直线的倾斜角与斜率说课稿 教案

合集下载

《直线的倾斜角与斜率》优质课比赛说课教案2018版

《直线的倾斜角与斜率》优质课比赛说课教案2018版

直线的倾斜角与斜率一、内容分析本节是人教版数学必修2 第三章《直线与方程》第一节直线的倾斜角与斜率的第一课时——3.1.1 倾斜角与斜率. 它是高中平面解析几何内容的开始,起着承上启下的重要作用. 本课时的学习不仅为研究直线方程、两直线的位置关系、点到直线的距离等本章的后续内容打下基础,而且也为以后进一步学习其他数学知识奠定思想和方法的基础. 直线的倾斜角是这一章所有概念的基础,而这一章的概念核心是斜率,理解二者之间的关系将是学此章的关键. 过两点的直线的斜率公式要讲透两点,其一是斜率的表象是一种比值,要让学生理解这种表达式,为两条直线垂直时斜率有何关系、导数的概念作好铺垫;其二是斜率的本质是与所取的点无关.二、目标分析1.知识与技能:使学生正确理解倾斜角与斜率的概念,理解二者之间的关系,会求过两点的直线的斜率;2.过程与方法:通过对倾斜角与斜率的探讨,培养学生分类讨论的思想,体验“坐标法”,感受数形结合思想;3.情感、态度与价值观:在探索倾斜角与斜率的关系过程中,明确倾斜角的变化对斜率的影响,并在其中体验严谨的治学态度.三、学生情况分析学生已经学习了一次函数(直线),对直线的倾斜角会具有直观的认同感;三角函数为解决斜率的引入和斜率公式的推导提供了知识的支持. “直线的倾斜角和斜率” 一节是解析几何的入门课,学生对几何的认识仅仅停留在初中所学的直观图形的感性阶段,因此教学时要从学生最熟悉的图形和事例入手,去研究刻画直线性质的量——倾斜角与斜率,将会让学生学会用代数方法研究几何图形的性质.四、教学重难点分析重点:倾斜角、斜率的概念,过两点的直线斜率公式.难点:倾斜角概念形成,斜率概念的理解.倾斜角概念的形成对学生来说有点困难. 为了突破这个难点,在教学过程中引导学生观察过一点的不同直线的区别,从中形成倾斜角的概念.对斜率概念的理解是本节的难点,为什么要用倾斜角的正切定义斜率对学生来说也有一定困难. 教学中通过日常生活的例子,充分利用学生已有的知识——坡度概念,引导学生把这个同样用来刻画倾斜程度的量与倾斜角联系起来,并通过坡度的计算方法,引入斜率的概念.五、教学条件分析考虑到学生的知识水平和理解能力,借助计算机工具和现实生活中的相关实物图片,从激励学生探究入手,讲解和演示相结合,可以更有效地实现教学目标. 因此教学地点选择多媒体教室.学生在课前要复习一次函数以及正切函数图象与性质等有关知识,并对本节内容进行预习,教师要准备好多媒体课件.六、教学过程设计(一)课题引入在平面直角坐标系内,画出几条相对于x 轴位置关系不同的几条直线,引导学生观察思考,它们有何不同?确定一条直线的位置需要哪些条件呢?【设计意图】学生在教师“问题串”的引导下去思考,引出本节的课题.(二)探究新知1. 倾斜角概念探究1:如图1,对于平面直角坐标系内的一直线I,你认为它的位置由哪些条件确定呢?师生活动:教师可以固定直线上某一点旋转直线,引导学生发现:经过一点可以作无数条直线,即过一点不能确定一条直线的位置y k/ \/ ■ 0 \ > 0A / 图1/ \ ® 2 【设计意图】明确探究方向:探索确定直线位置的几何要素.探究2:如图2,在平面直角坐标系中,过点 P i 的不同直线的区别在哪里?师生活动:学生思考,必要时教师可以提示学生观察直线相对于 x 轴的倾斜 程度•【设计意图】引导学生发现过定点的不同直线,其倾斜程度不同•从而发现直线上一点和直线的倾斜程度能确定一条直线•探究3:在直角坐标系中,任何一条直线与 x 轴都有一个相对倾斜度,怎么 描述直线的倾斜程度呢?师生活动:教师板书倾斜角的概念,展示几个倾斜角不同的直线,让学生找 出其倾斜角•【设计意图】探索描述直线的倾斜程度的几何要素,由此引出倾斜角的概念.2. 斜率的概念探究4:在日常生活中,我们有没有碰到过表示倾斜程度的量?师生活动:引导学生在生活中举例,比如,山坡,楼梯等,展示图3和图4.图3图4【设计意图】结合学生的生活经验寻找表示直线倾斜程度的量.让学生体会数学概念来自于日常生活.探究5:日常生活中,我们经常能够用“升高量与前进量的比”表示倾斜面的“坡度” •如果使用“倾斜角”的概念,你认为“坡度”和“倾斜角”有什么关系?由此你认为还可以用怎样的量来刻画直线的倾斜程度?师生活动:教师展示图5,学生思考讨论,教师引导总结并板书斜率概念.【设计意图】探索描述直线的倾斜程度的代数表示,由此引出斜率概念.探究6:是否每条直线都有斜率?倾斜角不同,斜率是否相同?由此可以得到怎样结论?师生活动:根据斜率和倾斜角的关系式,结合图6探究用斜率表示直线的倾斜程度时应该注意的地方•比如:倾斜角为90°的直线没有斜率;倾斜角不是90°的直线都有斜率,倾斜角不同,斜率也不同•【设计意图】沟通数形关系,加深概念理解,明确可以用斜率表示直线的倾斜程度•3.倾斜角和斜率的变化关系探究7:结合图7所示的“几何画板”课件,探究直线的倾斜角和斜率的变化关系.师生活动:教师或学生操作演示“几何画板”课件,观察直线的倾斜角和斜率的变化情况,完成相关问题.探究1:直线的斜率、倾斜角的变化关系点击“点B 运动”的动画按钮,观察直线 00的位置,以及它的斜率和倾斜角的变化。

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明教案说明:本教案旨在帮助学生理解直线的倾斜角与斜率的概念,掌握计算方法,并能应用于解决实际问题。

通过本教案的学习,学生应能理解直线的倾斜角与斜率之间的关系,并能运用斜率计算直线的倾斜角,反之亦然。

教学目标:1. 理解直线的倾斜角的概念。

2. 掌握计算直线的斜率的方法。

3. 理解直线的斜率与倾斜角之间的关系。

4. 能运用直线的斜率和倾斜角解决实际问题。

教学内容:一、直线的倾斜角1. 直线的倾斜角的定义。

2. 直线的倾斜角的计算方法。

二、直线的斜率1. 直线的斜率的定义。

2. 直线的斜率的计算方法。

三、直线的斜率与倾斜角之间的关系1. 斜率与倾斜角的定义及关系。

2. 斜率与倾斜角的计算方法。

四、运用直线的斜率和倾斜角解决实际问题1. 运用斜率和倾斜角计算直线的长度。

2. 运用斜率和倾斜角计算直线的交点。

五、巩固练习1. 计算给定直线的斜率和倾斜角。

2. 解决实际问题,运用直线的斜率和倾斜角。

教学方法:1. 采用直观演示法,通过图形和实例引导学生理解直线的倾斜角和斜率的概念。

2. 采用讲解法,讲解直线的倾斜角和斜率的计算方法。

3. 采用实践法,让学生通过实际问题解决来运用直线的斜率和倾斜角。

教学评估:1. 课堂练习:学生在课堂上完成给定的练习题,检验对直线的倾斜角和斜率的理解和应用能力。

2. 课后作业:布置相关的作业题,巩固学生对直线的倾斜角和斜率的掌握。

3. 考试:设置有关直线的倾斜角和斜率的考试题目,全面评估学生的掌握情况。

教学资源:1. 教学PPT:提供直观的图形和实例,帮助学生理解直线的倾斜角和斜率的概念。

2. 练习题库:提供丰富的练习题,供学生课堂练习和课后作业。

3. 实际问题案例:提供实际问题,供学生解决,运用直线的斜率和倾斜角。

教学步骤:一、直线的倾斜角1. 引入直线的倾斜角的概念,引导学生理解直线的倾斜角的意义。

2. 讲解直线的倾斜角的计算方法,引导学生掌握计算直线的倾斜角的方法。

《直线的倾斜角和斜率》教案(公开课)

《直线的倾斜角和斜率》教案(公开课)

《直线的倾斜角和斜率》教案(公开课)直线的倾斜角和斜率直线的斜率和倾斜角是数学中的重要概念,它们帮助我们理解和描述直线的特性。

本文将介绍直线的倾斜角和斜率的概念,并提供一些实例来帮助读者更好地理解。

1. 斜率的定义和计算方法斜率是直线上的两个点之间纵坐标变化量与横坐标变化量的比值。

用数学符号表示,斜率可以表示为:m = (y₂ - y₁)/(x₂ - x₁)其中,(x₁, y₁)和(x₂, y₂)是直线上的两个点。

例如,有一条直线上的两个点分别为A(1, 2)和B(4, 5),我们可以计算这条直线的斜率:m = (5 - 2)/(4 - 1)= 3/3= 1所以,这条直线的斜率为1。

2. 斜率的特性斜率可以帮助我们判断直线的特性,如下所示:- 当斜率为正数时,直线是向上倾斜的。

斜率越大,直线的倾斜程度越大。

- 当斜率为负数时,直线是向下倾斜的。

斜率越小,直线的倾斜程度越大。

- 当斜率为0时,直线是水平的。

- 当斜率不存在(除数为0)时,直线是垂直的。

通过计算直线的斜率,我们可以快速了解直线的倾斜情况,并对其特性进行分析。

3. 倾斜角的定义和计算方法倾斜角是直线与水平线之间的夹角,用数学符号表示为θ。

对于任意一条直线,可以通过其斜率来计算倾斜角。

倾斜角的计算方法如下:- 当直线向上倾斜时,倾斜角为θ = arctan(m)。

- 当直线向下倾斜时,倾斜角为θ = arctan(m) + π。

- 当直线是水平的时,倾斜角为θ = 0。

- 当直线是垂直的时,倾斜角不存在。

4. 实例分析让我们通过几个实例来进一步理解直线的倾斜角和斜率。

实例一:有一条直线通过点A(-2, 1)和B(4, 9)。

计算直线的斜率和倾斜角。

通过斜率的计算公式,我们可以得到直线的斜率:m = (9 - 1)/(4 - (-2))= 8/6= 4/3接下来,我们可以计算直线的倾斜角:θ = arctan(4/3)实例二:有一条直线通过点C(3, 2)和D(3, 8)。

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 让学生掌握直线的斜率的概念,能够求出直线的斜率。

3. 让学生能够运用直线的倾斜角和斜率解决实际问题。

二、教学内容:1. 直线的倾斜角的概念。

2. 直线的斜率的概念。

3. 直线的倾斜角与斜率的关系。

4. 求直线的倾斜角和斜率的方法。

5. 直线的倾斜角和斜率在实际问题中的应用。

三、教学重点与难点:1. 直线的倾斜角的概念。

2. 直线的斜率的概念。

3. 直线的倾斜角与斜率的关系。

四、教学方法:1. 采用讲解法,讲解直线的倾斜角和斜率的概念。

2. 采用案例分析法,分析直线的倾斜角和斜率在实际问题中的应用。

3. 采用互动教学法,引导学生参与课堂讨论,提高学生的思维能力。

五、教学过程:1. 导入:通过生活中的实例,引导学生思考直线的倾斜角和斜率的概念。

2. 讲解直线的倾斜角和斜率的概念,让学生掌握直线的倾斜角和斜率的定义。

3. 通过案例分析,让学生了解直线的倾斜角和斜率在实际问题中的应用。

4. 互动环节:引导学生参与课堂讨论,探讨直线的倾斜角和斜率的关系。

5. 总结:对本节课的内容进行总结,强调直线的倾斜角和斜率的重要性。

6. 作业布置:布置有关直线的倾斜角和斜率的练习题,巩固所学知识。

说明:本教案根据学生的实际情况,采用讲解法、案例分析法和互动教学法,旨在让学生掌握直线的倾斜角和斜率的概念,并能运用到实际问题中。

在教学过程中,注意启发学生的思维,培养学生的动手能力。

六、教学评估:1. 课堂讲解过程中,观察学生对直线的倾斜角和斜率概念的理解程度。

2. 案例分析环节,观察学生对实际问题中直线倾斜角和斜率的应用能力。

3. 课堂互动环节,评估学生对直线倾斜角和斜率关系的掌握情况。

七、教学反思:1. 课后对学生的作业进行批改,总结学生在直线的倾斜角和斜率方面的掌握情况。

2. 针对学生存在的问题,调整教学方法,以便更好地让学生理解和掌握直线的倾斜角和斜率。

高中数学_3.1 直线的倾斜角与斜率教学设计学情分析教材分析课后反思

高中数学_3.1 直线的倾斜角与斜率教学设计学情分析教材分析课后反思

直线的倾斜角与斜率一、教学内容与目标1、内容:直线的倾斜角、斜率的概念,过两点的直线的斜率公式2、目标:①初步了解解析几何的产生及其意义,初步认识坐标法思想②理解直线倾斜角与斜率的概念③掌握过两点的直线的斜率公式二、知识背景与内容引导1、情境引入:以“爱心”曲线r=a(1-sinθ)为引子,介绍解析几何的产生及其意义,初步认识坐标法思想。

进一步了解解析几何的基本内涵和方法,设计意图:感悟本章的“灵魂”,打好开章之局,统领全局。

为后续的学习探究“埋好暗线”。

2、明确目标:以思想方法为指引,明确本节课的学习目标,开启本节课的探索学习。

我们知道,平面直角坐标系中的点与有序实数对一一对应,那么平面中的图形和怎样的代数对应呢?从本章开始的解析几何就要解决这个问题,把几何问题转化为代数问题,以实现通过代数运算来研究几何图形性质的目的。

问题1:回顾平面几何的学习,我们主要研究了哪些类型的图形?所用的研究方法是什么?设计意图:明确几何与解析几何研究内容的一致,方法的区别。

三、知识探究【一】用倾斜角刻画直线的位置问题2:直线是最简单的几何图形之一,确定一条直线的几何要素是什么?(预设,还有没有其他确定一条直线的方法?)问题3:我们利用直角坐标系进一步确定直线位置的几何要素。

观察下图中经过定点p的直线束,他们的区别是什么?你能利用直角坐标系中的一些元素讲这些直线区分开么?追问:如何表示这些直线的方向?能否利用图中的元素确定它的方向?生成:构建概念倾斜角:追问:你认为直线的倾斜角在什么范围:规定:自主测试1.下列图中表示直线倾斜角为( )3.如图所示,直线l 的倾斜角为()A .45°B .135°C .0°D .不存在3.已知直线l 向上方向与y 轴正向所成的角为30°,则直线l 的倾斜角为__________ 设计意图:正确理解应用倾斜角,明确倾斜角对直线方向的刻画。

【二】推导直线的斜率公式问题4:直线l 的倾斜角刻画了它的倾斜程度,是否还能用其他方法刻画直线的倾斜程度呢?探究:直线l 可由其上任意两点)(),(),,(21222111x x y x P y x P ≠其中唯一确定,可以推断,直线l 的倾斜角一定与21,P P 两点的坐标有内在联系。

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明一、教学目标:1. 理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 掌握直线的斜率与倾斜角的关系,能够计算直线的斜率。

3. 能够运用直线的倾斜角和斜率解决实际问题。

二、教学内容:1. 直线的倾斜角:定义、求法。

2. 斜率与倾斜角的关系:正切函数的应用。

3. 直线的斜率:定义、求法。

4. 实际问题中的应用:求直线的倾斜角和斜率。

三、教学重点与难点:1. 重点:直线的倾斜角的概念、斜率与倾斜角的关系。

2. 难点:直线的斜率的求法、实际问题中的应用。

四、教学方法:1. 采用讲授法,讲解直线的倾斜角和斜率的定义及求法。

2. 利用例题,演示直线的倾斜角和斜率的计算过程。

3. 引导学生运用直线的倾斜角和斜率解决实际问题。

五、教学过程:1. 导入新课:回顾直线的倾斜角和斜率的概念,引导学生思考两者之间的关系。

2. 讲解直线的倾斜角:介绍直线的倾斜角的定义,讲解求法,举例说明。

3. 讲解斜率与倾斜角的关系:引入正切函数,讲解斜率与倾斜角的关系,举例说明。

4. 讲解直线的斜率:介绍直线的斜率的定义,讲解求法,举例说明。

6. 课堂练习:布置练习题,巩固所学知识。

8. 布置作业:布置课后作业,巩固所学知识。

六、教学评估:1. 课堂讲解:评估学生对直线的倾斜角和斜率概念的理解程度,观察学生能否正确求解直线的倾斜角和斜率。

2. 课堂练习:评估学生运用直线的倾斜角和斜率解决实际问题的能力,观察学生是否能够正确计算和应用。

3. 课后作业:评估学生对直线的倾斜角和斜率知识的掌握程度,检查学生是否能够独立完成相关练习。

七、教学反思:1. 反思教学内容:根据学生的学习情况,调整直线的倾斜角和斜率的教学内容,确保学生能够理解和掌握。

2. 反思教学方法:根据学生的反馈,调整教学方法,提高学生的学习兴趣和参与度。

八、教学拓展:1. 直线的倾斜角和斜率在实际应用中的例子:如工程测量、物理学中的运动分析等。

高中数学《直线的倾斜角和斜率》教案

高中数学《直线的倾斜角和斜率》教案一、教学目标1. 理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 掌握直线的斜率与倾斜角的关系,能够计算直线的斜率。

3. 能够运用直线的倾斜角和斜率解决实际问题。

二、教学内容1. 直线的倾斜角的概念2. 直线的斜率与倾斜角的关系3. 直线的倾斜角和斜率的计算4. 直线的倾斜角和斜率在实际问题中的应用三、教学重点与难点1. 教学重点:直线的倾斜角的概念,直线的斜率与倾斜角的关系,直线的倾斜角和斜率的计算。

2. 教学难点:直线的倾斜角和斜率的计算,直线的倾斜角和斜率在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生通过探究直线的倾斜角和斜率的概念及关系,提高学生的思维能力。

2. 利用数形结合法,结合图形讲解直线的倾斜角和斜率,增强学生的直观理解。

3. 通过实例分析,让学生学会运用直线的倾斜角和斜率解决实际问题。

五、教学过程1. 导入:通过复习初中阶段学习的直线的倾斜角的概念,引导学生思考直线的倾斜角与斜率的关系。

2. 新课讲解:(1)讲解直线的倾斜角的概念,介绍直线的倾斜角的定义及求法。

(2)讲解直线的斜率与倾斜角的关系,引导学生理解斜率与倾斜角之间的联系。

(3)讲解直线的倾斜角和斜率的计算方法,让学生掌握计算直线的倾斜角和斜率的技巧。

3. 实例分析:运用直线的倾斜角和斜率解决实际问题,如计算直线的倾斜角和斜率,分析直线在坐标系中的位置等。

4. 课堂练习:布置一些有关直线的倾斜角和斜率的练习题,让学生巩固所学知识。

5. 总结:对本节课的内容进行总结,强调直线的倾斜角和斜率的概念及计算方法。

6. 作业布置:布置一些有关直线的倾斜角和斜率的练习题,让学生课后巩固所学知识。

六、教学策略1. 案例分析:通过分析具体直线图形,让学生理解直线的倾斜角和斜率在实际问题中的应用。

2. 小组讨论:组织学生进行小组讨论,分享各自对直线倾斜角和斜率的理解,互相学习,提高理解。

《直线的倾斜角与斜率》教案及说明

一、教案内容1.1 直线的倾斜角【教学目标】理解直线的倾斜角的概念,掌握求直线倾斜角的方法,能运用直线的倾斜角解决相关问题。

【教学重点】直线的倾斜角的概念,求直线倾斜角的方法。

【教学难点】如何运用直线的倾斜角解决相关问题。

【教学准备】直角坐标系,多媒体设备。

【教学过程】(1)引入:复习直线的斜率概念,引导学生思考直线的倾斜角与斜率的关系。

(2)讲解:介绍直线的倾斜角的概念,讲解求直线倾斜角的方法,结合实例进行演示。

(3)练习:让学生独立完成一些求直线倾斜角的问题,并及时给予反馈和讲解。

(4)应用:引导学生运用直线的倾斜角解决实际问题,如求直线的倾斜角和斜率,判断直线的方向等。

1.2 直线的斜率【教学目标】理解直线的斜率的概念,掌握求直线斜率的方法,能运用直线的斜率解决相关问题。

【教学重点】直线的斜率的概念,求直线斜率的方法。

【教学难点】如何运用直线的斜率解决相关问题。

【教学准备】直角坐标系,多媒体设备。

【教学过程】(1)引入:复习倾斜角的概念,引导学生思考直线的斜率与倾斜角的关系。

(2)讲解:介绍直线的斜率的概念,讲解求直线斜率的方法,结合实例进行演示。

(3)练习:让学生独立完成一些求直线斜率的问题,并及时给予反馈和讲解。

(4)应用:引导学生运用直线的斜率解决实际问题,如判断两直线是否平行或重合,求直线的倾斜角等。

二、教案说明本教案分为两个课时,第一课时讲解直线的倾斜角,第二课时讲解直线的斜率。

在教学过程中,注重让学生通过实例来理解和掌握概念和方法,并在应用环节中引导学生将所学知识运用到实际问题中。

,教案中还提供了丰富的练习题,以便学生巩固所学知识。

六、直线的斜率计算【教学目标】掌握直线斜率的计算方法,能够运用直线的斜率解决实际问题。

【教学重点】直线斜率的计算方法。

【教学难点】如何运用直线斜率解决实际问题。

【教学准备】直角坐标系,多媒体设备。

【教学过程】(1)引入:复习上节课的内容,引导学生思考直线的斜率与倾斜角的关系。

直线的倾斜角和斜率说课稿

大家好我今天讲的课题是:直线的倾斜家与斜率,它是必修2第三章第一节,直线的倾斜角与斜率【点击PPT2】我将从以下六个方面来分析。

【点击PPT3】首先来谈谈教材。

首先来看一下教材的地位与作用。

【点击PPT3】直线与方程是平面解析几何的第一章,从倾斜角到斜率实现了解析几何代数化的过程,初步渗透“坐标法”与数形结合思想方法,用坐标法研究平面上最简单的图形—直线,对数学2中平面解析几何初步内容起到了关键的作用【点击PPT3】。

而且突出用代数方面解决几何问题的过程,强调代数关系的几何意义。

它既能为进一步学习做好知识上的必要准备,又能为今后灵活的应用解析几何的基本思想和方法打好坚实的基础。

【点击PPT4】接下来看一看学情分析,【点击PPT4】。

因为对象是重点中学的普通班的高一同学,所以比较比较活泼,求知欲强,而且已具备了直角坐标系、必修四三角函数的知识,都具备了情感保证和认知基础。

【点击PPT5】接着先对第一节即直线的倾斜角与斜率得内容作简要的分析【点击5】本节分为两个部分组成,倾斜角与斜率,斜率公式。

教材中首先结合具体图形提出确定直线位置几何要素,可以是一个点与直线的方向,从而导出倾斜角的概念。

进而建立直线斜率的概念,从而实现了直线的方向也可以说是直线的斜率这一几何的属性进而向斜率这一代数的属性的转化,最后推导出经过两点的斜率公式,这些内容都充分体现解析几何的思想和方法【点击PPT6】于是我确定了本节的教学重点和难点,重点是斜率的概念,用代数方法刻画直线斜率的过程,过两点的直线斜率的计算公式。

难点是直线的倾斜角概念形成,斜率公式的建构。

其次谈谈本节教学目标的确定和分析【点击PPT7】:在平面直角坐标系中,结合具体图形探索确定直线位置的几何要素;理解直线的斜率和倾斜角的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。

课程标准为本节的教学目标制定了如下三点【点击PPT8】:对课表要求的细化分为两个部分:1、基本要求;2、发展要求【点击PPT9】基本要求:1、理解直线的倾斜角的定义,知道直线倾斜角的范围;2、理解直线的斜率,掌握直线的斜率,掌握过两点直线的斜率公式;3、掌握直线的斜率和倾斜角之间的关系,能由直线的斜率求出直线的倾斜角,也能由直线的倾斜角求出直线的斜率(斜率存在的条件下);【点击PPT10】发展要求:1、掌握直线斜率和倾斜角之间的关系;2、让学生初步体验解析几何研究问题的方法和特点。

《直线的倾斜角与斜率》教案及说明

《直线的倾斜角与斜率》教案及说明一、教学目标1. 理解直线的倾斜角的概念,能够求出直线的倾斜角。

2. 掌握直线的斜率与倾斜角的关系,能够计算直线的斜率。

3. 能够运用直线的倾斜角和斜率解决实际问题。

二、教学内容1. 直线的倾斜角的概念:直线与x轴正方向所成的角称为直线的倾斜角。

2. 直线的斜率与倾斜角的关系:直线的斜率k等于tan(倾斜角)。

3. 直线的斜率的计算:给定直线的倾斜角,可以计算出直线的斜率。

三、教学方法1. 采用讲解法,讲解直线的倾斜角的概念和斜率与倾斜角的关系。

2. 采用例题解析法,通过例题讲解如何计算直线的斜率。

3. 采用练习法,让学生通过练习题巩固所学知识。

四、教学步骤1. 导入新课:通过提问方式引导学生回顾初中阶段学习的直线倾斜角的概念。

2. 讲解直线的倾斜角的概念,解释斜率与倾斜角的关系。

3. 讲解直线的斜率的计算方法,并通过例题进行讲解。

4. 布置练习题,让学生巩固所学知识。

五、教学评价1. 课堂讲解:评价学生对直线倾斜角的概念和斜率与倾斜角的关系的理解程度。

2. 练习题:评价学生运用直线的倾斜角和斜率解决问题的能力。

说明:本教案分为五个部分,包括教学目标、教学内容、教学方法、教学步骤和教学评价。

在教学过程中,要注意引导学生理解直线的倾斜角的概念,掌握斜率与倾斜角的关系,并通过练习题让学生巩固所学知识。

教案中的教学内容可以根据实际情况进行调整。

六、教学拓展1. 讨论斜率的正负性:解释当倾斜角大于45度时,斜率为正;小于45度时,斜率为负。

2. 探究斜率与倾斜角的关系:引导学生通过绘制不同倾斜角的直线,观察斜率的变化。

七、实际应用1. 生活实例:举例说明直线的倾斜角和斜率在生活中的应用,如建筑物的屋顶斜率、道路的坡度等。

2. 数学应用:引导学生运用直线的倾斜角和斜率解决数学问题,如计算直线与坐标轴的交点、直线的方程等。

八、课堂小结1. 回顾本节课所学的内容,强调直线的倾斜角的概念和斜率与倾斜角的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线的倾斜角与斜率●三维目标1.知识与技能(1)理解直线的倾斜角和斜率概念.(2)经历用代数方法刻画直线斜率的过程,掌握过两点的直线的斜率公式.2.过程与方法(1)探索确定直线位置的几何要素,感受倾斜角这个反映倾斜程度的几何量的形成过程.(2)通过教学,使学生从生活中坡度的概念自然迁移到数学中直线的斜率,感受数学概念来源于生活实际,数学概念的形成是自然的,从而渗透辩证唯物主义思想.(3)充分利用倾斜角和斜率是从数与形两方面刻画直线相对于x轴倾斜程度的两个量这一事实,渗透数形结合思想.3.情感、态度与价值观(1)通过对直线倾斜角的概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.(2)通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合的思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.●重点难点重点:直线的倾斜角、斜率的概念和公式.难点:倾斜角与斜率的关系及斜率公式的导出过程.重难点突破:以确定直线位置的几何要素为切入点,通过让学生“实验——猜想——操作——定义”四个环节,给出直线倾斜角的概念,重点之一得以解决;然后从学生熟知的概念“坡角”入手,充分利用学生已有的知识,引导学生把这个同样用来刻画倾斜程度的量与倾斜角联系起来,并通过坡度的计算方法,引入斜率的概念,难点之一得以解决;对于斜率公式的导出过程,教学时可采用数形结合及分类讨论思想,化几何问题为代数运算,从而化难为易,突破难点.●教学建议鉴于本节知识概念抽象、疑难点较多的特点,教学时,可采用观察发现、启发引导、探索实验相结合的教学方法,把概念化抽象为直观,突出概念的形成过程,另在直线斜率公式教学的导出过程中,应渗透几何问题代数化的解析几何研究思想.引导学生将直线的位置问题(几何问题)转化为倾斜角问题,进而转化为倾斜角的正切即斜率问题(代数问题)进行解决,使学生进一步体会“数形结合”的思想方法.●教学流程创设问题情境,引出问题:确定直线位置的几何要素是什么?⇒引导学生通过实验、观察、思考形成倾斜角的概念教学,进而得出确定直线位置的几何要素.⇒通过引导学生回答所提问题理解斜率的概念及斜率与倾斜角的关系,导出斜率公式.⇒通过例1及其变式训练,使学生理解直线的倾斜角的概念.⇒通过例2及其变式训练,使学生掌握直线的斜率公式.⇒借助直线的斜率公式及倾斜角的内在联系,完成例3及其变式训练,使学生的知识进一步深化.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读1.理解直线的倾斜角与斜率的概念.(重点) 2.掌握倾斜角与斜率的对应关系.(难点、易错点) 3.掌握过两点的直线的斜率公式.(重点)直线的倾斜角【问题导思】1.在平面直角坐标系中,只知道直线上的一点,能不能确定一条直线呢?【提示】不能.2.在平面直角坐标系中,过定点P(2,2)的四条直线如图所示,每条直线与x轴的相对倾斜程度是否相同?【提示】不同.1.倾斜角的定义(1)当直线l与x轴相交时,取x轴作为基准,x轴正方向与直线l向上方向之间所成的角α叫做直线l的倾斜角.(2)当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. 2.倾斜角的范围直线的倾斜角α的取值范围为0°≤α<180°.3.确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点及它的倾斜角.直线的斜率与倾斜角的关系【问题导思】如图(1)(2),在日常生活中,我们常用“升高量与前进量的比”表示“坡度”.1.上图(1)(2)中的坡度相同吗? 【提示】 不同,因为32≠22.2.上图中的“坡度”与角α,β存在等量关系吗?【提示】 存在,图(1)中,坡度=tan α,图(2)中坡度=tan β. 1.直线的斜率把一条直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k 表示,即k =tan_α.2.斜率与倾斜角的对应关系图示倾斜角 (范围) α=0°0°<α<90°α=90°90°<α<180°斜率 (范围) 0k >0不存在 k <0过两点的直线的斜率公式直线过两点P 1(x 1,y 1),P 2(x 2,y 2),其斜率k =y 2-y 1x 2-x 1(x 1≠x 2).直线的倾斜角的理解设直线l过坐标原点,它的倾斜角为α,如果将l绕坐标原点按逆时针方向旋转45°,得到直线l1,那么l1的倾斜角为()A.α+45°B.α-135°C.135°-αD.当0°≤α<135°时,倾斜角为α+45°;当135°≤α<180°时,倾角为α-135°【思路探究】画出图象辅助理解,由于条件中未指明α的范围,所以需综合考虑α的可能取值,以使旋转后的直线的倾斜角在大于或等于0°而小于180°的范围内.【自主解答】根据题意,画出图形,如图所示:因为0°≤α<180°,显然A,B,C未分类讨论,均不全面,不合题意.通过画图(如图所示)可知:当0°≤α<135°,l1的倾斜角为α+45°;当135°≤α<180°时,l1的倾斜角为45°+α-180°=α-135°.故选D.【答案】 D1.解答本题要注意根据倾斜角的概念及倾斜角的取值范围解答.2.求直线的倾斜角主要根据定义来求,其关键是根据题意画出图形,找准倾斜角,有时要根据情况分类讨论.求直线的斜率求经过下列两点直线的斜率,并根据斜率指出其倾斜角.(1)(-3,0),(-2,3);(2)(1,-2),(5,-2);(3)(3,4),(-2,9);(4)(3,0);(3,3).【思路探究】依据直线的斜率公式求解,注意公式使用的条件.【自主解答】(1)直线的斜率k=3-0-2-(-3)=3=tan 60°,此直线的斜率为3,倾斜角为60°.(2)直线的斜率k =-2+25-1=0,此直线的斜率为0,故倾斜角为0°.(3)直线的斜率k =9-4-2-3=-1=tan 135°,此直线的斜率为-1,倾斜角为135°.(4)因为两点的横坐标都为3,故直线斜率不存在,倾斜角为90°.已知A (x 1,y 1),B (x 2,y 2)两点,求直线AB 斜率和倾斜角的步骤: (1)当x 1=x 2时,直线斜率不存在,其倾斜角为90°;(2)当x 1≠x 2时,直线的斜率k =y 2-y 1x 2-x 1,倾斜角α利用k =tan α求得.斜率与倾斜角的应用已知某直线l 的倾斜角α=45°,又P 1(2,y 1),P 2(x 2,5),P 3(3,1)是此直线上的三点,求x 2,y 1的值.【思路探究】 直线l 的倾斜角已知可以求出其斜率且P 1、P 2、P 3均在直线l 上,故任两点的斜率均等于直线l 的斜率,从而可以解出x 2,y 1的值.【自主解答】 ∵α=45°, ∴直线l 的斜率k =tan 45°=1, ∵P 1,P 2,P 3都在直线l 上, ∴kP 1P 2=kP 2P 3=k . ∴5-y 1x 2-2=1-53-x 2=1, 解之得:x 2=7,y 1=0.用斜率公式可解决三点共线问题:如果三点A (2,1),B (-2,m ),C (6,8)在同一条直线上,求m 的值. 【解】 k AB =m -1-2-2=1-m 4,k AC =8-16-2=74.∵A 、B 、C 三点共线,∴k AB =k AC .即1-m 4=74,∴m =-6.因忽略直线斜率不存在的情况致误求经过A (m,3),B (1,2)两点的直线的斜率,并指出倾斜角α的取值范围. 【错解】 由斜率公式可得k =3-2m -1=1m -1.①当m >1时,k =1m -1>0,所以直线的倾斜角α的取值范围是0°<α<90°. ②当m <1时,k =1m -1<0,所以直线的倾斜角α的取值范围是90°<α<180°.【错因分析】 在上述解题过程中遗漏了m =1的情况,当m =1时,斜率不存在. 【防范措施】 斜率公式k =y 2-y 1x 2-x 1的适用前提条件为x 1≠x 2,因此在含字母的点的坐标中,需计算直线的斜率时,要保证斜率公式有意义.【正解】 当m =1时,直线的斜率不存在,此时直线的倾斜角α=90°. 当m ≠1时,由斜率公式可得k =3-2m -1=1m -1.①当m >1时,k =1m -1>0,所以直线的倾斜角α的取值范围是0°<α<90°. ②当m <1时,k =1m -1<0,所以直线的倾斜角α的取值范围是90°<α<180°.1.倾斜角是一个几何概念,它直观地描述并表现了直线对于x 轴正方向的倾斜程度. 2.直线的斜率是直线倾斜角的正切值,但两者并不是一一对应关系.学会用数形结合的思想分析和理解直线的斜率同其倾斜角的关系.3.运用两点P 1(x 1,y 1),P 2(x 2,y 2)求直线斜率k =y 2-y 1x 2-x 1应注意的问题:(1)斜率公式与P 1,P 2两点的位置无关,而与两点横、纵坐标之差的顺序有关(即x 2-x 1,y 2-y 1中x 2与y 2对应,x 1与y 1对应).(2)运用斜率公式的前提条件是“x 1≠x 2”,也就是直线不与x 轴垂直,而当直线与x 轴垂直时,直线的倾斜角为90°,斜率不存在.。

相关文档
最新文档