随机过程导论Introduction

随机过程考试真题

1、设随机过程C t R t X +?=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均匀分 布。 (1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。 2、设{ }∞<<∞-t t W ),(是参数为2 σ的维纳过程,)4,1(~N R 是正态分布随机变量; 且对任意的∞<<∞-t ,)(t W 与R 均独立。令R t W t X +=)()(,求随机过程 {}∞<<∞-t t X ),(的均值函数、相关函数和协方差函数。 3、设到达某商场的顾客人数是一个泊松过程,平均每小时有180人,即180=λ;且每个 顾客的消费额是服从参数为s 的指数分布。求一天内(8个小时)商场营业额的数学期望与方差。 4、设马尔可夫链的转移概率矩阵为: (1)求两步转移概率矩阵) 2(P 及当初始分布为 时,经两步转移后处于状态2的概率。 (2)求马尔可夫链的平稳分布。 5设马尔可夫链的状态空间}5,4,3,2,1{=I ,转移概率矩阵为: 求状态的分类、各常返闭集的平稳分布及各状态的平均返回时间。 6、设{}(),0N t t ≥是参数为λ的泊松过程,计算[]()()E N t N t s +。 7、考虑一个从底层启动上升的电梯。以i N 记在i 第层进入电梯的人数。假定i N 相互独立,且i N 是均值为i λ的泊松变量。在第i 层进入的各个人相互独立地以概率ij p 在第j 层离开电梯, 1ij j i p >=∑。令j O =在第j 层离开电梯的人数。

(1)计算()j E O (2)j O 的分布是什么 (3)j O 与k O 的联合分布是什么 8、一质点在1,2,3点上作随机游动。若在时刻t 质点位于这三个点之一,则在) ,[h t t +内,它都以概率 )(h o h +分别转移到其它两点之一。试求质点随机游动的柯尔莫哥洛夫微分方程,转移概率)(t p j i 及平稳分布。 1有随机过程{?(t ),-?

(完整版)答案应用随机过程a

山东财政学院 2009—2010学年第 1 学期期末考试《应用随机过程》试卷(A ) (考试时间为120分钟) 参考答案及评分标准 考试方式: 闭卷 开课学院 统计与数理学院 使用年级 07级 出题教师 张辉 一. 判断题(每小题2分,共10分,正确划√,错误划ⅹ) 1. 严平稳过程一定是宽平稳过程。(ⅹ ) 2. 非周期的正常返态是遍历态。(√ ) 3. 若马氏链的一步转移概率阵有零元,则可断定该马氏链不是遍历的。(ⅹ ) 4. 有限马尔科夫链没有零常返态。(√ ) 5.若状态i 有周期d, 则对任意1≥n , 一定有:0)(?nd ii p 。(ⅹ ) 二. 填空题(每小题5分,共10分) 1. 在保险公司的索赔模型中,设索赔要求以平均每月两次的速率的泊松过程到达保险公司,若每次赔付金额是均值为10000元的正态分布,一年中保险公司的平均赔付金额是__240000元___。 2.若一个矩阵是随机阵,则其元素满足的条件是:(1)任意元素非负(2)每行元素之和为1。 三. 简答题(每小题5分,共10分) 1. 简述马氏链的遍历性。 答:设) (n ij p 是齐次马氏链{}1,≥n X n 的n 步转移概率,,如果对任意 I j i ∈,存在不依赖于i 的极限0)(?=j n ij p p ,则称齐次马氏链{}1,≥n X n 具有遍历性。 2. 非齐次泊松过程与齐次泊松过程有何不同?

答:非齐次泊松过程与齐次泊松过程的不同在于:强度λ不再是常数,而是与t 有关,也就是说,不再具有平稳增量性。它反映了其变化与时间相关的过程。如设备的故障率与使用年限有关,放射物质的衰变速度与衰败时间有关,等等。 四. 计算、证明题(共70分) 1. 请写出C —K 方程,并证明之. (10分) 解: 2. 写出复合泊松过程的定义并推算其均值公式. (15分) 解:若{}0),(≥t t N 是一个泊松过程,是Λ,2,1,=i Y i 一族独立同分布的随机变量,并且与{}0),(≥t t X 也是独立的, )(t X =∑=t N i i Y 1,那么{}0),(≥t t X 复合泊松过程

《应用随机过程》教学大纲

《应用随机过程》课程教学大纲 课程代码:090541007 课程英文名称:Applications Stochastic Processes 课程总学时:40 讲课:40 实验:0 上机:0 适用专业:应用统计学 大纲编写(修订)时间:2017.6 一、大纲使用说明 (一)课程的地位及教学目标 随机过程是现代概率论的一个重要的组成部分,其理论产生于上世纪初期,主要是由物理学、生物学、通讯与控制、管理科学等方面的需求而发展起来的。它是研究事物的随机现象随时间变化而产生的情况和相互作用所产生规律的学科。随机过程的理论为许多物理、生物等现象提供诸多数学模型,同时为研究这类现象提供了数学手段。本课程为统计学专业的专业课程,通过本课程的学习,掌握随机过程的基本概念、基本理论、内容和基本方法,了解随机过程的重要应用,为后继课程学习提供知识准备,另一方面,随机过程的发展也是人们认识客观世界的一个重要组成部分,它有助于学生辩证唯物主义世界观的培养。 (二)知识、能力及技能方面的基本要求 1.基本知识:通过本科程的学习,使学生掌握,要求学生掌握随机过程的基本概念、二阶矩过程的均方微积分、马尔可夫过程的基本理论、平稳过程的基本理论、鞅和鞅表示、维纳过程、Ito定理、随机微分方程等理论和方法。 2.基本能力:通过本课程的学习,使学生能较深刻地理解随机过程的基本理论、思想和方法,并能应用其解决实践中遇到的随机问题,从而提高学生的数学素质,加强学生开展科研工作和解决实际问题的能力。 3.基本技能:掌握建立随机数学模型、分析和解决问题方面的技能,为进一步自学有关专业应用理论课程作好准备。 (三)实施说明 本大纲是根据沈阳理工大学关于制订本科教学大纲的原则意见专门制订的。在制订过 程中参考了其他学校相关专业应用随机过程教学大纲。 本课程思维方式独特,还需要学生有较高的微积分基础,教学中应注意概率意义的解 释和学生基础情况的把握,处理好抽象与具体,偶然与必然、一维与多维,理论与实践的关系。本课程内容分概率论与数理统计两部分,在教学中应充分注意两者之间的联系,重视基本概念,讲清统计思想。 (四)对先修课的要求 本课的先修课程:数学分析,高等代数,概率论。 (五)对习题课的要求 由于本课程内容多学时少,习题课在大纲中未作安排,建议教师授课过程中灵活掌 握;对于学生作业中存在的问题,建议通过课前和课后答疑解决。通过习题课归纳总结章节知识解决重点难点内容。 (六)课程考核方式 1.考核方式:考试 2.考核目标:在考核学生基本知识、基本原理和方法的基础上,重点考核学生解决实际问题的能力。 3.成绩构成:本课程的总成绩主要由两部分组成:平时成绩20-30%;期末成绩70-80%; 平时成绩构成:出勤,测验,作业。其中测验为开卷,随堂测验。

随机过程习题答案

1、 已知X(t)和Y(t)是统计独立的平稳随机过程,且它们的均值分别为mx 和my ,它们的自 相关函数分别为Rx()和Ry()。(1)求Z(t)=X(t)Y(t)的自相关函数;(2)求Z(t)=X(t)+Y(t)的自相关函数。 答案: (1)[][])()()()()()()(t y t x t y t x E t z t z E R z ττττ++=+= [][] ) ()()()()()()()()(τττττy x z R R t y t y E t x t x E R t y t x =++== :独立的性质和利用 (2)[]()()[])()()()()()()(t y t x t y t x E t z t z E R z +?+++=+=ττττ [])()()()()()()()(t y t y t x t y t y t x t x t x E ττττ+++++++= 仍然利用x(t)和y(t)互相独立的性质:)(2)()(τττy y x x z R m m R R ++= 2、 一个RC 低通滤波电路如下图所示。假定输入是均值为0、双边功率谱密度函数为n 0/2 的高斯白噪声。(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。 答案: (1) 该系统的系统函数为RCs s X s Y s H +==11)()()( 则频率响应为Ω +=ΩjRC j H 11)( 而输入信号x(t)的功率谱密度函数为2 )(0n j P X =Ω 该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为: ()2 20212/)()()(Ω+=ΩΩ=ΩRC n j H j P j P X Y 对)(Ωj P Y 求傅里叶反变换,就得到输出的自相关函数: ()??∞ ∞-Ω∞ ∞-ΩΩΩ+=ΩΩ=d e RC n d e j P R j j Y Y ττππτ22012/21)(21)( R C 电压:y(t) 电压:x(t) 电流:i(t)

应用随机过程教学大纲

《应用随机过程A》课程教学大纲 课程编号: L335001 课程类别:专业限选课适用专业:统计学专业 学分数:3学分学时数: 48学时 应修(先修)课程:数学分析、概率统计、微分方程、高等代数 一、本课程的地位和作用 应用随机过程是数学与应用数学专业的专业限选课程,是统计学专业的专业课程之一。随机过程是研究客观世界中随机演变过程规律性的学科,随机过程的研究对象为随时间变化的随机现象,即随时间不断变化的随机变量,通常被视为概率论的动态部分。随着科学技术的发展,它已广泛地应用于通信、控制、生物、地质、经济、管理、能源、气象等许多领域,国内外许多高等工科院校在研究生中设此课程,大量工程技术人员对随机分析的方法也越来越重视。通过本课程的学习,使学生初步具备应用随机过程的理论和方法来分析问题和解决问题的能力。 二、本课程的教学目标 使学生掌握随机过程的基本知识,通过系统学习,学生的概率理论数学模型解决随机问题的能力得到更加进一步的提高,特别在经济应用上,通过本课程的学习,可以让数学专业的学生很方便地转向在金融管理、电子通讯等应用领域的研究。 三、课程内容和基本要求 ?”记号标记既(用“*”记号标记难点内容,用“?”记号标记重点内容,用“* 是重点又是难点的内容。) 第一章预备知识 1.教学基本要求 (1)掌握概率空间, 随机变量和分布函数, 矩母函数和特征函数的概念和相关性质。 (2)掌握条件概率, 条件期望和独立性的概念和相关性质。 (3)了解概率中收敛性的概念和相互关系。 2.教学内容 (1)概率空间 (2)▽随机变量和分布函数

(3)▽*数字特征、矩母函数和特征函数 (4)▽*条件概率、条件期望和独立性 (5)收敛性 第二章随机过程的基本概念和类型 1.教学基本要求 (1)掌握随机过程的定义。 (2)了解有限维分布族和Kolmogorov定理。 (3)掌握独立增量过程和独立平稳增量过程概念。 2.教学内容 (1)基本概念 (2)▽*有限维分布和Kolmogorov定理 (3)▽随机过程的基本类型 第三章 Poisson过程 1.教学基本要求 (1)了解计数过程的概念。 (2)掌握泊松过程两种定义的等价性。 (3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布。(4)了解泊松过程的推广。 2.教学内容 (1)▽ Poisson过程 (2)▽* 与Poisson过程相联系的若干分布 (3)* Poisson过程推广 第四章更新过程 1.教学基本要求 (1)掌握更新过程的定义和基本性质。 (2)掌握更新函数、更新方程。 (3)了解更新定理及其应用,更新过程的若干推广。 (4)了解更新过程的若干推广。 2.教学内容

最新随机过程习题及答案

一、1.1设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时,= = 1.2 设离散型随机变量X服从几何分布: 试求的特征函数,并以此求其期望与方差。解:

所以: 2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t ?????=时取得白球如果对时取得红球 如果对t e t t t X t 3)( .维分布函数族试求这个随机过程的一 2.2 设随机过程 ,其中 是常数,与是 相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概 率密度为 试证明为宽平稳过程。 解:(1) 与无关

(2) , 所以 (3) 只与时间间隔有关,所以 为宽平稳过程。 2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 2.5, 试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立 为多少?

3.1一队学生顺次等候体检。设每人体检所需的时间服从均值为2分 钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的 poisson 过程。以小时为单位。 则((1))30E N =。 40 300 (30)((1)40)!k k P N e k -=≤=∑。 3.2在某公共汽车起点站有两路公共汽车。乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。 解: 法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。1 N T 表示1()N t =1N 的发生时 刻,2 N T 表示2()N t =2N 的发生时刻。 1 11 1111111()exp()(1)! N N N T f t t t N λλ-= -- 2 22 1222222()exp()(1)! N N N T f t t t N λλ-= -- 1 2 121 2 1 2 2 1 112,12|1221 1122212(,)(|)()exp() exp() (1)! (1)! N N N N N N N N N T T T T T f t t f t t f t t t t t N N λλλλ--== ----

应用随机过程试题及答案

应用随机过程试题及答案 一.概念简答题(每题5 分,共40 分) 1. 写出卡尔曼滤波的算法公式 2. 写出ARMA(p,q)模型的定义 3. 简述Poisson 过程的随机分流定理 4. 简述Markov 链与Markov 性质的概念 5. 简述Markov 状态分解定理 6.简述HMM 要解决的三个主要问题得分B 卷(共9 页)第2 页7. 什么是随机过程,随机序列?8.什么是时齐的独立增量过程?二.综合题(每题10 分,共60 分) 1 .一维对称流动随机过程n Y , 0 1 0, , n n k k Y Y X ? ? ? ? 1 ( 1) ( 1) , 2 k k k X p x p x ? ? ? ? ? 具有的概率分布为且1 2 , , ... X X 是相互独立的。试求1 Y 与2 Y 的概率分布及其联合概率分布。 2. 已知随机变量Y 的密度函数为其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为? ? 其他试求随机变量X 和Y 的联合分布密度函数( , ) f x y . 得分B 卷(共9 页)第3 页 3. 设二维随机变量( , ) X Y 的概率密度为( ,其他试求p{x<3y} 4.设随机过程( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的随机变量。试求数学期望( ) t E X ,方差( ) t D X ,相关函数1 2 ( , ) X R t t ,协方差1 2 ( , ) X C t t 。B 卷(共9 页)第4 页5 .设马尔科夫链的状态空间为I={0,1}, 一步转移概率矩阵为

随机过程补充例题

随机过程补充例题 例题1 设袋中有a 个白球b 个黑球。甲、乙两个赌徒分别有n 元、m 元,他们不知道那一种球多。他们约定:每一次从袋中摸1个球,如果摸到白球甲给乙1元,如果摸到黑球乙给甲1元,直到两个人有一人输光为止。求甲输光的概率。 解 此问题是著名的具有两个吸收壁的随机游动问题,也叫赌徒输光问题。 由题知,甲赢1元的概率为b p a b =+,输1元的概率为 a q a b =+,设n f 为甲输光的概率,t X 表示赌t 次后甲的赌金, inf{:0 }t t t X or X m n τ===+,即τ 表示最终摸球次数。如果 inf{:0 }t t t X or X m n τ===+=Φ(Φ为空集),则令τ=∞。 设A =“第一局甲赢”,则()b p A a b = +,()a p A a b = +,且第一局甲赢的条件下(因甲有1n +元),甲最终输光的概率为1n f +,第一局甲输的条件下(因甲有1n -元),甲最终输光的概率为1n f -,由全概率公式,得到其次一元二次常系数差分方程与边界条件 11n n n f pf qf +-=+ 01f =,0m n f += 解具有边界条件的差分方程 由特征方程 2()p q p q λλ+=+

(1)当q p ≠时,上述方程有解121,q p λλ==,所以差分方程的 通解为 212()n q f c c p =+ 代入边界条件得 1()11()n n n m q p f q p +-=- - (2)当q p =时,上述方程有解121λλ==,所以差分方程的通解为 12n f c c n =+ 代入边界条件得 1n n f n m =- + 综合(1)(2)可得 1()11() 1n n m n q p p q q f p n p q n m +? -?- ≠?? -=?? ?-=? +? 若乙有无穷多的赌金,则甲最终输光概率为 () lim 1n jia n m q p q p p f p q →∞ ?>?==??≤? 由上式可知,如果赌徒只有有限的赌金,而其对手有无限的赌金,当其每局赢的概率p 不大于每局输的概率q ,即p q ≤时,

第0 11_01讲引言

1前言 1.1研究背景 生活和工作中,处处遇到随机过程 电话总机占线, 银行排队, 互联网的传输延迟和流量, 赌博, 信号衰落, 信号被噪声淹没。 教科书中的举例: 电话呼叫的次数随时间的变化, 原子的能量(能级)随时间的变化, 液面上微粒的布郎运动, 掷硬币的伯努利过程, 振荡器输出的随机相位正弦波过程, 放大器的输入热噪声。 需要对随机过程的规律进行认识, 需要对随机过程进行处理:缓存、控制,估值、平滑、滤波。 1.2研究内容 典型的随机过程: 高斯过程、泊松过程等, 随机过程的数学表述和分析方法: 规律、数字特征, 随机过程经过系统的特性分析: 信噪比、错误概率、利用率, 对随机过程进行处理的系统设计: 估值,检测,滤波。 应用领域 信息论和编码理论 数字通信 扩展频谱通信 无线通信 数字信号处理 通信网原理。

1.3参考文献 陆大经:随机过程及其应用, 周荫清:随机过程导论, 汪任官:概率论引论, Papoulis:“Probability, random variable, and stochastic processes”, Feller:“An introduction to probability theory and its applications”, Haykis:“Adaptive filter theory”。 1.4先行课程 概率论和数理统计 信号与系统 典型的随机变量的分布, 典型的随机变量的数字特征。 1.5课程安排 随机过程引论 马尔可夫链 马尔可夫过程 二阶矩过程、平稳过程和随机分析 随机过程谱分析和随机过程通过线性系统 高斯过程 估值过程 2随机过程的数学描述和分类 2.1随机过程举例: 确定性过程和随机过程:确定性过程完全可以用一个时间函数来描述;随机性过程每一次观察的事件是不同的,每一次观察的一个实现是一个时间的函数;随机过程在任意一组给定时刻的取值是一组随机变量。 典型的确定性过程: 电容器的冲放电过程, 典型的随机过程: 例01-1、一维随机游动 例01-2、调幅脉冲序列。 例01-3、随机幅度的正弦波过程。 例01-4、随机相位的正弦波过程,它的一维概率密度函数。

北大随机过程课件:第 3 章 第 2 讲 马尔可夫过程

马尔可夫过程 ?1马尔可夫过程概论 6 1.1马尔可夫过程处于某个状态的概率 6 1.2马尔可夫过程的状态转移概率 6 1.3参数连续状态离散马尔可夫过程的状态转移的切普曼-柯尔莫哥洛夫方程 切普曼-柯尔莫哥洛夫方程 齐次切普曼-柯尔莫哥洛夫方程 转移概率分布函数、转移概率密度函数 6 1.4马尔可夫过程状态瞬时转移的跳跃率函数和跳跃条件分布函数 瞬时转移概率分布函数 6 1.5确定马尔可夫过程Q矩阵 跳跃强度、转移概率Q矩阵 ?2参数连续状态离散马尔可夫过程的前进方程和后退方程 柯尔莫哥洛夫-费勒前进方程(利用Q矩阵可以导出、转移概率的微分方程)福克-普朗克方程(状态概率的微分方程) 柯尔莫哥洛夫-费勒后退方程(利用Q矩阵可以导出、转移概率的微分方程)?3典型例题 排队问题、机器维修问题、随机游动问题的分析方法 ?4马尔可夫过程的渐进特性 稳态分布存在的条件和性质 稳态分布求解 ?5马尔可夫过程的研究 1概论 1.1 定义及性质 1.2 状态转移概率 1.3 齐次马尔可夫过程的状态转移概率 1.5跳跃强度、转移概率Q矩阵 2 前进方程和后退方程 2.1 切普曼-柯尔莫哥洛夫方程 2.2柯尔莫哥洛夫-费勒前进方程 2.2福克-普朗克方程 2.3柯尔莫哥洛夫-费勒后退方程 3典型的马尔可夫过程举例 例1 例2 例3 例4,随机游动 4马尔可夫过程的渐进特性 4.1 引理1 4.2 定理2 4.3 定理

5马尔可夫过程的研究 6关于负指数分布的补充说明:

1概论 1.1定义:马尔可夫过程 ()t ξ: 参数域为T ,连续参数域。以下分析中假定[0,)T =∞; 状态空间为I ,离散状态。以下分析中取{0,1,2,}I ="; 对于T t t t t m m ∈<<<<+121",若在12m t t t T <<<∈"这些时刻观察到随机过程的值是12,,m i i i ",则 1m m t t T +>∈时刻的条件概率满足: {}{}1111()/(),,()()/(), m m m m m m P t j t i t i P t j t i j I ξξξξξ++======∈" 则称这类随机过程为具有马尔可夫性质的随机过程或马尔可夫过程。 1.2 定义:齐次马尔可夫过程 对于马尔可夫过程()t ξ,如果转移概率{}21()/()P t j t i ξξ==只是时间差12t t ?=τ的函数,这类马尔可夫过程称为齐次马尔可夫过程。 1.3 性质 马尔可夫过程具有过程的无后效性; 参数连续状态离散的马尔可夫过程的条件转移概率为: {}{}212112()/()0()/(),,P t j t t t P t j t i t t i j I ξξξξ′′=≤≤===≤∈ 马尔可夫过程的有限维联合分布律可以用转移概率来表示 {} {}{}{}32132211123(),(),()()/()()/()(),,,P t k t j t i P t k t j P t j t i P t i t t t i j k I ξξξξξξξξ=========≤≤∈ 马尔可夫过程的有限维条件分布律可以用转移概率来表示

随机过程复习试题及答案

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 证明:当12n 0t t t t <<< <<时, 1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤= n n 1122n n P(X(t)-X(t )x-x X(t )-X(0)=x ,X(t )-X(0)=x , X(t )-X(0)=x )≤= n n P(X(t)-X(t )x-x )≤,又因为n n P(X(t)x X(t )=x )=≤n n n n P(X(t)-X(t )x-x X(t )=x )≤= n n P(X(t)-X(t )x-x )≤,故1122n n P(X(t)x X(t )=x ,X(t )=x , X(t )=x )≤=n n P(X(t)x X(t )=x )≤ 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

应用随机过程习题课二

习题 1. 设随机过程{(,),}X t t ω-∞<<+∞只有两条样本函数 12(,)2cos ,(,)2cos ,X t t X t t x ωω==--∞<<+∞ 且1221 (),()33P P ωω==,分别求: (1)一维分布函数(0,)F x 和(,)4F x π ; (2)二维分布函数(0,;,)4F x y π ; (3)均值函数()X m t ; (4)协方差函数(,)X C s t . 2. 利用抛掷一枚硬币一次的随机试验,定义随机过程 1 2 cos ()2t X t πωω?=??出现正面出现反面 且“出现正面”与“出现反面”的概率相等,各为1 2 ,求 1)画出{()}X t 的样本函数 2){()}X t 的一维概率分布,1 (;)2F x 和(1;)F x 3){()}X t 的二维概率分布121 (,1;,)2 F x x 3. 通过连续重复抛掷一枚硬币确定随机过程{()}X t cos ()2 t t X t t π?=? ?在时刻抛掷硬币出现正面 在时刻抛掷硬币出现反面 求:(1)1(,),(1,)2F x F x ; (2)121 (,1;,)2 F x x 4. 考虑正弦波过程{(),0}X t t ≥,()cos X t t ξω=,其中ω为正常数,~(0,1)U ξ. (1)分别求3,,,424t ππππωωωω = 时()X t 的概率密度(,)f t x . (2)求均值函数()m t ,方差函数()D t ,相关函数(,)R s t ,协方差函数(,)C s t . 5. 给定随机过程: ()X t t ξη=+ ()t -∞<<+∞ 其中r. v. (,)ξη的协方差矩阵为1334C ?? = ??? , 求随机过程{(),}X t t -∞<<+∞的协方差函数. 6. 考虑随机游动{(),0,1,2,}Y n n =

随机过程复习题(含答案)

随机过程复习题 一、填空题: 1.对于随机变量序列}{n X 和常数a ,若对于任意0>ε,有 ______}|{|lim =<-∞ >-εa X P n n ,则称}{n X 依概率收敛于a 。 2.设}),({0≥t t X 是泊松过程,且对于任意0 12 ≥>t t , ,则 15 92}6)5(,4)3(,2)1({-??= ===e X X X P , 6 18}4)3(|6)5({-===e X X P 15 3 2 6 2 3 2 92! 23 ! 2)23(! 23 }2)3()5({}2)1()3({}2)0()1({}2)3()5(,2)1()3(,2)0()1({} 6)5(,4)3(,2)1({----??=? ?? ==-=-=-==-=-=-====e e e e X X P X X P X X P X X X X X X P X X X P 6 6 2 18! 26 }2)3()5({}4)3(|6)5({--== =-===e e X X P X X P 3.已知马尔可夫链的状态空间为},,{321=I ,初始分布为),,(4 1 2141, ????? ? ?? ? ????? ??? ?=434 10313131 04341 1)(P ,则167)2(12 =P ,16 1}2,2,1{210= ===X X X P

???????? ? ????? ????=48 3148 1348 436133616367164167165)1()2(2 P P 16 7)2(12= P 16 1314341}2|2{}1|2{}1{}2,1|2{}1|2{}1{} 2,2,1{12010102010210=??=================X X P X X P X P X X X P X X P X P X X X P 4.强度λ的泊松过程的协方差函数),min(),(t s t s C λ= 5.已知平稳过程)(t X 的自相关函数为πττcos )(=X R , )]()([)(π?δπ?δπω-++=X S 6. 对于平稳过程)(t X ,若)()()(ττX R t X t X >=+<,以概率1成立,则称)(t X 的自相关函数具有各态历经性。 7.已知平稳过程)(t X 的谱密度为2 3)(2 4 2++= ωωω ωS ,则)(t X 的均方值 = 212 1- 222 22 2 11221)2(2 221 1 1 22 )(+??-+?? = +- += ωωωωωS τ τ τ--- = e e R X 2 12 1)(2

现代数学基础丛书

严加安著2012年07月出版定价:78.00 书名:《混沌、Mel′nikov方法及新发展》——现代数学基础丛书 李继彬, 陈凤娟著2012年06月出版定价:75.00 书名:《Littlewood-Paley理论及其在流体动力学方程中的应用》——现代数学基础丛书苗长兴, 吴家宏, 章志飞著2012年03月出版定价:98.00 书名:《有约束条件的统计推断及其应用》——现代数学基础丛书 王金德著2012年03月出版定价:58.00 书名:《拓扑动力系统:从拓扑方法到遍历理论方法》——现代数学基础丛书 周作领, 尹建东, 许绍元著2011年12月出版定价:58.00 书名:《代数模型论引论》——现代数学基础丛书 史念东著2011年10月出版定价:45.00 书名:《局部域上的调和分析与分形分析及其应用》——现代数学基础丛书 苏维宜著2011年06月出版定价:58.00 书名:《Zakharov方程及其孤立波解》——现代数学基础丛书 郭柏灵, 甘在会, 张景军著2011年06月出版定价:76.00 书名:《Pontryagin对偶与代数量子超群》——现代数学基础丛书 王栓宏著2011年01月出版定价:39.00 书名:《流形拓扑学——理论与概念的实质》——现代数学基础丛书 马天著2010年10月出版定价:98.00 书名:《非线性椭圆型方程》——现代数学基础丛书 王明新著2010年07月出版定价:68.00 书名:《非线性波动方程的现代方法》——现代数学基础丛书 苗长兴著2010年04月出版第二版定价:76.00 书名:《现代统计研究基础》——现代数学基础丛书 王启华, 史宁中, 耿直主编2010年03月出版定价:76.00 书名:《自相似集的结构——Hausdorff测度与上凸密度》——现代数学基础丛书 周作领, 瞿成勤, 朱智伟著2010年01月出版第二版定价:38.00 书名:《概率论基础》——现代数学基础丛书 严士健, 王隽骧, 刘秀芳著2009年08月出版第二版定价:66.00 书名:《泛函微分方程的相空间理论及应用》——现代数学基础丛书 王克, 范猛著2009年04月出版定价:65.00 书名:《环与代数》——现代数学基础丛书 刘绍学, 郭晋云, 朱彬, 韩阳著2009年01月出版第二版定价:56.00 书名:《非参数蒙特卡罗检验及其应用》——现代数学基础丛书 朱力行, 许王莉著2008年08月出版定价:36.00 书名:《Camassa-Holm方程》——现代数学基础丛书 郭柏灵, 田立新, 杨灵娥, 殷朝阳著2008年08月出版定价:52.00 书名:《非经典数理逻辑与近似推理》——现代数学基础丛书 王国俊著2008年05月出版第二版定价:62.00 书名:《巴拿赫空间引论》——现代数学基础丛书 定光桂著2008年04月出版第二版定价:88.00 书名:《线性微分方程的非线性扰动》——现代数学基础丛书 徐登洲, 马如云著2008年03月出版第二版定价:56.00

随机过程习题答案

随机过程习题解答(一) 第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a)分别写出随机变量和的分布密度 (b)试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a)试求和的相关系数; (b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。 解:(a)利用的独立性,由计算有: (b)当的时候,和线性相关,即 3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 ,且是一个周期为T的函数,即,试求方差 函数。 解:由定义,有: 4、考察两个谐波随机信号和,其中:

式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a)求的均值、方差和相关函数; (b)若与独立,求与Y的互相关函数。 解:(a) (b) 第二讲作业: P33/2.解: 其中为整数,为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数,因此有一维分布: P35/4. 解:(1) 其中 由题意可知,的联合概率密度为:

利用变换:,及雅克比行列式: 我们有的联合分布密度为: 因此有: 且V和相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且 所以。 (4)由于: 所以因此 当时, 当时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有:

P37/10. 解:(1) 当i =j 时;否则 令 ,则有 第三讲作业: P111/7.解: (1 )是齐次马氏链。经过 次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。 (2)由题意,我们有一步转移矩阵: P111/8.解:(1)由马氏链的马氏性,我们有: (2)由齐次马氏链的性质,有: (2)

【精品文档】评价过程简单-word范文 (9页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 评价过程简单 篇一:《随机过程》教材评价 《随机过程》教材评价其中 "*" 代表对书的评价,"*" 越多越好。 1 随机过程教程,李漳南,吴荣,**** 一本不错的教程,数学味较浓,但写得很严谨,也很全面,要求比我们课上的要高,但仍值得看。 2 随机过程,伊曼纽尔·帕尔逊 ***** 经典,是非测度方式讲述随机过程的典范之作,讲解清晰严谨,通俗易懂。就是数学 味稍微浓了一点。 3 随机过程,吴俊杰潘麟生 ** 无甚特色,要求比我们低,看不看两可。 4 随机过程,樊家琨 ** 面面俱到,毫无特色且有错误。 5 随机过程导论,何声武 **** 写书的人尽管名气不大但很牛,治学严谨,写书概念清晰,内容丰富,但侧重点和要求都和我们有所不同。 6 随机过程,汪荣鑫 *** 讲述比较清晰,但偏于泛泛,且作者工科出身,又想把书写出数学味,恐怕难以如愿。 7 应用随机过程引论,胡迪鹤 ***

作者是随机过程学界的前辈高人,该书虽名为“应用”,且自称“引论”,但写法 对数学细节过于注重,尽管没有涉及测度,工科同学恐也较难接受。 8 随机过程,王自果田铮 ** 面面俱到,毫无特色且有错误。 9 随机过程引论, 钱敏平 *** 作者是北大概率统计系系主任,牛人!但该书从测度入手,太数学化。 10 随机过程理论与应用, 熊大国 **** 内容丰富,写作也比较严谨,但没有多少特色,是题材的简单堆砌,适合用作手册。 11 随机过程,邓集贤许刘俊**** 出自数学工作者之手,基本没有错误,其他和上一本书很类似。 12 随机点过程,[美]D.L.斯奈德 ***** 对点过程的论述非常精到,全面系统,是经典名著。但对其他如二阶矩等根本不提。也难怪,人家是在写专著。 13 随机点过程及其应用,邓永录梁之舜 **** 国内的点过程专家的手笔,60% 的上面的书+ 40% 他们自己的工作。不错。 14 应用概率论, 陈家鑫**** 一本很薄但是很有内容的书,值得看。 15 随机过程, 方兆本缪柏其** 说数学不数学,说工程不工程,内容也不全,实在一般。 16 随机过程的线性统计理论与方法,潘一民 ** 太专门了,而且即使从该专题的角度来说,也不是很好的一本书。 17 集值随机过程,张文修汪振鹏高勇 ** 一个没有人关心的小方向,不看也罢。 18 随机力与非线性系统, 胡岗****

第2章 随机过程习题及答案

第二章 随机过程分析 1.1 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程ξ (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(), ,() (2 - 5) =≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x ) () (2 - 6)?=???F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程ξ (t )在任意给定时刻t 的取值ξ (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

相关文档
最新文档