第4讲 电磁场的能量与动量

高中物理公式大全(全集) 八、动量与能量

八、动量与能量 1.动量 2.机械能 1.两个“定理” (1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p ) (2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k ) 动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化. 例如,质量为m 的小球以速度v 0与竖直方向成θ角 打在光滑的水平面上,与水平面的接触时间为Δt ,弹起 时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则 在Δt 内: 以小球为研究对象,其受力情况如图所示.可见小球 所受冲量是在竖直方向上,因此,小球的动量变化只能在 竖直方向上.有如下的方程: F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ) 小球水平方向上无冲量作用,从图中可见小球水平方向动量不变. 综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方 面考虑了.Δt 内应用动能定理列方程:W 合=m υ02/2-m υ02 /2 =0 2.两个“定律” (1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零 公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′ (2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功 公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k 3.动量守恒定律与动量定理的关系 一、知识网络 二、画龙点睛 规律

动量和能量结合综合题附答案解析

动量与能量结合综合题 1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则()A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

动量和能量综合专题

动H和能H综合例析 例1、如图,两滑块A、B的质量分别为m i和m2, 皇8 . 置丁光滑的水平■面上,A、B问用一劲度系数7 77 // [/ 为K的弹簧相连。开始时两滑块静止,弹簧为原长。一质量为m的子弹以速度V 0沿弹簧长度方向射入滑块A并留在其中。试 求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量);(2)滑块B相对丁地面的最大速度和最小速度。 【解】(1 )设子弹射入后A的速度为V】,有: V1 = — m V o= ( m + m i) Vi (1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: )V (2) (m + m 1) Vi = (m + m i + m 2 十= -^(m + mj + 十 (2) mVo= (m + m 1) V2 + m?V3 :(皿*m])V技 +!也¥^ 由(1)、(4)、(5)式得:

V3 [ (m + m i+ m 2) V 3 — 2mV 0]=0 解得:V 3=0 (最小速度) 例2、如图,光滑水平面上有A 、B 两辆小车,C 球用0 .5 m 长的细线悬挂在A 车的 支架上,已知mA =m B =1kg , m c =0.5kg 。开始时B 车静止,A 车以V 。=4 m/s 的速度驶向B 车并与 其正碰后粘在一起。若碰撞时间极短且不计空气阻力, g 取10m/s 2 ,求C 球摆起的 最大高度。 【解】由丁 A 、B 碰撞过程极短,C 球尚未开始摆动, B A 1 _ ~~i I 1 ., “一橙一、厂 / / / / / / / / / / / / / / / 故对该过程依前文解题策略有: m A V °=(m A +m B )V I (1) -m A VQ 3 --C m A +m —)W E 内= 」 ⑵ B 、 C 有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A +mC )V 0=(m A +m B +m C )V 2 (3) 由上述方程分别所求出A 、B 刚粘合在一起的速度V 1=2 m / s, E 内=4 J, 系统最后的共同速度V 2= 2 .4 m/s,最后求得小球C 摆起的最大高度 h=0.16m 。 例3、质量为m 的木块在质量为 M 的长木板中央,木块与长木板间的动摩擦因数为 ,木 块和长木板一起放在光滑水平面上,并以速度 v 向右运动。为了使长木板能停在水平面上, 可以在木块上作用一时间极短的冲量。试求: (1) 要使木块和长木板都停下来,作用在木块上水平冲量的大小和方向如何? (2) 木块受到冲量后,瞬间获得的速度为多大?方向如何? (3) 长木板的长度要满足什么条件才行? 2mV 0 (最大速度) 对A 、B 、C 组成的系统,图示状态为初始状态, C 球摆起有最大高度时,A 、

动量与能量之难点解析专题5

动量与能量之难点解析 专题01 动量与能量分析之“碰撞模型” 专题02 动量与能量分析之“板-块模型” 专题03 动量与能量分析之“含弹簧系统” 专题04 动量与能量分析之“爆炸及反冲问题” 专题05 动量与能量观点在电磁感应中的应用 专题5 动量与能量观点在电磁感应中的应用 【方法总结】 解决电磁感应问题往往需要力电综合分析,在电磁感应问题中需要动量与能量分析求解时,学生往往无从下手,属于压轴考查,需要学生平时吃透典型物理模型和积累解题经验,现将动量与能量观点求解电磁感应综合问题时常出现典型模型和思路总结如下: 1. “双轨+双杆”模型 以“2019全国3卷第19题”物理情景为例:如图,方向竖直向下的匀强磁场中有两根位于同一水 平面内的足够长的平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上。t =0时,棒ab 以初速度v 0向右滑动。运动过程中,ab 、cd 始终与导轨垂直并接触良好: 模型分析:双轨和两导体棒组成闭合回路,通过两导体棒的感应电流相等,所受安培力大小也相等,ab 棒受到水平向左安培力,向右减速;cd 棒受到水平向右安培力,向右加速,最终导体棒ab 、cd 系统共速,感应电流消失,一起向右做匀速直线运动,该过程由导体棒ab 、cd 组成的系统合外力为零,动量守恒:共v m m v m cd ab ab )(0+= 2. 巧用“动量定理”求通过导体电荷量q 思路:动量定理得:p t BIL p t F ?=????=??安,由于t I q ??=,所以p BLq ?=,

即:BL p q ?= 【精选试题解析】 1. (2019全国Ⅲ卷)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的 平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上。t =0时,棒ab 以初速度v 0向右滑动。运动过程中,ab 、cd 始终与导轨垂直并接触良好,两者速度分别用v 1、v 2表示,回路中的电流用I 表示。下列图像中可能正确的是( ) 2. [多选]如图所示,两根相距为d 的足够长的光滑金属导轨固定在水平面上,导轨电阻不计。磁感应强度为B 的匀强磁场与导轨平面垂直,长度等于d 的两导体棒M 、N 平行地放在导轨上,且电阻均为R 、质量均为m ,开始时两导体棒静止。现给M 一个平行导轨向右的瞬时冲量I ,整个过程中M 、N 均与导轨接触良好,下列说法正确的是( ) A .回路中始终存在逆时针方向的电流 B .N 的最大加速度为B 2Id 2 2m 2R C .回路中的最大电流为BId 2mR D .N 获得的最大速度为I m 3. (2019浙江选考)如图所示,在间距L =0.2m 的两光滑平行水平金属导轨间存在方向垂直于 纸面(向内为正)的磁场,磁感应强度为分布沿y 方向不变,沿x 方向如下: 10.2{50.20.2 10.2Tx m B xT m x m Tx m >=-≤≤-<- 导轨间通过单刀双掷开关S 连接恒流源和电容C =1F 的未充电的电容器,恒流源可为电路提供恒定电流I =2A ,电流方向如图所示。有一质量m =0.1kg 的金属棒ab 垂直导轨静止放置于x 0=0.7m 处。开关S 掷向1,棒ab 从静止开始运动,到达x 3=-0.2m 处时,开关S 掷向2。已知棒ab 在运动过程中始终与导

动量与能量结合综合题附答案汇编

动量与能量结合综合题1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则() A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

动量和能量综合专题

动量和能量综合例析 例1、如图,两滑块A、B的质量分别为m1和m2, 置于光滑的水平面上,A、B间用一劲度系数 为K的弹簧相连。开始时两滑块静止,弹簧为 原长。一质量为m的子弹以速度V0沿弹簧长度方向射入滑块A并留在其中。试求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量) ;(2)滑块B相对于地面的最大速度和最小速度。【解】(1)设子弹射入后A的速度为V1,有: mV0=(m+m1)V1(1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: (m+m1)V1=(m+m1+m 2)V (2) (3) 由(1)、(2)、(3)式解得: (2) mV0=(m+m1)V2+m2V3(4) (5)

由(1)、(4)、(5)式得: V3[(m+m1+m2)V3-2mV0]=0 解得:V3=0 (最小速度)(最大速度)例2、如图,光滑水平面上有A、B两辆小车,C球用0.5m长的细线悬挂在A车的支架上,已知mA=m B=1kg,m C=0.5kg。开始时B车静止,A车以V0=4m/s的速度驶向B车并与其正碰后粘在一起。若碰撞时间极短且不计空气阻力,g取10m/s2,求C球摆起的最大高度。 【解】由于A、B碰撞过程极短,C球尚未开始摆动, 故对该过程依前文解题策略有: m A V0=(m A+m B)V1(1) E内= (2) 对A、B、C组成的系统,图示状态为初始状态,C球摆起有最大高度时,A、B、C有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A+m C)V0=(m A+m B+m C)V2(3) (4)

高中物理动量和能量知识点

学大教育设计人:马洪波 高考物理知识归纳(三) ---------------动量和能量 1.力的三种效应: 力的瞬时性(产生a)F=ma 、运动状态发生变化牛顿第二定律 时间积累效应( 冲量)I=Ft 、动量发生变化动量定理 空间积累效应( 做功)w=Fs 动能发生变化动能定理 2.动量观点:动量:p=mv= 2mE 冲量:I = F t K 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。 公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F 1t 1+F 2t 2+---= p=P 末-P 初=mv 末-mv 初 动量守恒定律:内容、守恒条件、不同的表达式及含义:' p p ;p 0;p1 - p 2 P=P′(系统相互作用前的总动量P 等于相互作用后的总动量P′) ΔP=0 (系统总动量变化为0) 如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P1+P2=P1′+P2′(系统相互作用前的总动量等于相互作用后的总动量) m1V 1+m2V 2=m1V 1′+m2V2′ ΔP=-ΔP'(两物体动量变化大小相等、方向相反) 实际中应用有:m1v1+m2v2= ' ' m1v m v ;0=m1v1+m2v2 m1v1+m2v2=(m1+m2)v 1 2 2 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0 注意理解四性:系统性、矢量性、同时性、相对性 矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢 量运算简化为代数运算。 相对性: 所有速度必须是相对同一惯性参照系。 同时性:表达式中v1 和v2 必须是相互作用前同一时刻的瞬时速度,v ’和v ’必须是相互作用后同一时刻 1 2 的瞬时速度。 解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。 3.功与能观点: 功W = Fs cos (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t ( p= w t = F S t =Fv) 功率:P = W t (在t 时间内力对物体做功的平均功率) P = Fv (F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率;V 为平均速度时,P 为平均功率;P 一定时,F 与V 成正比) 动能:E K= 1 2 mv 2 2 p 2m 重力势能E p = mgh (凡是势能与零势能面的选择有关)

高三物理能量和动量经典总结知识点

运用动量和能量观点解题的思路 河南省新县高级中学吴国富 动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的适用范围更广泛,是自然界中普遍适用的基本规律,因此是高中物理的重点,也是高考考查的重点之一。试题常常是综合题,动量与能量的综合,或者动量、能量与平抛运动、圆周运动、热学、电磁学、原子物理等知识的综合。试题的情景常常是物理过程较复杂的,或者是作用时间很短的,如变加速运动、碰撞、爆炸、打击、弹簧形变等。 冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对空间的积累,其作用效果是改变物体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个 重要而普遍的思路。 应用动量定理和动能定理时,研究对象一般是单个物体,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。因此,在用它们解题时,首先应选好研究对象和研究过程。对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。选取时应注意以下 几点: 1.选取研究对象和研究过程,要建立在分析物理过程的基础上。临界状态往往应 作为研究过程的开始或结束状态。 2.要能视情况对研究过程进行恰当的理想化处理。 3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时 这样做,可使问题大大简化。 4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过 程。 确定对象和过程后,就应在分析的基础上选用物理规律来解题,规律选用的一般原 则是: 1.对单个物体,宜选用动量定理和动能定理,其中涉及时间的问题,应选用动量

高中物理运用动量和能量观点解题的思路

运用动量和能量观点解题的思路 动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的适用范围更广泛,是自然界中普遍适用的基本规律,因此是高中物理的重点,也是高考考查的重点之一。试题常常是综合题,动量与能量的综合,或者动量、能量与平抛运动、圆周运动、热学、电磁学、原子物理等知识的综合。试题的情景常常是物理过程较复杂的,或者是作用时间很短的,如变加速运动、碰撞、爆炸、打击、弹簧形变等。 冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对空间的积累,其作用效果是改变物体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个重要而普遍的思路。 应用动量定理和动能定理时,研究对象一般是单个物体,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。因此,在用它们解题时,首先应选好研究对象和研究过程。对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。选取时应注意以下几点:1.选取研究对象和研究过程,要建立在分析物理过程的基础上。临界状态往往应作为研究过程的开始或结束状态。 2.要能视情况对研究过程进行恰当的理想化处理。 3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时这样做,可使问题大大简化。 4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过程。 确定对象和过程后,就应在分析的基础上选用物理规律来解题,规律选用的一般原则是:1.对单个物体,宜选用动量定理和动能定理,其中涉及时间的问题,应选用动量定理,而涉及位移的应选用动能定理。 2.若是多个物体组成的系统,优先考虑两个守恒定律。 3.若涉及系统内物体的相对位移(路程)并涉及摩擦力的,要考虑应用能量守恒定律。 例1图1中轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处于原长状态。另一质量与B相同的滑块A,从导轨上的P点以某一初速度向B滑行。当A 滑过距离时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连。已知最后A恰好回到出发点P并停止。滑块A和B与导轨的摩擦因数都为,运动过程中弹簧最大形变量为,重力加速度为。求A从P点出发时的初速度。 解析:首先要将整个物理过程分析清楚,弄清不同阶段相互作用的物体和运动性质,从而为正确划分成若干阶段进行研究铺平道路。即A先从P点向左滑行过程,受摩擦力作用做 匀减速运动。设A刚接触B时的速度为,对A根据动能定理,有

一轮复习模块-动量和能量 学生用

高三物理零模复习之动量和能量 1.冲量与功的比较 (1)定义式????? 冲量的定义式:I =Ft (作用力在时间上的积累效果)功的定义式:W =Fs cos θ(作用力在空间上的积累效果) (2)属性? ???? 冲量是矢量,既有大小又有方向(求合冲量应按矢,量合成法则来计算)功是标量,只有大小没有方向(求物体所受外力的,总功只需按代数和计算) 2.动量与动能的比较 (1)定义式??? 动量的定义式:p =m v 动能的定义式:E k =12m v 2 (2)属性????? 动量是矢量(动量的变化也是矢量,求动量的变化,应按矢量运算法则来计算)动能是标量(动能的变化也是标量,求动能的变化,只需按代数运算法则来计算) (3)动量与动能量值间的关系????? p =2mE k E k =p 22m =12p v (4)动量和动能都是描述物体状态的量,都有相对性(相对所选择的参考系),都与物体的受力情况无关.动量的变化和动能的变化都是过程量,都是针对某段时间而言的. 二、动量观点的基本物理规律 1.动量定理的基本形式与表达式:I =Δp .分方向的表达式:I x 合=Δp x ,I y 合=Δp y . 2.动量定理推论:动量的变化率等于物体所受的合外力,即Δp Δt =F 合. 3.动量守恒定律 (1)动量守恒定律的研究对象是一个系统(含两个或两个以上相互作用的物体). (2)动量守恒定律的适用条件 ①标准条件:系统不受外力或系统所受外力之和为零. ②近似条件:系统所受外力之和虽不为零,但比系统的内力小得多(如碰撞问题中的摩擦力、爆炸问题中的重力等外力与相互作用的内力相比小得多),可以忽略不计. ③分量条件:系统所受外力之和虽不为零,但在某个方向上的分量为零,则在该方向上系统总动量的分量保持不变. (3)使用动量守恒定律时应注意: ①速度的瞬时性;②动量的矢量性;③时间的同一性. 三、功和能 1.中学物理中常见的能量 动能E k =12m v 2;重力势能E p =mgh ;弹性势能E 弹=12 kx 2;机械能E =E k +E p ;分子势能;分子动能;内能;电势能E =qφ;电能;磁场能;化学能;光能;原子能(电子的动能和势能之和);原子核能E =mc 2;引力势能;太阳能;风能(空气的动能);地热、潮汐能. 2.常见力的功和功率的计算: 恒力做功W =Fs cos θ;重力做功W =mgh ;一对滑动摩擦力做的总功W f =-fs 路; 电场力做功W =qU ;功率恒定时牵引力所做的功W =Pt ; 恒定压强下的压力所做的功W =p ·ΔV ; 电流所做的功W =UIt ;洛伦兹力永不做功;瞬时功率P =F v cos_θ;平均功率=W t =F cos θ. 四、弹性碰撞 在一光滑水平面上有两个质量分别为m 1、m 2的刚性小球A 和B 以初速度v 1、v 2运动,若它们能发生正碰,碰撞后它们的速度分别为v 1′和v 2′.v 1、v 2、v 1′、v 2′是以地面为

弹簧的动量和能量问题#(精选.)

弹簧的动量和能量问题 班级__________ 座号_____ 姓名__________ 分数__________ 一、知识清单 1.弹性势能的三种处理方法 弹性势能E P=?kx2,高考对此公式不作要求,因此在高中阶段出现弹性势能问题时,除非题目明确告诉了此公式,否则不需要此公式即可解决,其处理方法常有以下三种: ①功能法:根据弹簧弹力做的功等于弹性势能的变化量计算;或根据能量守恒定律计算出弹性势能; ②等值法:压缩量和伸长量相同时,弹簧对应的弹性势能相等,在此过程中弹性势能的变化量为零; ③“设而不求”法:如果两次弹簧变化量相同,则这两次弹性势能变化量相同,两次作差即可消去。 二、例题精讲 2.(2006年·天津理综)如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,一端与质量为m2的档板B相连,弹簧处于原长时,B恰位于滑道的末端O点.A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求:(1)物块A在与挡板B碰撞前瞬间速度v的大小; (2)弹簧最大压缩量为d时的弹性势能E p(设弹簧处于原长时弹性势能为零). 3.如图所示,在竖直方向上,A、B两物体通过劲度系数为k=16 N/m的轻质弹簧相连,A放在水平地面上,B、C两物体通过细线绕过轻质定滑轮相连,C放在倾角α=30°的固定光滑斜面上. 用手拿住C,使细线刚刚拉直但无拉力作用,并保证ab段的细线竖直、cd段的细线与斜面平行.已知A、B的质量均为m=0.2 kg,重力加速度取g=10 m/s2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C后,C沿斜面下滑,A刚离开地面时,B获得最大速度,求:

高中物理复习专题 动量与能量

专题三动量与能量 思想方法提炼 牛顿运动定律与动量观点和能量观点通常称作解决问题的三把金钥匙.其实它们是从三个不同的角度来研究力与运动的关系.解决力学问题时,选用不同的方法,处理问题的难易、繁简程度可能有很大差别,但在很多情况下,要三把钥匙结合起来使用,就能快速有效地解决问题. 一、能量 1.概述 能量是状态量,不同的状态有不同的数值的能量,能量的变化是通过做功或热传递两种方式来实现的,力学中功是能量转化的量度,热学中功和热量是内能变化的量度. 高中物理在力学、热学、电磁学、光学和原子物理等各分支学科中涉及到许多形式的能,如动能、势能、电能、内能、核能,这些形式的能可以相互转化,并且遵循能量转化和守恒定律,能量是贯穿于中学物理教材的一条主线,是分析和解决物理问题的主要依据。在每年的高考物理试卷中都会出现考查能量的问题。并时常发现“压轴题”就是能量试题。 2.能的转化和守恒定律在各分支学科中表达式 (1)W合=△E k包括重力、弹簧弹力、电场力等各种力在内的所有外力对物体做的总功,等于物体动能的变化。(动能定理) (2)W F=△E除重力以外有其它外力对物体做功等于物体机械能的变化。(功能原理) 注:(1)物体的内能(所有分子热运动动能和分子势能的总和)、电势能不属于机械能 (2)W F=0时,机械能守恒,通过重力做功实现动能和重力势能的相互转化。 (3)W G=-△E P重力做正功,重力势能减小;重力做负功,重力势能增加。重力势能 变化只与重力做功有关,与其他做功情况无关。 (4)W电=-△E P 电场力做正功,电势能减小;电场力做负功,电势能增加。在只有重力、电场力做功的系统内,系统的动能、重力势能、电势能间发生相互转化,但总和保持不变。 注:在电磁感应现象中,克服安培力做功等于回路中产生的电能,电能再通过电路转化为其他形式的能。 (5)W+Q=△E物体内能的变化等于物体与外界之间功和热传递的和(热力学第一定律)。 (6)mv02/2=hν-W 光电子的最大初动能等于入射光子的能量和该金属的逸出功之差。 (7)△E=△mc2在核反应中,发生质量亏损,即有能量释放出来。(可以以粒子的动能、光子等形式向外释放)

高中物理动量和能量知识归纳

高考物理知识归纳(三) ---------------动量和能量 1.力的三种效应: 力的瞬时性(产生a )F=ma 、?运动状态发生变化?牛顿第二定律 时间积累效应(冲量)I=Ft 、?动量发生变化?动量定理 空间积累效应(做功)w=Fs ?动能发生变化?动能定理 2.动量观点:动量:p=mv= K mE 2 冲量:I = F t 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。 公式: F 合t = mv ’ 一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F 1t 1+F 2t 2+---=?p=P 末-P 初=mv 末-mv 初 动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =?;21p -p ?=? P =P ′ (系统相互作用前的总动量P 等于相互作用后的总动量P ′) ΔP =0 (系统总动量变化为0) 如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P 1+P 2=P 1′+P 2′ (系统相互作用前的总动量等于相互作用后的总动量) m 1V 1+m 2V 2=m 1V 1′+m 2V 2′ ΔP =-ΔP ' (两物体动量变化大小相等、方向相反) 实际中应用有:m 1v 1+m 2v 2=' 22' 11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0 注意理解四性:系统性、矢量性、同时性、相对性 矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢量运算 简化为代数运算。 相对性:所有速度必须是相对同一惯性参照系。 同时性:表达式中v 1 和v 2 必须是相互作用前同一时刻的瞬时速度,v 1 ’和v 2’ 必须是相互作用后同一时刻的瞬时 速度。 解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。 3.功与能观点: 功W = Fs cos ? (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t (?p= t w =t FS =Fv) 功率:P = W t (在t 时间内力对物体做功的平均功率) P = F v

吴东电磁场动量-洛伦兹变换

同理可写出J m 对平面波 k ⊥⊥⊥,k p 222 例1: () () 211 2 02002200 0=?+?-=???? ? ?+?+?- ?-=?E E E B E εεμεμ ε同理0=? 0,0=?=? 前点求恒为零:表明没有沿,方向的流动 后点求恒为零:表明没有沿,方向的 g e m J 的流动方向 ω=? 动量方向 ∴()e e k m x 14e g e x e k c ω = 即只有沿波传播的动量流 3、场是否有动量 (1)光压实验是场有动量的证明 1901年列别捷夫用实验证明 刻卜勤认为:光压是彗星尾的成因; 微粒受太阳引力∝ r 3 ; 微粒受太阳辐射压力∝ r 2 ;对r<1,压力>引力 3、光压公式因而也使人们相信电磁场的物质性 () () () ???? ???? ??????????-------=B B B B B B B B B B B B B B B B B B B B B J x z z z z z y y z x x y 2y 22y x y 2 2x 2x y 2z 22x 0m 2121211 μ()22 1 121k 2020ωωμε==??? ? ??+?=?B E J k J

通常光压压数值都很小,太阳对地球表面的光压仅为4.6P a 5 10-? 日常生活中难以察觉, 但宇宙空间内,作用却很显著,如彗星尾巴总是背着太阳,就是太阳光压所致。 (2)电强动量是解释两电流元之间的作用力≠反作用力的依据 F I d d 21 11 l ↓ d d 1222=↑↑F I θ F F 2112 d d ≠ 即动量不守恒 电流元产生电磁辐射时,电磁动量改变,若考虑电磁动量,动量才守恒 P 222 例1 伍勇,辐射压的概念和计算方法的分析研究 大学物理1998.1 黄志洵.电磁场的量子化及有关科学问题[J].自然杂志1999,21(5)252.257 二、辐射压力 利用麦克斯韦应力张量求辐射压力 例1、辐射电磁场的压力(光压) 如图 电磁波沿x 方向入射到σ面上单位面积受到的电多极矩力为 f ?-=n 注意到TEM 性 1212112120202n 02n 0n ωμεμε-=???? ? ?+-=?? ? ??-+??? ?? -=B E B B E E f 故σ面上所受的平均辐射压强为 1212020n ?με-=???? ? ?+-=B E f 例2、静电场中介质受力问题 如图 取θ与法向的夹角为,沿轴,?为轴 真空中只有静电场时麦克斯韦应力张量为

(完整版)动量与能量专题复习

动量与能量专题复习 一、教学目的 1. 能灵活选取研究对象,正确分析物理过程。 2. 能从动量和能量的角度去综合分析和解决一些力学问题。 二、教学重、难点 重点:力学规律的综合应用。 难点:在物理过程中,对所遵循的相应力学规律的正确判定。 三、教学过程 一个力学过程,所遵循的物理规律往往是多方面的,对相互作用的两物体这一整体遵循能的转化和守恒,总动量守恒是较为常见的一类问题。 (一)解决力学问题一般采用的三种方法 1.运用力与物体的瞬时作用效果——牛顿运动定律 。 2.运用力对物体作用时间的积累效果——动量定理和动量守恒定律 。 3.运用力对物体作用空间(位移)的积累效果——动能定理和能量守恒定律 。 (二)碰撞中能量关系 1.分类: (1)弹性碰撞:碰撞后总动能 等于 碰撞前总动能。 (2)非弹性碰撞:碰撞后总动能 小于 碰撞前总动能。 (3)完全非弹性碰撞:碰撞后两物体粘合在一起,碰撞后总动能 小于 碰撞前总动能,且系统 动能损失 最多 。 注意:不管是何种碰撞,在整个作用过程中系统的总动量 守恒 。 例1.在光滑的水平面上,置放着滑块A 和B ,它们的质量分别为1m 和2m ,滑块B 与一轻弹簧相连,弹簧的另一端固定在竖直的墙上,滑块A 以速度0v 与静止的滑块B 发生正碰后粘合在一起运动并压缩,如图所示,求弹簧所能达到的最大弹性势能。 解:取向右为正 对A 、B 组成系统:据动量守恒定律 'P P =得 1012()m v m m v =+ 对A 、B 、弹簧组成系统:压缩弹簧过程,据机械能守恒定律P K E E ?=-?得 2221012121()22() P m v E m m v m m =+=+ 讨论:弹簧的最大弹性势能为什么不等于A 滑块的初动能?(原因是:AB 碰撞过程,动能损失) 所以,第二种解法为:据能量守恒定律得 21012 P E m v E = -V 损 22101211()22E m v m m v =-+V 损 由以上两式解得: P E =2210122() m v m m +

动量与磁场的综合问题

动量与磁场综合问题详解 王天柱老师整理发布 1.如图所示,MN、PQ是两条水平放置彼此平行的金属导轨,匀强磁场的磁感线垂直导轨平面。导轨左端接阻值R=1.5Ω的电阻,电阻两端并联一电压表,垂直导轨跨接一金属杆ab,ab的质量m=0.1kg,电阻r=0.5Ω。ab与导轨间动摩擦因数μ=0.5,导轨电阻不计,现用F=0.7N的恒力水平向右拉ab,使之从静止开始运动,经时间t=2s后,ab开始做匀速运动,此时电压表示数U=0.3V。重力加速度g=10m/s2。求: (1)ab匀速运动时,外力F的功率; (2)ab杆加速过程中,通过R的电量; (3)ab杆加速运动的距离。 设导轨间距为L,磁感应强度为B,ab杆匀速运动的速度为v,电流为I,此时ab杆受力如图所示: 由平衡条件得:F=μmg+ILB ① 由欧姆定律得:② 由①②解得:BL=1T·m,v=0.4m/s ③

F的功率:P=Fv=0.7×0.4W=0.28W ④ (2)设ab加速时间为t,加速过程的平均感应电流为,由动量定理得: ⑤ 解得:⑥ (3)设加速运动距离为s,由法拉第电磁感应定律得: ⑦ 又⑧ 由⑥⑦⑧解得: 2.如图所示,水平光滑的平行金属导轨左端接有电阻R,匀强磁场方向竖直向下, 质量一定的金属棒OO'垂直于导轨放置,现使棒以一定的初速度v向右运动,当金属棒通过位置a、b时速度分别是v a、v b,到位置c时刚好静止,导轨和金属棒的电阻不计,ab=bc,则金属棒在由a到b和由b到c的两个过程中( ) A. 金属棒的加速度相等 B. 通过电阻R的电荷量相等 C. 电阻R上产生的焦耳热相等 D. 速度变化量相等 金属棒向右做加速度逐渐减小的减速运动,克服安培力做功,把金属棒的动能转化为内能;由能量守恒判断回路产生的内能;由牛顿第二定律判断加速度的大小

动量与能量

第六课 动量与能量(一) 一、单选题 1.如图所示,光滑水平面上有大小相同的为m B =2m A ,规定向右为正方向,A 、B 后A 球的动量增量为-4Kg.m/s ,则( ) A. 左方是A 球,碰撞后A 、B 两球速度大小之比为5:2 B. 左方是A 球,碰撞后A 、B 两球速度大小之比为10:1 C. 右方是A 球,碰撞后A 、B 两球速度大小之比为5:2 D. 右方是A 球,碰撞后A 、B 两球速度大小之比为10:1 2.如图所示,光滑水平面上有一辆质量为2m 的小车,车上左右两端分别站着甲、乙两人,他们的质量都是m ,开始两个人和车一起以速度v 0向右匀速运动.某一时刻,站在车右端的乙先以相对于地面向右的速度u 跳离小车,然后站在车左端 的甲以相对于地面向左的速度u 跳离小车.两人都离开小车后,小车的速度将是 ( ) A. v 0 B.2v 0 B. C.大于v 0小于 2v 0 D.大于20 3.质量为M 的均匀木块静止在光滑水平面上,木块左右两侧各 有一位拿着完全相同步枪和子弹的射击手。首先左侧射手开枪,子弹水平射入木块的最大深度为d 1,然后右侧射手开枪,子弹水平射入木块的最大深度为d 2,如图设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相同。当两颗子弹均相对木块静止时,下列说法正确的是( ) A .最终木块静止,d 1=d 2 B .最终木块向右运动,d 1

专题2 动量与能量

专题2 动量与能量 思想方法提炼 牛顿运动定律与动量观点和能量观点通常称作解决问题的三把金钥匙.其实它们是从三个不同的角度来研究力与运动的关系.解决力学问题时,选用不同的方法,处理问题的难易、繁简程度可能有很大差别,但在很多情况下,要三把钥匙结合起来使用,就能快速有效地解决问题. 一、能量 1.概述 能量是状态量,不同的状态有不同的数值的能量,能量的变化是通过做功或热传递两种方式来实现的,力学中功是能量转化的量度,热学中功和热量是内能变化的量度. 高中物理在力学、热学、电磁学、光学和原子物理等各分支学科中涉及到许多形式的能,如动能、势能、电能、内能、核能,这些形式的能可以相互转化,并且遵循能量转化和守恒定律,能量是贯穿于中学物理教材的一条主线,是分析和解决物理问题的主要依据。在每年的高考物理试卷中都会出现考查能量的问题。并时常发现“压轴题”就是能量试题。 2.能的转化和守恒定律在各分支学科中表达式 (1)W合=△E k包括重力、弹簧弹力、电场力等各种力在内的所有外力对物体做的总功,等于物体动能的变化。(动能定理) (2)W F=△E除重力以外有其它外力对物体做功等于物体机械能的变化。(功能原理) 注:(1)物体的内能(所有分子热运动动能和分子势能的总和)、电势能不属于机械能 (2)W F=0时,机械能守恒,通过重力做功实现动能和重力势能的相互转化。(3)W G=-△E P重力做正 功,重力势能减小;重力做负功,重力势能增加。重力势能变化只与重力做功有关,与其他做功情况无关。 (4)W电=-△E P 电场力做正功,电势能减小;电场力做负功,电势能增加。在只有重力、电场力做功的系统内,系统的动能、重力势能、电势能间发生相互转化,但总和保持不变。 注:在电磁感应现象中,克服安培力做功等于回路中产生的电能,电能再通过电路转化为其他形式的能。 (5)W+Q=△E物体内能的变化等于物体与外界之间功和热传递的和(热力学第一定律)。 (6)mv02/2=hν-W 光电子的最大初动能等于入射光子的能量和该金属的逸出功之差。 (7)△E=△mc2在核反应中,发生质量亏损,即有能量释放出来。(可以以粒子的动能、光子等形式向外释放) 动量与能量的关系 1.动量与动能 动量和能量都与物体的某一运动状态相对应,都与物体的质量和速度有关.但它们存在明显的不同:动量的大小与速度成正比p=mv;动能的大小与速度的平方成正比Ek=mv2/2p2=2mE k 动量是矢量而动能是标量.物体的动量发生变化时,动能不一定变化;但物体的动能一旦发生变化,则动量必发生变化. 2.动量定理与动能定理 动量定理:物体动量的变化量等于物体所受合外力的冲量.△p=I,冲量I=Ft是力对时间的积累效应 动能定理:物体动能的变化量等于外力对物体所做的功.△E k=W,功W=Fs是力对空间的积累效应. 3.动量守恒定律与机械能守恒定律 动量守恒定律与机械能守恒定律所研究的对象都是相互作用的物体系统,(在研究某个物体与地球组成的系统的机械能守恒时,通常不考虑地球的影响),且研究的都是某一物理过程.动量守恒定律的内容是:一个系统不受外力或者所受外力之和为0,这个系统的总动量保持不变;机械能守恒定律的内容是:在只有重力和弹簧弹力做功的情形下,系统机械能的总量保持不变 运用动量守恒定律值得注意的两点是:(1)严格符合动量守恒条件的系统是难以找到的.如:在空中爆炸或碰撞的物体受重力作用,在地面上碰撞的物体受摩擦力作用,但由于系统间相互作用的内力远大于外界对系统的作用,所以在作用前后的瞬间系统的动量可认为基本上是守恒的.(2)即使系统所受的外力不为

相关文档
最新文档