生物学基础异养微生物生物氧化与呼吸作用

合集下载

微生物学教案

微生物学教案

微生物学教案绪论教学目的和要求:掌握微生物和微生物学的概念及微生物所包括的主要类群;了解微生物在生物界的分类地位、微生物学发展历史以及微生物学发展的奠基人,了解研究微生物的重要意义。

一、微生物的特点二、微生物的研究对象三、微生物学的发展简史四、微生物与人类的关系五、现代微生物学的发展第一章原核生物的形态、构造和功能教学目的和要求:掌握细菌、放线菌、蓝细菌、立克次氏体、支原体、衣原体的形态结构及其功能。

重点:掌握原核生物特点,以细菌为代表的结构特征、基本结构中细胞壁肽聚糖结构和组成,细菌特殊结构芽孢、荚膜和鞭毛的组成、结构和功能。

难点:肽聚糖的结构。

第一节细菌一、细菌的形态构造及其功能(一)形态和染色(二)构造及其功能1、基本结构细胞壁、细胞膜、原核、细胞质及内含物2、特殊结构糖被、鞭毛、芽孢、菌毛(三)细菌的繁殖二、细菌的群体形态1、在固体培养基上(内)的群体形态2、在半固体培养基上(内)的群体形态3、在液体培养基上(内)的群体形态第二节放线菌一、放线菌的形态构造二、放线菌的繁殖三、放线菌的群体特征第三节蓝细菌第四节支原体、立克次氏体和衣原体一、支原体二、立克次氏体三、衣原体第二章真核微生物的形态、构造和功能教学目的和要求:比较原核生物和真核生物的区别,了解真核微生物的形态结构及繁殖方式,比较几大类微生物的菌落特征。

重点和难点:酵母菌的生活史第一节真核微生物概述第二节酵母菌一、分布及与人类的关系二、细胞的形态和构造三、繁殖方式、生活史和菌落特征第三节丝状真菌——霉菌一、分布及与人类的关系二、细胞的形态和构造三、真菌的孢子四、霉菌的菌落第三章病毒和亚病毒教学目的和要求:掌握病毒的特点,形态结构,繁殖方式,了解不同病毒种类与人、动植物的关系,掌握亚病毒的特点。

重点和难点:病毒的结构及复制方式。

第一节病毒一、病毒的形态结构和化学成分二、4类病毒及其繁殖方式1、噬菌体2、植物病毒3、动物病毒和昆虫病毒第二节亚病毒一、类病毒二、拟病毒三、朊病毒第四章微生物的营养和培养基教学目的和要求:了解微生物的营养要求,微生物进入细胞的方式,微生物的营养类型以及培养基的配制原则和培养基的种类等知识。

第五章 微生物的代谢

第五章 微生物的代谢

为混合酸发酵。
EMP
葡萄糖
乳酸、乙酸、甲酸 丙酮酸 乙醇 、CO2 、H2 琥珀酸
五 丙酮-丁醇发酵
——严格厌氧菌进行的唯一能大规模生产的发酵产 品。(丙酮、丁醇、乙醇混合物,其比例3:6:1)
——丙酮丁醇梭菌(Clostridium acetobutyricum
2丙酮酸 2乙酰-CoA
缩合
乙酰-乙酰 CoA
• 为细胞生命活动提供ATP 和 NADH • 是连接其它几个重要代谢途径的桥梁 • 为生物合成提供多种中间代谢物
2. HM途径(磷酸戊糖支路, 单磷酸己糖途径)
ATP 12NADPH+H+ 36ATP 35ATP
6C6
6C5
经过系列反应后合成己糖 6CO2
5C6
C6为己糖或己糖磷酸;C5为核酮糖-5-磷酸;打方框的为终产物; NADPH+H+必须先由转氢酶将其上的氢转到NAD+上并变成 NADPH+H+后,才能进入呼吸链产ATP;
NADH + H+ NAD+
•异型乳酸发酵途径:肠膜明串珠菌,短乳杆菌
PK/ HK
葡萄糖
乳酸 + 乙醇 + CO2 + 1ATP
•双岐发酵途径:双岐杆菌
PK/ HK 葡萄糖 乳酸 + 乙酸 + CO2 + 2.5ATP
三 丙酸发酵(丙酸细菌,厌氧菌)
葡萄糖
EMP
丙酮酸
丙酸
乳酸
四 混合酸发酵
由于代谢产物中含有多种有机酸,故将其称
生活在盐湖及海边的岩池等盐浓度很高环境
胞内积累高浓度的甘油从而使细胞的渗透压保持平衡

第十五单元——第五章微生物代谢(二)

第十五单元——第五章微生物代谢(二)
第六章
微生物的代谢
二、糖的合成代谢 1. 糖合成的能量来源
包括:化能异养型、化能自养和光能营养微生物的生 物氧化和产能
(1)化能异养型微生物的生物氧化和产能 糖的分解代谢所产生的能量都可以用于糖的生物合 成,本节第一部分已经介绍过。 此外,某些化能异养微生 物(如Closterdium sporogenes 生孢梭菌)能利用一些氨基 酸同时当作碳源、氮源和能源。
嗜盐菌紫膜的光合作用特点:
无O2条件下进行;
不产O2; 最简单的光合磷酸化反应; 无叶绿素和细菌叶绿素,光合色素是紫膜上的 视紫红质。
生物合成三要素(简单小分子, ATP,NADPH) 如何获得?
氧化磷酸化:好氧菌,兼性厌氧菌 底物水平磷酸化:厌氧菌,兼性厌氧菌 光合磷酸化:光合微生物 HMP:化能异养型 耗ATP逆电子链传递:化能自养型, 紫色和绿色光合细菌 光合作用(非循环光合磷酸化):蓝细菌 异养型:从环境中吸取 自养型:同化CO2
红色部分(红膜)
嗜盐菌 细胞膜 主要含细胞色素和黄素蛋白等用于氧化磷酸化的呼吸链载体
紫色部分(紫膜) 在膜上呈斑片状(直径约0.5 mm)独立分布,其总面积约占 细胞膜的一半,主要由细菌视紫红质组成。
实验发现,在波长为550-600 nm的光照下,嗜盐菌ATP的合成速率 最高,而这一波长范围恰好与细菌视紫红质的吸收光谱相一致。
(1)自养微生物的CO2固定
1)Calvin循环(Calvin cycle)
循环中特有酶:磷酸核酮糖激酶和核酮糖羧化酶。循环分三个阶段 : ①羧化反应 (核酮糖-1,5-二磷酸通过核酮糖羧化酶将CO2固定,转变为 2个甘油酸-3-磷酸,重复3次,产生6个C3化合物 ) ②还原反应(甘油酸-3-磷酸被还原成甘油醛-3-磷酸 ) ③CO2受体的再生 (1个甘油醛-3-磷酸逆EMP途径生成葡萄糖,其余5 个再生出3个核酮糖-1,5-二磷酸分子,以便重新接受CO2分子 )。

微生物的能量代谢

微生物的能量代谢

微生物的能量代谢微生物进行生命活动需要能量,这些能量的来源主要是化学能和光能。

那么自然界的能量是怎样转变成微生物可利用的形式? 能量是如何被利用的? 这些都是微生物能量代谢的基本问题。

一、细胞中的氧化还原反应与能量产生物质失去电子称为氧化,含有氢的物质在失去电子的同时伴随着脱氢或加氧。

物质获得电子称为还原,在获得电子的同时可能伴随着加氢或脱氧。

可见氧化和还原是两个相反而偶联的反应,二者不能分开独立完成,即一物质的氧化必然伴随着另一物质的还原,称为氧化还原反应,可以表示为:AH2→2H++2e+A(氧化)B+2H++2e→BH2 (还原)AH2+B←→A+BH2(氧化还原)在氧化还原反应中,凡是失去电子的物质称为电子供体;得到电子的物质称为电子受体。

如还伴随有氢的转移时则称为供氢体和受氢体。

上式中AH2就是电子供体(或供氢体),B是电子受体(或受氢体)。

实际上,生物体内发生的许多反应都是氧化还原反应。

生物氧化是物质在生物体内经过一系列连续的氧化还原反应逐步分解并放出能量的过程。

其中有机化合物的氧化还原反应是生物氧化的主要形式,在此过程中都包含有氢和电子的转移,称为脱氢作用。

各种基质给出电子而被氧化和接受电子而被还原的趋势是不同的,这种趋势称为基质的还原势(reduction potential),用E0',表示,以伏(V)或毫伏(mV)为单位。

在电化学上还原势以基质H2作参比而测定,因而各种物质的还原势可以相互比较。

按规定还原剂(电子供体)写在反应式的左边。

在pH:7时,氢和氧的还原势分别为:2H++2e→H2E0'=-421mV1/2O2+2H++2e-→H2O E0'=+816mV在细胞内进行的氧化还原反应中,电子从最初供体转移到最终受体,一般都需经由中间载体(电子传递体),全反应过程的净能量变化决定于最初供体和最终受体之间还原势之差。

在分解代谢中,电子供体一般就是指能源,当电子供体与电子受体偶联起来发生氧化还原反应时能释放出能量,两个相偶联(氧化一还原分子对,或称O--R对)的反应之间还原势相差愈大,释放的能量就愈多。

微生物名词解析

微生物名词解析

1、微生物:一般用肉眼看不清楚的生物。

2、微生物学:研究肉眼难以看清的称之为微生物的生命活动的科学,分离和培养这些微小生物需要特殊技术。

6、自生学:认为一切生命能够从无生命的物质自然产生。

7、SARS:由冠状病毒引起的严重呼吸道综合症。

8、巴斯德消毒法:用较低温度抑制食品中微生物生长而延长其保存期的措施。

1、聚-β-羟丁酸:某些细菌形成的内含物,由许多羟基丁酸分子聚合而成,具贮藏能量、碳源和降低细胞内渗透压的作用。

2、异染粒:又称迂回体或换转菌素,是无机偏磷酸盐的聚合物,具有贮藏磷元素和能量的功能。

在白喉棒杆菌和结核分枝杆菌中易见到异染粒。

3、羧酶体:存在于一些自养细菌细胞内的多角形或六角形内含物,内含1,5一二磷酸核酮糖羧化酶,在自养细菌的CO2固定中起着关键作用。

4、芽孢:某些细菌在其生长发育后期,在细胞内形成的一个圆形或椭圆形、厚壁、含水量极低、抗逆性(抗热、化学药物、辐射等)极强的休眠体。

5、伴孢晶体:少数芽孢杆菌,如Bacillus thuringiensis(苏云金芽孢杆菌)在形成芽孢的同时,会在芽孢旁形成一个菱形或双锥形的碱溶性蛋白晶体(即δ内毒素)称为伴胞晶体。

它的干重可达芽孢囊的约30%,由18种氨基酸组成,大小约0.6*2.0μm。

伴胞晶体对200多种昆虫尤其是鳞翅目昆虫的幼虫有毒杀作用,因此可以用做生物农药。

6、糖被:指包被于某些细菌细胞壁外的一层厚度不定的胶状物质。

糖被有数种:①形态固定、层次厚的为荚膜。

②形态固定、层次薄的为微荚膜。

③形态不固定、结构松散的为粘液层。

④包裹在细胞群体上有一定形态的糖被称菌胶团。

1、真核微生物——凡是细胞核具有核膜、细胞能进行有丝分裂、细胞质中存在线粒体或同时存在叶绿体等细胞器的生物,称真核生物。

微生物中的真菌、显微藻类原生动物和地衣均属于真核生物,故可称为真核微生物。

2、微生物多样性——生物多样性包括遗传多样性、物种多样性和生态多样性等,微生物多样性是微生物多样性的重要组成部分,而且有其独特之处,起着不可替代的作用。

微生物的代谢与调节

微生物的代谢与调节

分解代谢的三个阶段
将大分子的营养物质降解成氨基酸、单糖、脂 肪酸等小分子物质。 进一步降解成为简单的乙酰辅酶A、丙酮酸、 及能进入TCA循环的中间产物。 将第二阶段的产物完全降解生成CO2 , 并将 前面形成的还原力(NADH2)通过呼吸吸链氧 化、 同时形成大量的ATP。

合成代谢和分解代谢的关系
CH2OH
6-磷酸-葡糖酸
CH2OH
5-磷酸-核酮糖
H- C=O H-C-OH H-C-OH H-C-OH CH2OP
HMP 途径
无氧
C=O HO-C-H H-C-OH H-C-OP H
C=O H-C-OH H-C-OH H-C-OP H
5-磷酸-木酮糖
5-磷酸-核酮糖
5-磷酸-核糖 3-磷酸-甘油醛
b :产能阶段
底物水平磷酸化
丙酮酸
ADP ATP
CH2OH OH HO OH OH
o
ATP ADP
CH2OP HO OH
NADH+H+ NAD(P)+
o
CH2OP OH
NADH+H+ NAD(P)+
CH2OH
o
COOH
OH OH
HO
OH
葡萄糖
C=O H-C-OH H-C-OH D CH2OP
6-磷酸-葡萄糖
氧化磷酸化
电子传递
2H+ 递氢体 NAD FAD Q 还原态细胞色素-H2 1/2O
2
基质-H2
细胞色素bca1a3 氧化态细胞色素 氧化酶 H2O
基质
递氢体-H2 脱氢酶
呼吸链respiratory chain 电子传递连 electron transport chain

微生物的能量代谢


广。如戌糖可用作碳源。
3. ED 途径
ED途径是在研究嗜糖假单孢菌时发现的另一条分解 葡萄糖形成丙酮酸和3-磷酸甘油醛的途径。少数EMP途径 不完整的细菌所特有的利用葡萄糖的替代途径。
1分子葡萄糖经ED途径最后生成2分子丙酮酸、1分子 ATP、1分子NADPH和1分子NADH。 ED途径可不依赖于EMP和HMP途径而单独存在。
ED途径的意义
ED途径可与EMP、HMP和TCA等相连接,因此可相互协 调,以满足微生物对能量、还原力和各种中间代谢产物的 需求。细菌酒精发酵:运动发酵单胞菌(Zymomonas mobilis),微好氧从丙酮酸到乙醇。
具有ED途径的细菌
在G-细菌中分布广泛,如假单胞菌属、根瘤菌、固氮菌, 很少有革兰氏阳性细菌有这条途径。
底物脱氢
•递氢与受氢
–EMP途径
–HMP途径 –ED途径 –TCA循环
–呼吸
–无氧呼吸 –发酵
(一)底物脱氢的四条主要途径
生物体内葡萄糖作为生物氧化的典型底物,主要 分为四种途径脱氢: 1. EMP途径:主要产物、特点、意义 2. HMP途径:主要产物、特点、意义 3. ED途径:主要产物、特点、意义 4. TCA循环:主要产物、特点、意义
HMP 途径
5-磷酸-木酮糖
5-磷酸-木酮糖 6-磷酸-景天庚酮糖
6-磷酸-果糖 6-磷酸-葡萄糖
5-磷酸-核酮糖
5-磷酸-核酮糖
3-磷酸-甘油醛 4-磷酸-赤藓糖 6-磷酸-果糖 6-磷酸-葡萄糖
5-磷酸-核糖
5-磷酸-核糖
3-磷酸-甘油醛
HMP途径的三个阶段
从6-磷酸-葡萄糖开始,通过几步氧化反应产生核酮糖-5-磷酸和二氧化 碳。 核酮糖-5-磷酸发生结构变化形成核糖-5-磷酸和木酮糖-5-磷酸。 几种戊糖磷酸在没有氧参与的条件下发生碳架重排,产生了己糖磷酸 和丙糖磷酸,丙糖磷酸可通过EMP途径转化成丙酮酸再进入TCA循环

第六章微生物代谢


TCA循环的重要特点
为糖类、脂类、蛋白质三大物质转化中心枢纽。 循环中的某些中间产物是一些重要物质生物合成的前体; 生物体提供能量的主要形式; 为人类利用生物发酵生产所需产品提供主要的代谢途径。如 柠檬酸发酵;Glu发酵等。
(二)递氢和受氢 经过上述4条途径脱氢后,通过呼吸链等方式 传递,最终可与氧、无机氧或有机物等氢受体相结
2、HMP途径
磷酸戊糖进一步代谢有两种结局:
①磷酸戊糖经转酮—转醛酶系催化,又生成磷酸己糖 和磷酸丙糖(3-磷酸甘油醛),磷酸丙糖借EMP途径 的一些酶,进一步转化为丙酮酸。称为不完全HMP途 径。
②由六个葡萄糖分子参加反应,经一系列反应,最后 回收五个葡萄糖分子,消耗了1分子葡萄糖(彻底氧化 成CO2 和水),称完全HMP途径。
CO2、H2O 还原型中间代谢 产物醇、酸 NO2、N2 次之 少
电子传递链
完整
不完整
无,底物水平磷 酸化
二、自养微生物产ATP和产还原力 按能量来源不同可分为:
化能自养型
光能自养型
(一)化能自养微生物 还原CO2所需要的ATP和[H]是通过氧化无机物而获得的
硝化细菌、铁细菌、硫细菌、氢细菌
自养微生物氧化磷酸化效率低
葡萄糖 磷酸二羟丙酮
②异型乳酸发酵
乙醇
ATP ADP NAD+ NADH
乙醛
乙酰CoA
NAD+ NADH
乙酰磷酸
葡萄糖
6-磷酸 葡萄糖
6-磷酸葡 5-磷酸 萄糖酸 -CO2 木酮糖 3-磷酸 -2H 甘油醛
2ADP 2ATP
乳酸
(3)Stickland反应
1934年Stickland发现Closterdium sporogenes(生孢梭菌)能 利用一些氨基酸同时作为碳源、氮源和能源, 以一种氨基酸作供氢体,以另一种氨基酸作为受氢体而实现 产能的独特发酵类型。 CH3 CHNH2 + 2 CH2NH2 COOH ADP+Pi

(生物科技行业)武汉大学微生物教学提纲

第五章微生物的代谢
第一节代谢概论
第二节微生物产能代谢
一、生物氧化
二、异养微生物的生物氧化
1.发酵
2.呼吸作用
(1)有氧呼吸
(2)无氧呼吸
三.自养微生物的生物氧化
1.氨的氧化
2.硫的氧化
3.铁的氧化
4.氢的氧化
四.能量转换
1.底物水平磷酸化
2.氧化磷酸化
3.光合磷酸化
1)环式光合磷酸化
2)非环式光合磷酸化
思考题
试结合一步生长曲线分析病毒的特点,并与细菌进行比较。
第八章微生物遗传
第一节遗传的物质基础
一、DNA作为遗传物质
二、RNA作为遗传物质
三、朊病毒的发现与思考
第二节微生物的基因组结构
一、概念:
二、微生物与人类基因组计划:
三、微生物基因组结构的特点:
1、原核生物(细菌、古生菌)的基因组
2、真核微生物(啤酒酵母)的基因组
第七章病毒
第一节概述
一、病毒的发现和研究历史
二、病毒的特点和定义
1、特点
2、定义
三、病毒的宿主范围
四、病毒的培养和纯化
1、病毒的培养
2.病毒纯化
第二节毒粒的性质
一、毒粒的形态结构
1.病毒的大小和形状
2.毒粒的壳体结构
3.病毒的包膜结构
4.毒粒的结构类型
二、毒粒的化学组成
1.病毒的核酸
2、病毒的蛋白质
四、拮抗
五、竞争
六、捕食
第三节微生物在生态系统中的作用
一、微生物在生态系统中的地位
思考题:
1、试从微生物的特点分析其分布比动植物更广泛的原因,为什么无菌操作技术是一切微生物学工作的基础?

微生物学

绪论1.微生物的五大共性:体积小,面积大;吸收多,转化快;生长旺,繁殖快;适应强,易变异;分布广,种类多。

原核生物形态构造功能1.狭义的细菌是指一类细胞细短(直径约0.5μm,长度0.5~5μm)、结构简单、胞壁坚韧、多以二分裂方式繁殖和水生性较强的原核生物;广义的细菌则是指所有的原核生物。

2.子)和化学组分简单,一般含60~95%肽聚糖和10~30%磷壁酸。

3)G-细菌的细胞壁:G-细菌的细胞壁特点是厚度较G+细菌薄,层次较多,成分较复杂,肽聚糖层很薄(仅2~3μm),故机械强度较G+细菌弱。

外膜(又称“外壁”)是G-细菌细胞壁所特有的结构,他位于壁的最外层,化学成分为脂多糖、磷脂和若干种外膜蛋白。

在G-细菌中,其外膜与细胞膜间的狭窄胶质空间(12~15μm)称周质空间,其中存在着多种周质蛋白,包括水解酶类、合成酶类和运输蛋白等。

5)革兰氏染色的机制:通过结晶紫初染后,在细菌的细胞壁以内可以形成不溶于水的结晶紫和碘的复合物。

G+细菌由于其细胞壁较厚、肽聚糖网层次多和交联致密,故遇脱色剂乙醇(或丙酮)处理时,因失水而使网孔缩小,再加上它不含类脂,故乙醇的处理不会溶出缝隙,因此能把结晶紫和碘的复合物牢牢留在壁内,使其保持紫色。

反之,G-细菌因其细胞壁薄、外膜层类脂含量高,肽聚糖层薄和交联度差,遇脱色剂乙醇后,以类脂为主的外膜迅速溶解,这时薄而松散的肽聚糖网不能阻挡结晶紫与碘复合物的溶出,因此细胞退成无色。

这时,再经沙黄等红色染料复染,就使G-细菌呈现红色,而G+细菌则保留最初的紫色(实为紫色加红色)。

3.细胞膜结构、功能P244.糖被是指包被于某些细菌细胞壁外的一层厚度不定的透明胶状物质。

糖被的成分一般是多糖,少数是蛋白质多多肽,也有多糖和多肽复合型的。

糖被按其有无固定层次、层次厚薄又可细分为荚膜、微荚膜、粘液层和菌胶团等。

5.某些细菌在其生长发育后期,在细胞内形成的一个圆形或椭圆形、厚壁、含水量低、抗逆性强的休眠构造,成为芽孢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档