n阶行列式的定义
第1节 n阶行列式的定义(全)

表达式 a11a22 − a12 a21 称为由该 数表所确定的二阶行列式 二阶行列式, 数表所确定的二阶行列式,即
a11 D= a21
a12 = a11a22 − a12 a21 a22
a 其中, 称为元素 元素. 其中, ij ( i = 1, 2; j = 1, 2) 称为元素.
i 为行标,表明元素位于第 行; 行标,表明元素位于第i j 为列标,表明元素位于第 列. 列标,表明元素位于第j
= a11a22 a33 + a12 a23 a31 + a13 a21a32 − a13 a22 a31 − a12 a21a33 − a11a23 a32
注意:对角线法则只适用于二阶与三阶行列式. 注意:对角线法则只适用于二阶与三阶行列式.
例1 计算行列式
3 2 3 D = 2 -3 4 4 -5 2
p 个奇排列均变成偶排列,故 p ≤ q ; 个奇排列均变成偶排列,
同理,对每个偶排列做同一变换, 同理,对每个偶排列做同一变换,则
q 个偶排列均变成奇排列,故 q ≤ p 。 个偶排列均变成奇排列,
从而, 从而,
n! p=q= 2
三、n阶行列式的定义 阶行列式的定义
a11 D = a21 a31 a12 a22 a32 a13 a23 = a11a22 a33 + a12 a23 a31 + a13 a21a32 a33 − a13 a22 a31 − a12 a21a33 − a11a23 a32
解 按对角线法则,有 按对角线法则,
D = 3 × ( −3) × 2 + 2 × 4 × 4 + 2 × ( −5) × 3
−3 × ( −3) × 4 − 2 × 2 × 2 − 3 × 4 × ( −5)
n 阶行列式的定义与性质

a a
12
1n
a a
n
22
2n
a a ...a a . 11 22
nn
ii
i1
a a a
n1
n2
nn
例 2 计算 n 阶行列式
a a a
11
12
1n
0 a a
22
2
n
.
0 0 a nn
解 分析
展开式中项的一般形式是 a1 p1a2 p2 anpn . pn n, pn1 n 1, pn3 n 3, p2 2, p1 1,
a11 a12 a1n
ai1 ai2 ain
a j1 a j2 a jn
an1 an2 ann
a11 a12 a1n
a j1 a j2 a jn
ai1 ai2 ain
an1 an2 ann
证明 根据行列式的定义及定理 1.1
左端
(1)
(
a j1 ji j j jn ) 1 j1
an1 an2 ann
设 n 阶行列式 D 的第 i 行与第 k 行相同,于 是将第 i 行与第 k 行互换,行列式不变;但由性 质 4个知,它们又应当反号即有 D=-D ,即 2 个 D=0个,故 D=0.。
性质 6 如果行列式中两行(两列)的对应元 素成比例,那么行列式为 0 .
证明 a11 a12 a1n
an1 an2 ann
右端
说明
利用行列式的性质可简化行列式的计算,基 本思路是根据性质把行列式化成为上三角形 行列式,它等于变换后的行列式的主对角元 素的乘积。
例5 解
计算行列式
1 9 13 7 2 5 1 3 3 1 5 5 2 8 7 10
n阶行列式的定义及性质

推论 如果行列式有两行(列)完全相同,则此行列式为零
证 把这两行互换,有 D D , 故D 0
推论1 行列式中某一行(列)的所有元素的公因子 可以提到行列式符号的外面
推论2 若行列式中有两行(列)成比例,则此行列 式等于零.
推论3 若行列式中某一行(列)的元素全为零,则 此行列式等于零.
证 设行列式
a11 D1 kai1 an1
a12 kai 2 an 2
a1n kain ann
是由行列式 D det(aij ) 的第i行中所有的元素都乘以同一数 k得到的. 由行列式的定义知 ( p1 p2 pn ) ( 1) a1 p1 D1
p1 p2 pn
ai 1 pi1 (kaipi )ai 1 pi1
因此 当
n 4k
或者 n
4k 1
时,该排列是偶排列;
当n
4k 2
或者
n 4k 3 时,该排列是奇排列。
6
定义 在一个排列中,把某两个数的位置互换,而保持其余的 数不动,这种对一个排列作出的变动叫做对换. 将相邻两个数 对换,叫做相邻对换.
例 五级偶排列21354经过2,3对换变成排列31254,容易计算
(21354)=2,所以21354是偶排列.
(2) 在六级排列135246中,共有逆序32,52,54,即
(135246)=3,所以135246是奇排列.
二、排列的逆序数
2. 逆序数计算法:
(q1q2 qn ) ( qi前边的比它
i 1
n
大的数字的个数 )
.例如
(64823517 ) 0 1 0 3 3 2 6 1 16
n阶行列式的三种等价定义

n阶行列式的三种等价定义
1、行列式有很多等价定义。
等价定义就是你可以拿其中一个作为定义,而另外的就是他的充分必要条件。
我可以举出三个。
2、第一个应该是大部分国内教材用的。
用a{i,j}表示行列式第i行j列元素,p=(p1,p2…pn)表示1到n的排列,tp代表排列p的逆序数。
n阶行列式的值等于对全部的排列p,(-1)
^tp*a{1,p1}*a{2,p2}*。
*a{n,pn}的和。
3、第二个是递归定义,一阶行列式|a|=a,高阶行列式按第一行展开,即行列式等于a{1,k}*A{1,k}对全部k=1,2,。
,n求和。
其中A{1,k}为a{1,k}的代数余子式。
可以证明这种定义可以推广成按任意行或列展开且展开的值相等。
3-1 n阶行列式的概念

行列式理论是研究线性方程组的解法而产生的. 行列式理论是研究线性方程组的解法而产生的. 近代,被广泛应用于数学, 近代,被广泛应用于数学,物理以及工程技术等 许多领域. 许多领域. 在线性代数中,更是一个不可缺少的重要工具. 在线性代数中,更是一个不可缺少的重要工具. 主要介绍定义,性质,计算及克莱姆法则. 主要介绍定义,性质,计算及克莱姆法则. 定义
(a , b)
证明: 证明 (1)相邻对换
AabB → AbaB
A,B中的每一个数的逆序数都没有发生改变, 所以只需考虑a ,b的逆序数 若 a > b a的逆序数不变, b 的逆序数减少1 若
a < b a 的逆序数增加1,b 的逆序数不变, 所以, AabB, AbaB 的奇偶性不同
7
(2)一般对换
Aak1k2 kmbB → Abk1k2 kmaB
情况太复杂,改变思考角度 不是通过一次性得到结果,而是作如下过程:
(a , b)
Aak1k2 kmbB
m+1 +1次相邻对换 作m+1次相邻对换 作m次相邻对换 次相邻对换
→
由(1)知, 改变了2m+1(奇数) 次奇偶性 奇偶性当然改变.
8
→
Ak1k2 kmbaB Abk1k2 kmaB
1
第一节 n阶行列式的概念 阶行列式的概念
2
一,排列及其逆数 由n个自然数组成的一个有序数组, 定义3.1.1 定义3.1.1 称为由这n个自然数的一个全排列 全排列,简称排列 全排列 排列 记作: i1i2 in 例
自然数 1,2 1,2,3 1,2,3,4 123 1234 132 12 213 231 …… …… 312 4321 n(n-1) 321 ( -1)…321
1.3n阶行列式的定义及性质

为了给出n阶行列式的定义 我们要先研究三阶行列 式的结构
观察与想考 三阶行列式存在什么规律? a11 a12 a13 a21 a22 a23 a11a22a33a12a23a31a13a21a32 a31 a32 a33 a11a23a32a12a21a33a13a22a31
❖三阶行列式的结构一: (1)行列式右边任一项除正负号外可以写成 a a a 1p1 2 p2 3p3
(2)设n阶方阵A满足|A|≠0, 且A经过有限次初等行变换变 成行简化阶梯矩阵R, 则R=En.
❖性质7
行列式某一行(列)的元素与另一行(列)的对应元素的代
数余子式乘积之和等于零 即
ai1Aj1ai2Aj2 ainAjn 0 (ij)
或
a1i A1ja2i A2j ani Anj0 (ij)
在n阶行列式D中 数aij为行列式D的(i j)元
特别规定一阶行列式|(a)|的值就是a
❖三阶行列式的结构二:
为了给出n阶行列式的第二种定义方式 我们再进一 步研究三阶行列式的结构
观察与想考 三阶行列式存在什么规律?
a11 a12 a13 a21 a22 a23 a11a22a33a12a23a31a13a21a32 a31 a32 a33 a11a23a32a12a21a33a13a22a31
1 2 3 4
1 0 7 2
例
设
A
0
7
9 1
2 4
5
,
则
6
AT 2
3
9 2
1 4
1. 8
2
1
8
3
4 5 6 3
(1)A的第3列元素3,2,4,8正好是AT的第3行元素; (2)A的第3列元素的余子式
1.1 n阶行列式的定义

2 0 01 0 0 110 1
τ (31254) = 2 + 0 + 0 + 1 + 0 = 3
4、排列的奇偶性
奇排列 偶排列 反序数为奇数的排列称为奇排列; 反序数为偶数的排列称为偶排列;
例如
2431 45321 12…n
τ (2431) = 4
τ (45321) = 9 τ (12…n) = 0
由于 D = 3
D1 =
5 = 3 × 2 − 5 × (−1) ≠ 0 −1 2
1 5
2 2 3 1 D2 = = 3 × 2 − 1× (−1) = 7, −1 2
二元一次方程组的解为:
= 1× 2 − 5 × 2 = −8,
D1 −8 ⎧ ⎪ x1 = D = 11 ; ⎨ D2 7 ⎪ x2 = = . 11 D ⎩
a11 a12 a22 a32 a13 a23 ≠ 0, a33
系数行列式
D = a21 a31
⎧ a11 x1 + a12 x2 + a13 x3 = b1 , ⎪ ⎨a21 x1 + a22 x2 + a23 x3 = b2 , ⎪a x + a x + a x = b ; ⎩ 31 1 32 2 33 3 3
推广: n个不同元素的排列共有 n! 种, 其中n 阶排列中都有 一个从小到大的排列(例如1,2,3,...n)称为 标准排列(或自然顺序排列).
2、反序
在一个排列中,如果某两个元素比较,前面的数大于后面的 数, 就称这两个数构成一个反序; 如在一个排列中,某个数字的右边有r个比它小的数字,则 说明该数字在此排列中有r个反序。
第一节 n 阶行列式的定义
3n阶行列式的定义

1t 1 4321 2 3 4
24.
4000
例4 证明
1
(1) 对角行列式
2
12 n;
n
1
(2)
ቤተ መጻሕፍቲ ባይዱ
2
nn1
1 2 12 n .
n
例5 计算上三角行列式 解 分析
a11 a12 a1n 0 a22 a2n
0 0
ann
展开式中项的一般形式是 a1 p1a2 p2 anpn . pn n, pn1 n 1, pn3 n 3, p2 2, p1 1, 所以不为零的项只有 a11a22 ann .
(3)每项的正负号都取决于位于不同行不同列 的三个元素的下标排列.
例如 a a a 13 21 32 列标排列的逆序数为
t312 1 1 2, 偶排列 正号
a a a 11 23 32
列标排列的逆序数为
t132 1 0 1, 奇排列 负号,
a11 a12 a13
a21 a22 a23 (1)t a1 p1a2 p2 a3 p3 .
思考题解答
解 含 x3 的项有两项,即
x1 1 2
f x 1 x 1 1
32 x 1
对应于
1 1 2x 1
1 t a11a22a33a44 1 t1234a11a22a34a43
1 t a11a22a33a44 x3 , 1 t1234a11a22a34a43 2 x3
a31 a32 a33
二、n 阶行列式的定义
1. 定义 由 n2 个数组成的 n 阶行列式等于所有
取自不同行不同列的n 个元素的乘积
的代数和 (1)t a1 p1a2 p2 anpn
a11 a12 a1n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n阶行列式的定义
第二节 n 阶行列式的定义
介绍线性代数的思想方法及其要点,关于行列式定义的说明以及学习中要特别注意之处
内容要点:
从三阶行列式讲起,应如何定义行列式,对于更高阶行列式定义的启发于思考。
一、排列与逆序
定义1 由自然数1,2,…,n 组成的不重复的每一种有确定次序的排列,称为一个n 级排列(简称为排列)。
例如,1234和4312都是4级排列,而24315是一个5级排列. 规定自然数的排列由小到大的次序为标准次序。
定义2 在一个n 级排列)(21n s t i i i i i 中,
若数,s t i i > 则称数t i 与s i 构成一个逆序.一个n 级排列中逆序的总数称为该排列的逆序数, 记为).(21n i i i N
根据上述定义,可按如下方法计算排列的逆序数:
设在一个n 级排列n i i i 21中,比),,2,1(n k i k =大的且排在k i 前面的数由共有k t 个, 则
k i 的逆序的个数为k t , 而该排列中所有自然数的逆序的个数之和就是这个排列的逆序数. 即
.)(1
2121∑==
+++=n
k k n n t t t t i i i N
定义3 逆序数为奇数的排列称为奇排列, 逆序数为偶数的排列称为偶排列.
二、n 阶行列式的定义
定义4 由2n 个元素),,2,1,(n j i a ij =组成的记号 nn
n n n n a a a a a a a a a
2
1
22221
11211 称为n 阶行列式, 其中横排称为行, 竖排称为列, 它表示所有取自不同行、不同列的n 个元素乘积n nj j j a a a 2121的代数和, 各项的符号是: 当该项各元素的行标按自然顺序排列后, 若对应的列标构成的排列是偶排列则取正号; 是奇排列则取负号. 即
∑
-=n
n n j
j j nj j j j j j N nn
n n n
n a a a a a a a a a a a a 21212121)(212222111211)1( 其中∑n
j j j 21表示对所有n 级排列n j j j 21求和. 行列式有时也简记为det )(ij a 或||ij a ,这里
数ij
a 称为
元素,称 n n nj j j j j j N a a a 212121)
()
1(- 为行列式的一般项.
注: (1) n 阶行列式是!n 项的代数和, 且冠以正号的项和冠以负号的项(不算元素本身所带的符号)各占一半;
(2) n nj j j a a a 2121的符号为)
(21)
1(n j j j N -(不算元素本身所带的符号);
(3) 一阶行列式 ,||a a =不要与绝对值记号相混淆.
三、对换
为进一步研究n 阶行列式的性质,先要讨论对换的概念及其与排列奇偶性的关系。
定义 5 在排列中,将任意两个元素对调,其余的元
素不动,这种作出新排列的手续称为对换。
将两个相邻元素对换,称为相邻对换。
定理1 任意一个排列经过一个对换后,其奇偶性改变。
借助课件设计的动画形象解释证明思路。
推论奇排列变成自然顺序排列的对换次数为奇数, 偶排列变成自然顺序排列的对换次数为偶数.
定理2 n 个自然数(n >1)共有n !个n 级排列,其中奇偶排列各占一半. 定理3 n 阶行列式也定义为
∑-=
n n j i j i j i s
a a a
D 2211)1(
其中S 为行标与列标排列的逆序数之和. 即S=)()(2121n n j j j N i i i N +。
推论 n 阶行列式也可定义为
,)
1(21)
(2121∑-=
n i i i i i i N n n a a a D
例题选讲:
排列与逆序
例1 (教材例1) 计算排列32514的逆序数.
例2计算排列217986354的逆序数, 并讨论其偶性.
n 阶行列式的定义
例4 (教材例3) 计算行列式0
00400300
2001000=D
例5 (教材例4) 计算上三角形行列式
).0(0
0221122211211
≠nn nn
n
n
a a a a a a a a a
对换
例8 (教材例5) 在六阶行列式中, 下列两项各应带什么符号(1) ;651456423123a a a a a a (2) .256651144332a a a a a a
例9 (教材例6) 用行列式的定义计算.0000000010
020001000n
n D n -=
课堂练习
视讲课时间而定,布置课堂练习
1.若5213425)1452()432()1(k j i j N k i N a a a a a +-是五阶行列式的一项,则k j i ,,应为何值?此时该项的符号是什么?
2.用行列式的定义计算下列行列式:
.1
10000100101
1010 3.已知,1
211
1231
11
211)(x x x x x f -=
求3x 的系数.
习题布置
1. (1) (3) (5) 3. (1) (3) 4. 6. (2) (5)。