴,∴m+1=0,解得m=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查直线与直线垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.(5分)在等差数列{a n}中,a7=6,则S13═78.【分析】由等差数列的性质得:S13═=13a7,由此能求出结果.【解答】解:∵在等差数列{a n}中,a7=6,∴S13═=13a7=13×6=78.故答案为:78.【点评】本题考查等差数列的前13项的比值的求法,考查等差数列的性质等基础知识,考查运算与求解能力,考查函数与方程思想,是基础题.4.(5分)在△ABC中,已知sinA=2sinBcosC,则该三角形的形状为等腰三角形.【分析】通过三角形的内角和,以及两角和的正弦函数,化简方程,求出角的关系,即可判断三角形的形状.【解答】解:因为sinA=2sinBcosc,所以sin(B+C)=2sinBcosC,所以sinBcosC﹣sinCcosB=0,即sin(B﹣C)=0,因为A,B,C是三角形内角,所以B=C.所以三角形是等腰三角形.故答案为:等腰.【点评】本题考查两角和的正弦函数的应用,三角形形状的判断,考查计算能力,属于基础题.5.(5分)已知直线上一点向右平移2个单位长度,再向下平移4个单位长度后,仍在该直线上,则直线的斜率k=﹣2【分析】根据题意,设该点的坐标为(a,b),分析可得平移后的点的坐标,由直线的斜率公式计算可得答案.【解答】解:根据题意,设该点的坐标为(a,b),将该点向右平移2个单位长度,再向下平移4个单位长度后,则平移之后的坐标为(a+2,b﹣4),则直线的斜率k==﹣2;故答案为:﹣2.【点评】本题考查直线的斜率计算,关键是掌握直线的斜率计算公式.6.(5分)已知数列{a n}满足a1=16,且4a n+1=4a n﹣3.若a k•a k+1<0,则正整数k=22.【分析】推导出{a n}是首项为16,公差为﹣的等差数列,从而a n=(67﹣3n),由此利用a k•a k+1<0,能求出k.【解答】解:∵数列{a n}满足a1=16,且4a n+1=4a n﹣3.﹣a n=﹣,∴a n+1∴{a n}是首项为16,公差为﹣的等差数列,∴a n=16+(n﹣1)×(﹣)=(67﹣3n),由a n>0,得67﹣3n>0,解得n<22,∴a22=>0,a23=﹣<0,∴由a k•a k+1<0,得k=22.故答案为:22.【点评】本题考查正整值k的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.7.(5分)在1和512中插入5个数,使这7个数成等比数列,则公比q为.【分析】根据等比数列的通项得:512=1×q6,从而可求出q.【解答】解:∵1,a,b,c,d,e,512成等比数列,∴根据等比数列的通项得:512=1×q6,∴q=.故答案为:.【点评】本题主要考查了等比数列的通项公式,熟练掌握等比数列通项公式是解本题的关键,同时考查了运算求解的能力,属于基础题.8.(5分)小华同学骑电动自行车以24km/h的速度沿着正北方向的公路行驶,在点A处望见电视塔S在电动车的北偏东30°方向上,15min后到点B处望见电视塔在电动车的北偏东75°方向上,则电动车在点B时与电视塔S的距离是km.【分析】在△ABS中,可得∠BAS=30°,AB=6,∠ABS=180°﹣75°=105°则∠ASB=45°,由正弦定理可得BS=.【解答】解:如图,由已知可得,AB=24×=6在△ABS中,∠BAS=30°,AB=6,∠ABS=180°﹣75°=105°∠ASB=45°由正弦定理可得BS==3,故答案为:3.【点评】本题主要考查了正弦定理在实际问题中的应用,解题的关键是要把实际问题转化为数学问题.进而利用数学基本知识进行求解.9.(5分)已知P(m,n)是直线2x+5y=20在第一象限部分上的一点,则lg5m+lg2n 的最大值为2【分析】由题意可得2m+5n=20,由基本不等式可得mn的最大值,再由对数的运算性质可得所求最大值.【解答】解:P(m,n)是直线2x+5y=20在第一象限部分上的一点,可得2m+5n=20,即有2m+5n≥2,即有mn≤10,则lg5m+lg2n=lg(10mn)≤lg100=2,可得m=5,n=2上式取得等号,则lg5m+lg2n的最大值为2.故答案为:2.【点评】本题考查基本不等式的运用:求最值,考查对数的运算性质,属于基础题.10.(5分)已知各项不为0的等差数列{a n}满足a6﹣a72+a8=0,数列{b n}是等比数列,且b7=a7,则b2b8b11=8.【分析】由等差数列中项的性质可得a6+a8=2a7,即有a7=2(0舍去),再由等比数列的通项公式,计算即可得到所求值.【解答】解:各项不为0的等差数列{a n}满足a6﹣a+a8=0,由a6+a8=2a7,可得2a7=a72,即有a7=2(0舍去),数列{b n}是公比为q的等比数列,且b7=a7=2,则b2•b8•b11=b1q•b1q7•b1q10=b13q18=(b1q6)3=b73=23=8.故答案是:8.【点评】本题考查等差数列中项的性质和等比数列通项公式的运用,考查运算能力,属于基础题.11.(5分)△ABC中,内角A、B、C对的边分别为a、b、c,如果△ABC的面积等于8,a=5,tanB=﹣,那么=.【分析】求出sinB,利用三角形的面积公式求出c的长度,进一步利用余弦定理求出b的长度,在应用正弦定理和等比性质求出结果.【解答】解:△ABC中,∵tanB=﹣,∴sinB=,cosB=﹣.又S==2c=8,∴c=4,∴b==.∴==.故答案为:.【点评】本题考查的知识点:三角形的面积公式,余弦定理和正弦定理的应用,等比性质的应用.12.(5分)已知关于x的不等式ax2+bx+c>0的解集是{x|﹣1<x<2},则关于x 的不等式ax++b<0的解集为{x|﹣2﹣}【分析】由关于x的不等式ax2+bx+c>0的解集是{x|﹣1<x<2},求出,从而关于x的不等式ax++b<0转化为:x2+2x﹣2>0,由此能求出关于x的不等式ax++b<0的解集.【解答】解:∵关于x的不等式ax2+bx+c>0的解集是{x|﹣1<x<2},∴,∴,∴,∴关于x的不等式ax++b<0转化为:x2+2x﹣2>0,解得﹣2﹣.∴关于x的不等式ax++b<0的解集为{x|﹣2﹣}.故答案为:{x|﹣2﹣}.【点评】本题考查一元二次不等的求法,考查一元二次不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.13.(5分)已知α为锐角,则2tanα+的最小值为.【分析】α为锐角,则tanα>0,运用二倍角的正切公式,化简代数式,再由基本不等式可得最小值.【解答】解:α为锐角,则tanα>0,2tanα+=2tanα+=+≥2=,当且仅当tanα=即α=时取得等号,则2tanα+的最小值为.故答案为:.【点评】本题考查基本不等式的运用,同时考查二倍角的正切公式的运用,考查运算能力,属于基础题.14.(5分)已知数列{a n}满足:a n=,若S2018=3027,则a1=.【分析】讨论n为偶数时,两两结合,再由等比数列的求和公式,可得所求和,即可求出.【解答】解:∵数列{a n}满足a n=,当n为奇数时,a n=a n﹣1+1,即a n﹣2=(a n﹣1﹣2),∴数列{a n﹣2}为公比为的等比数列,∴a n﹣2=a1()n﹣1,∴a n=2+a1()n﹣1,当n=2时,a2=2a1,当n为偶数时,a n=2a n﹣1,可得偶数项成首项为2a2,公比为2的等比数列,且为a n=a1×2n,∴S2018=2×1009++=2018+a1(2﹣)+a1(21010﹣2)=3027,∴a1=故答案为:【点评】本题考查数列的通项公式和数列的求和,注意运用分类讨论的思想方法,考查等比数列的通项公式和求和公式的运用,考查化简整理的运算能力,属于中档题.二、解答题:本大题共6小题,共计90分.15.(14分)已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程:(1)过定点A(﹣3,4);(2)斜率为.【分析】(1)设直线的斜率为k,利用点斜式写出直线方程,求出直线l与x轴、y轴上的截距,由直线l与两坐标轴围成的三角形面积列方程求出k,再写出直线方程;(2)设直线l在y轴上的截距为b,利用斜截式写出直线方程,求出直线与x轴的截距,由直线l与两坐标轴围成的三角形的面积列方程求出b,再写出直线方程.【解答】解:(1)设直线l的方程为y﹣4=k(x+3),它在x轴、y轴上的截距分别是﹣﹣3,3k+4,由已知得•|(3k+4)(﹣﹣3)|=3,可得(3k+4)(﹣﹣3)=6或﹣6,解得k=﹣或k=﹣;所以直线l的方程为:2x+3y﹣6=0或8x+3y+12=0;(2)设直线l在y轴上的截距为b,则直线l的方程是y=x+b,它在x轴上的截距是﹣6b,由已知得|﹣6b•b|=6,解得b=±1;∴直线l的方程为x﹣6y+6=0或x﹣6y﹣6=0.【点评】本题考查了直线方程与三角形面积的应用问题,是基础题.16.(14分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.【分析】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【解答】解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠ADC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.【点评】本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.17.(14分)已知集合A={x|x2﹣3x+2≥0}.(1)若集合B={x|x≤t},且A∪B=R,求实数t的取值范围;(2)若集合B={x|x2﹣ax+b≤0},且A∩B={x|2≤x≤3},求实数a的取值范围.【分析】(1)根据并集的定义即可求出t的范围,(2)由题意可得3是方程x2﹣ax+b=0的一个根,再求出另一个根,即可求出a 的范围.【解答】解:(1)集合A={x|x2﹣3x+2≥0}={x|x≤1或x≥2},∵集合B={x|x≤t},且A∪B=R,∴t≥2,(2)∵集合B={x|x2﹣ax+b≤0},令x2﹣ax+b=0,∵A∩B={x|2≤x≤3},∴3是方程x2﹣ax+b=0的一个根,且△=a2﹣4b>0∴9﹣3a+b=0,∴b=3a﹣9,∴a2﹣4(3a﹣9)=a2﹣12a+36=(a﹣6)2>0,解得a≠6∵方程的另一个根为x+3=a,即x=a﹣3,∵A∩B={x|2≤x≤3},∴1<a﹣3≤2,解得4<a≤5故a的取值范围为(4,5]【点评】本题考查了集合的运算和不等式的解法,属于中档题.18.(16分)已知S n是数列{a n}的前n项和,b n=.(1)已知{a n}是等比数列,a2=1,b3=,求{a n}的通项公式;(2)已知{a n}是公差为d(d≠0)的等差数列,若{b n}也是等差数列,求的值.【分析】(1)设{a n}是公比为q的等比数列,运用等比数列的通项公式,解方程可得首项和公比,即可得到所求通项;(2)运用等差数列的通项公式,求得b1,b2,b3,由2b2=b1+b3,化简整理可得所求值.【解答】解:(1)S n是数列{a n}的前n项和,b n=,设{a n}是公比为q的等比数列,a2=1,b3=,可得a1q=1,=,解得a1=,q=3或a1=3,q=,则a n=3n﹣2;或a n=()n﹣2;(2){a n}是公差为d(d≠0)的等差数列,若{b n}也是等差数列,可得b1=,b2=,b3=,由2b2=b1+b3,可得a1=d,则=.【点评】本题考查数列的通项公式的求法,考查数列的前n项和的求法,考查等差数列、等比数列的性质等基础知识,考查运算求解能力,是中档题.19.(16分)如图,有一壁画,最高点A距离地面AE为4米,最低点B距离地面BE为2米.如果在距离地面高CF为1.5米、与墙壁距离EF为4米的C处观赏壁画,但效果不佳.为了提高欣赏效果(视角∠ACB=θ越大,效果越好),现在有两种方案可供选择:①与壁画距离EF不变,调节高度CF;②与地面距离CF不变,调节与壁画的距离EF.(1)按照方案①,设CF为h米(2<h<4),当h为何值时,视角θ最大?(2)按照方案②,设EF为x米(x<4),当x为何值时,视角θ最大?【分析】(1)根据题意画出图形,结合图形求出tanθ的解析式,计算tanθ取得最大值时h的值;(2)根据题意画出图形,结合题意求出tanθ的解析式,计算tanθ取最大值时对应θ的值.【解答】解:(1)如图(1)所示,由题意知,tanα=,tanβ=,∴tanθ=tan(α+β)==,2<h<4;当h=3时tanθ取得最大值为;因为函数y=tanθ在上是增函数,所以当h=3时θ取得最大值;(2)如图(2)所示,由题意知,tanα=,tanβ=,∴tanθ=tan(β﹣α)==≤,x>0,当且仅当时取“=”,所以x=时,视角θ取得最大值.【点评】本题考查了三角函数模型的应用问题,是中档题.20.(16分)已知数列{a n}中,a1=a(a>0),其前n项和为S n满足:S n=a2S n﹣1+a (n≥2,n∈N*).(1)证明:数列{a n}为等比数列,并求出{a n}的通项公式;(2)设T n为数列{a}的前n项和,是否存在实数t,使得S2n=tT n,n∈N*,若存在求出t的最小值,若不存在说明理由.【分析】(1)∵S n=a2S n﹣1+a(n≥2,n∈N*),S n+1=a2S n+a,相减可得:a n+1=a2a n,n=2时,a1+a2=a2a1+a,解得a2=a3,满足=a2.即可证明.(2)①a≠1,=a4n﹣2=•(a4)n,利用等比数列的求和公式即可得出T n,S n,S2n.假设存在实数t,使得S2n=tT n,n∈N*,即可得出t.②a=1时,=1,T n=n,S n=n,S2n=2n.假设存在实数t,使得S2n=tT n,n∈N*,解得t.【解答】(1)证明:∵S n=a2S n﹣1+a(n≥2,n∈N*),S n+1=a2S n+a,相减可得:a n+1=a2a n,n=2时,a1+a2=a2a1+a,解得a2=a3,满足=a2.∴数列{a n}为等比数列,首项为a(a>0),公比为a2.∴a n=a•(a2)n﹣1=a2n﹣1.(2)解:①a≠1,=a4n﹣2=•(a4)n,∴T n=,S n=,可得:S2n=.假设存在实数t,使得S2n=tT n,n∈N*,∴=t•,解得t==+a>2.②a=1时,=1,T n=n,S n=n,S2n=2n.假设存在实数t,使得S2n=tT n,n∈N*,则2n=t•n,解得t=2.综上可得:存在t的最小值为2.【点评】本题考查了数列递推关系、等比数列的定义通项公式与求和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页(共18页) 2017-2018学年江苏省南通市启东中学高二(下)期中数学试卷(文科)
一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上. 1.(5分)已知集合A={x|0<x≤2},集合B={x|﹣1<x<1},则A∩B= . 2.(5分)函数f(x)=x•lnx的单调递减区间为 . 3.(5分)已知命题p:x>a.命题q:﹣2<x≤1.若p是q的必要而不充分条件,则实数a的取值范围是 . 4.(5分)若函数f(x)=ex(sinx+cosx),则f′(x)= . 5.(5分)已知函数,则函数f(x)的定义域为 . 6.(5分)设曲线f(x)=ax3+x在(1,f(1))处的切线与直线2x﹣y﹣6=0平行,则实数a的值为 . 7.(5分)函数y=1﹣值域为 .
8.(5分)函数f(x)=x3﹣4x+的极大值为 . 9.(5分)若函数是偶函数,则a﹣b的值为 . 10.(5分)设函数e为自然对数的底数),则f(x)的极小值为 . 11.(5分)设函数f(x)的导函数为f′(x),若f(x)=5x3+2xf′(1),则f′(3)= 12.(5分)某种圆柱形的饮料罐的容积为V,为了使得它的制作用料最省(即表面积最小),则饮料罐的底面半径为(用含V的代数式表示) 13.(5分)已知函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,f(0)=0.当x∈(0,1]时,f(x)=log2x,则在区间(4,5)内满足方程的实数x的值为 . 第2页(共18页)
14.(5分)若函数有3个不同的零点,则实数m的取值范围是 .
二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤. 15.(14分)已知函数f(x)=x3﹣ax2+bx. (1)当b=﹣2时,f(x)在[1,+∞)上是增函数,求实数a的取值范围; (2)当处取得极值,求函数f(x)在[1,a]上的值域. 16.(14分)已知函数f(x)=2ex+m(x+1),(m∈R),e为自然对数的底数. (1)当m=1时,求函数f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)的单调区间. 17.(14分)已知全集U=R,A={x|﹣x2+3x﹣2≥0},B={x|≥1}. (1)求集合A∩B; (2)函数f(x)=xlnx﹣ax,,对一切x∈A,f(x)≥g(x)恒成立,求实数a的取值范围. 18.(16分)已知命题p:函数f(x﹣1)=mx2﹣(2m﹣4)x+m﹣4(m∈R).命题q:∀x∈R,不等式x2﹣mx+>0恒成立. (1)若函数f(x)的单调减区间是(﹣∞,﹣1],求m的值; (2)若函数f(x)在区间上为单调增函数,且命题p∧q为真命题,求m的取值范围. 19.(16分)为了庆祝江苏省启东中学九十周年校庆,展示江苏省启东中学九十年来的办学成果及优秀校友风采,学校准备校庆期间搭建一个扇形展览区,如图,是一个半径为2百米,圆心角为的扇形展示区的平面示意图.点C是半径OB
上一点(异于O、B两点),点D是圆弧上一点,且CD∥OA.为了实现“以展养展”现在决定:在线段OC、线段CD及圆弧三段所示位置设立广告位,经测算广告位出租收入是:线段OC处每百米为2a元,线段CD及圆弧处每百米均 第3页(共18页)
为a元.设∠AOD=x弧度,广告位出租的总收入为y元. (1)求y关于x的函数解析式,并指出该函数的定义域; (2)试问x为何值时,广告位出租的总收入最大,并求出其最大值.
20.(16分)定义可导函数y=f(x)的弹性函数为;在区间D上,若函数f(x)的弹性函数值大于1,则称f(x)在区间D上具有弹性,相应的区间D也称作f(x)的弹性区间. (1)若r(x)=ex﹣x,求r(x)的弹性函数及弹性函数的零点; (2)对于函数f(x)=(x﹣1)ex+lnx(其中e为自然对数的底数),求f(x)的弹性区间D. 第4页(共18页)
2017-2018学年江苏省南通市启东中学高二(下)期中数学试卷(文科) 参考答案与试题解析
一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上. 1.(5分)已知集合A={x|0<x≤2},集合B={x|﹣1<x<1},则A∩B= {x|0<x<1} . 【分析】利用交集定义直接求解. 【解答】解:∵集合A={x|0<x≤2},集合B={x|﹣1<x<1}, ∴A∩B={x|0<x<1}. 故答案为:{x|0<x<1}. 【点评】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.
2.(5分)函数f(x)=x•lnx的单调递减区间为 (0,] . 【分析】求出函数的定义域,求出函数的导函数,令导函数小于等于0求出x的范围,写出区间形式即得到函数y=xlnx的单调递减区间. 【解答】解:函数的定义域为x>0 ∵y′=lnx+1 令lnx+1≤0得0<x≤,
∴函数y=xlnx的单调递减区间是( 0,] 故答案为(0,], 【点评】本题考查函数的单调区间的问题,一般求出导函数,令导函数大于0求出x的范围为单调递增区间;令导函数小于0求出x的范围为单调递减区间;注意单调区间是函数定义域的子集. 第5页(共18页)
3.(5分)已知命题p:x>a.命题q:﹣2<x≤1.若p是q的必要而不充分条件,则实数a的取值范围是 a≤﹣2 . 【分析】由p是q的必要而不充分条件,结合不等式的意义即可得出. 【解答】解:命题p:x>a.命题q:﹣2<x≤1. 由p是q的必要而不充分条件,则实数a的取值范围是a≤﹣2. 故答案为:a≤﹣2. 【点评】本题考查了不等式的应用、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.
4.(5分)若函数f(x)=ex(sinx+cosx),则f′(x)= 2excosx . 【分析】根据题意,由函数乘法的导数计算公式计算可得答案. 【解答】解:根据题意,函数f(x)=ex(sinx+cosx), 则f′(x)=(ex)′(sinx+cosx)+ex(sinx+cosx)′=2excosx, 故答案为:2excosx 【点评】本题考查函数的导数计算,关键是掌握导数的计算公式.
5.(5分)已知函数,则函数f(x)的定义域为 (1,2)∪(2,4] . 【分析】由根式内部的代数式大于等于0,对数式的真数大于0且分式的分母不等于0,联立不等式组求解即可得答案.
【解答】解:由,解得1<x≤4且x≠2. ∴函数的定义域为(1,2)∪(2,4]. 故答案为:(1,2)∪(2,4]. 【点评】本题考查了函数的定义域及其求法,考查了不等式的解法,是基础题.
6.(5分)设曲线f(x)=ax3+x在(1,f(1))处的切线与直线2x﹣y﹣6=0平行,则实数a的值为 . 第6页(共18页)
【分析】求得f(x)的导数,可得切线的斜率,运用两直线平行的条件:斜率相等,解方程可得a的值. 【解答】解:f(x)=ax3+x的导数为f′(x)=3ax2+1, 可得f(x)=ax3+x在(1,f(1))处的切线斜率为1+3a, 切线与直线2x﹣y﹣6=0平行,可得1+3a=2, 解得a=.
故答案为:. 【点评】本题考查导数的运用:求切线的斜率,考查两直线平行的条件:斜率相等,考查运算能力,属于基础题.
7.(5分)函数y=1﹣值域为 (﹣∞,1)∪[2,+∞) . 【分析】方法一:画出函数的图象,借助图象即可得到函数的值域, 方法二:利用函数的单调性即可求出函数的值域. 【解答】解:方法一:函数y=1﹣的图象如图所述,
由图象可得函数的值域:(﹣∞,1)∪[2,+∞) 方法二:∵y′=,
当0<x<1时函数单调递增, 当﹣1<x<1时函数单调递减. 故y在(﹣1,1)上的最小值为2, 当x<﹣1时,函数单调递减,当x>1时,函数单调递增, 故x→+∞时,y→1,故x→﹣∞时,y→1, 综上所述函数的值域为(﹣∞,1)∪[2,+∞), 故答案为:(﹣∞,1)∪[2,+∞) 第7页(共18页)
【点评】本题考查了函数的值域的求法,属于基础题. 8.(5分)函数f(x)=x3﹣4x+的极大值为 ﹣5 . 【分析】首先求出函数的导函数,使得导函数等于0,解出x的值,验证在x值两侧的导函数的符号,得到在x=2处,函数取到极大值. 【解答】解:∵函数f(x)=x3﹣4x+, ∴f′(x)=x2﹣4=0 ∴x=﹣2,x=2, 在(﹣∞,﹣2)上,导函数大于0,函数递增, 在(﹣2,2)上,导函数小于0,函数递减, 在(2,+∞)上,导函数大于0,函数递增, ∴在x=2处,函数取到极大值﹣5, 故答案为:﹣5. 【点评】本题考查利用导数研究函数的极值,考查学生的运算能力,属中档题.
9.(5分)若函数是偶函数,则a﹣b的值为 3 . 【分析】根据题意,设x>0,则﹣x<0,结合偶函数的定义以及函数的解析式可得ax2+bx=(﹣x)2+2(﹣x),即ax2+bx=x2﹣2x,分析可得a、b的值,计算即