mjt--空间位置关系与证明(教师版)

mjt--空间位置关系与证明(教师版)
mjt--空间位置关系与证明(教师版)

1

C D 专题22 空间位置关系与证明

★★★高考在考什么 【考题回放】 1.(浙江)若P 是两条异面直线l m ,外的任意一点,则(B ) A .过点P 有且仅有一条直线与l m ,都平行 B .过点P 有且仅有一条直线与l m ,都垂直 C .过点P 有且仅有一条直线与l m ,都相交

D .过点P 有且仅有一条直线与l m ,都异面 2.(06湖南)如图,过平行六面体ABCD-A 1B 1C 1D 1任意两条棱的中

点作直线,其中与平面DBB 1D 1平行的直线共有( D ) A.4条 B.6条 C.8条 D.12条 3.(湖北)平面α外有两条直线m 和n ,如果m 和n 在平面α内的射影分别是m '和n ',给出下列四个命

题:

①m n m n ''⊥?⊥;

②m n m n ''⊥?⊥;

③m '与n '相交?m 与n 相交或重合; ④m '与n '平行?m 与n 平行或重合. 其中不正确的命题个数是( D )

A.1 B.2 C.3 D.4

4.(湖北)关于直线m 、n 与平面α、β,有下列四个命题:(D )

①βα//,//n m 且βα//,则n m //; ②βα⊥⊥n m ,且βα⊥,则n m ⊥; ③βα//,n m ⊥且βα//,则n m ⊥; ④βα⊥n m ,//且βα⊥,则n m //. 其中真命题的序号是:

A. ①、②

B. ③、④

C. ①、④

D. ②、③ 5.在正方形''''D C B A ABCD -中,过对角线'

BD 的一个平面交'AA 于E ,交'CC 于F ,则( ) ① 四边形E BFD '

一定是平行四边形 ② 四边形E BFD '有可能是正方形

③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '

有可能垂直于平面D BB '

以上结论正确的为 ①③④ 。(写出所有正确结论的编号)

6.(上海)在平面上,两条直线的位置关系有相交、平行、重合三种. 已知αβ,是两个相交平面,空间两条直线12l l ,在α上的射影是直线12s s ,,12l l ,在β上的射影是直线12t t ,.用1s 与2s ,1t 与2t 的位置关系,写出一个总能确定1l 与2l 是异

面直线的充分条件: 21//s s ,并且1t 与2t 相交(//1t 2t ,并且1s 与2s 相交)

★ ★★高考要考什么 一.线与线的位置关系:平行、相交、异面;

线与面的位置关系:平行、相交、线在面内; 面与面的位置关系:平行、相交;

二.转化思想:

??⊥?⊥?⊥线线平行线面平行面面平行,线线线面面面 ;

★★★高考将考什么

【范例1】如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,60AB AD AC CD ABC ⊥⊥∠=,,°,

PA AB BC ==,E 是PC 的中点. (Ⅰ)证明CD AE ⊥;

(Ⅱ)证明PD ⊥平面ABE ;

(Ⅲ)求二面角A PD C --的大小.

(Ⅰ)证明:在四棱锥P ABCD -中,

因PA ⊥底面ABCD ,CD ?平面ABCD ,故PA CD ⊥. PAC . AC CD PA AC A ⊥=I ,∵,CD ⊥∴平面而AE ?平面PAC ,CD AE ⊥∴.

(Ⅱ)证明:由PA AB BC ==,60ABC ∠=°,可得AC PA =. E ∵是PC 的中点,AE PC ⊥∴.

由(Ⅰ)知,AE CD ⊥,且PC CD C =I ,所以AE ⊥平面PCD . 而PD ?平面PCD ,AE PD ⊥∴.

PA ⊥∵底面ABCD PD ,在底面ABCD 内的射影是AD ,AB AD ⊥,AB PD ⊥∴. 又AB AE A =I ∵,综上得PD ⊥平面ABE .

(Ⅲ)解法一:过点A 作AM PD ⊥,垂足为M ,连结EM .则(Ⅱ)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM ,则EM PD ⊥. 因此AME ∠是二面角A PD C --的平面角. 由已知,得30CAD ∠=°.设AC a =,

可得PA a AD PD AE ====,,,. 在ADP Rt △中,AM PD ⊥∵,AM PD PA AD =∴··,

则3

a PA AD AM PD

=

==·

·. 在AEM Rt △

中,sin AE AME AM =

= 解法二:由题设PA ⊥底面ABCD ,PA ?平面PAD ,则平面PAD ⊥平面ACD ,交线为AD . 过点C 作CF AD ⊥,垂足为F ,故CF ⊥平面PAD .过点F 作FM PD ⊥,垂足为M ,连结CM ,故CM PD ⊥.因此CMP ∠是二面角A PD C --的平面角. 由已知,可得30CAD ∠=°,设AC a =,

可得12PA a AD PD CF a FD ==

===,,,,. FMD PAD ∵△∽△,FM FD

PA PD

=∴

. A B

C D

P E A

B

C

D

P

E

M P

E

于是,37621

3

a a

FD PA FM a PD a =

==··. 在CMF Rt △中,12tan 77

a

CF

CMF FM a ===.

所以二面角A PD C --的大小是arctan 7.

所以二面角A PD C --的大小是14arcsin

4

. 变式:如图,在五面体ABCDEF 中,点O 是矩形ABCD 的对角线的交点,面CDE 是等边三角形,棱

//

1

2

EF BC =. (1)证明FO //平面CDE ;

(2)设3BC CD =,证明EO ⊥平面CDF . 证明:(Ⅰ)取CD 中点M ,连结OM. 在矩形ABCD 中,1//

2OM BC ,又1

//2

EF BC ,则//OM EF , 连结EM ,于是四边形EFOM 为平行四边形. //FO EM ∴

又FO ?Q 平面CDE , EM ?平面CDE , ∴ FO∥平面CDE

(Ⅱ)证明:连结FM ,由(Ⅰ)和已知条件,在等边△CDE 中,

,CM DM EM CD =⊥且31

2

EM CD BC EF =

==. 因此平行四边形EFOM 为菱形,从而EO⊥FM 而FM∩CD=M,

∴CD⊥平面EOM ,从而CD⊥EO. 而FM CD M ?=,所以EO⊥平面CDF.

【点晴】本小题考查直线与平面平行、直线与平面垂直等基础知识,注意线面平行和线面垂直判定定理的使用,考查空间想象能力和推理论证能力。

【范例2】如图,在六面体1111ABCD A B C D -中,四边形ABCD 是边长为

2的正方形,四边形1111A B C D 是边长为1的正方形,1DD ⊥平面 1111A B C D ,1DD ⊥平面ABCD ,12DD =.

(Ⅰ)求证:11A C 与AC 共面,11B D 与BD 共面. (Ⅱ)求证:平面11A ACC ⊥平面11B BDD ;

(Ⅲ)求二面角1A BB C --的大小(用反三角函数值表示).

证明:以D 为原点,以1DA

DC DD ,,所在直线分别为x 轴, y 轴,z 轴建立空间直角坐标系D xyz -如图,

则有

1111(200)(220)(020)(102)(112)(012)(002)

A B C A B C D ,,,,,,,,,,,,,,,,,,,,.

(Ⅰ)证明:

A

B

D

1A 1B

1C 1M

1

A 1

B 1

C 1

D z

1111(110)(220)(110)(220)AC AC D B DB =-=-==u u u u r u u u r u u u u r u u u r ,,,,,,,,,,,∵. 11

1122AC AC DB D B ==u u u r u u u u r u u u r u u u u r ,∴. AC u u u r ∴与11AC u u u u r 平行,DB u u u r 与11D B u u u u r 平行,

于是11A C 与AC 共面,11B D 与BD 共面.

(Ⅱ)证明:1(0

02)(220)0DD AC =-=u u u u r u u u r ,,,,··, (220)(220)0DB AC =-=u u u r u u u r ,,,,··,

1DD AC ⊥u u u u r u u u r ∴,DB AC ⊥u u u

r u u u r .

1DD 与DB 是平面11B BDD 内的两条相交直线.

AC ⊥∴平面11B BDD .

又平面11A ACC 过AC .

∴平面11A ACC ⊥平面11B BDD .

(Ⅲ)解:111(10

2)(112)(012)AA BB CC =-=--=-u u u r u u u r u u u u r

,,,,,,,,. 设111()x y z =,,n 为平面11A ABB 的法向量,

11120AA x z =-+=u u u r n ·,111120BB x y z =--+=u u u r n ·.

于是10y =,取11z =,则12x =,(201)=,,n . 设222()x y z =,,m 为平面11B BCC 的法向量,

122220BB x y z =--+=u u u r m ·,12220CC y z =-+=u u u u r m ·.

于是20x =,取21z =,则22y =,(021)=,,m .

1

cos 5

=

=,m n m n m n ·. ∴二面角1A BB C --的大小为1

πarccos 5

-.

解法2(综合法):

(Ⅰ)证明:1D D ⊥∵平面1111A B C D ,1D D ⊥平面ABCD .

1D D DA ⊥∴,1D D DC ⊥,平面1111A B C D ∥平面ABCD .

于是11C D CD ∥,11D A DA ∥.

设E F ,分别为DA DC ,的中点,连结11EF A E C F ,,,

有11111

1A E D D C F D D DE DF ==,,,∥∥. 11A E C F ∴∥,

于是11A C EF ∥.

由1DE DF ==,得EF AC ∥, 故11AC AC ∥,11A C 与AC 共面. 过点1B 作1B O ⊥平面ABCD 于点O ,

则1111B O A E B O C F , ∥∥,连结OE OF ,, 于是11OE B A ∥,11

OF B C ∥,OE OF =∴. 1111B A A D ⊥∵,OE AD ⊥∴.

1111B C C D ⊥∵,OF CD ⊥∴.

所以点O 在BD 上,故11D B 与DB 共面.

(Ⅱ)证明:1D D ⊥∵平面ABCD ,1D D AC ⊥∴, 又BD AC ⊥(正方形的对角线互相垂直),

1D D 与BD 是平面11B BDD 内的两条相交直线,

AC ⊥∴平面11B BDD .

又平面11A ACC 过AC ,∴平面11A ACC ⊥平面11B BDD .

(Ⅲ)解:∵直线DB 是直线1B B 在平面ABCD 上的射影,AC DB ⊥, 根据三垂线定理,有1AC B B ⊥.

过点A 在平面11ABB A 内作1AM B B ⊥于M ,连结MC MO ,, 则1B B ⊥平面AMC ,

A

B

C

D

1A

1B

1C 1D M

O

E

F

于是11B B MC B B MO ⊥⊥,,

所以,AMC ∠是二面角1A B B C --的一个平面角.

根据勾股定理,有111A A C C B B ==. 1OM B B ⊥∵

,有11B O OB OM B B =

,BM =

AM =

,CM =. 2221cos 25AM CM AC AMC AM CM +-∠==-·,1

πarccos 5

AMC ∠=-,

二面角1A BB C --的大小为1

πarccos

5

-. 变式(07江苏)如图,已知1111ABCD A B C D -是棱长为3的正方体, 点E 在1AA 上,点F 在1CC 上,且11AE FC ==. (1)求证:1E B F D ,,,四点共面;(4分)

(2)若点G 在BC 上,2

3

BG =,点M 在1BB 上,

GM BF ⊥,垂足为H ,求证:EM ⊥平面11BCC B ;

(4分) (3)用θ表示截面1EBFD 和侧面11BCC B 所成的锐二面角的大小,求tan θ.

证明:(1)建立如图所示的坐标系,则(301)BE =u u u r ,,,(032)BF =u u u r ,,,1(333)BD =u u u u r

,,,

所以1BD BE BF =+u u u u r u u u r u u u r ,故1BD u u u u r ,BE u u u r ,BF u u u r 共面. 又它们有公共点B ,所以1E B F D ,,,四点共面.

(2)如图,设(00)M z ,

,,则203GM z ??

=- ???

u u u u r ,,, 而(032)BF =u u u r ,

,,由题设得2

3203

GM BF z =-+=u u u u r u u u r g g g , 得1z =.

因为(001)M ,,,(301)E ,,,有(300)ME =u u u r ,,,又1(003)BB =u u u r ,,,(030)BC =u u u r ,

,,所以10ME BB =u u u r u u u r

g ,0ME BC =u u u r u u u r

g ,从而1ME BB ⊥,ME BC ⊥.

故ME ⊥平面11BCC B .

C

A

G H

M

D

E F

1B

1A

1D

1C

1

A

1

A

(3)设向量(3)BP x y =u u u r ,,

⊥截面1EBFD ,于是BP BE u u u r u u u r ⊥,BP BF u u u r u u u r

⊥. 而(301)BE =u u u r ,

,,(032)BF =u u u r ,,,得330BP BE x =+=u u u r u u u r g ,360BP BF y =+=u u u r u u u r

g ,解得1x =-,2y =-,所以(123)BP =--u u u r

,. 又(300)BA =u u u r ,,⊥平面11BCC B ,所以BP u u u r 和BA u u u r 的夹角等于θ或πθ-(θ为锐角).

于是cos BP BA BP BA

θ==

u u u r u u u r g u u u r u u u r g . 故tan θ=

【范例3】如图,在长方体AC 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动.

(1)证明:D 1E⊥A 1D ; (2)当E 为AB 的中点时,求点E 到面ACD 1的距离;

(3)AE 等于何值时,二面角D 1—EC —D 的大小为4

π. 解析:法1

(1)∵AE⊥面AA 1DD 1,A 1D⊥AD 1,∴A 1D⊥D 1E

(2)设点E 到面ACD 1的距离为h ,在△ACD 1中,AC=CD 1=5,AD 1=2,

故.2121,232152211=??==-??=

??BC AE S S ACE C AD 而 11

111131,1,.33223

D AEC

AEC AD C V S DD S h h h -??∴=?=?∴?=?∴= (3)过D 作DH⊥CE 于H ,连D 1H 、DE ,则D 1H⊥CE,

∴∠DHD 1为二面角D 1—EC —D 的平面角.

设AE=x ,则BE=2-x

11,, 1.

4

,,,

Rt D DH DHD DH Rt ADE DE Rt DHE EH x π

?∠=

∴=?=∴?=Q Q 在中在中在中

.

4

,32.

32543.

54,3122π

的大小为二面角时中在中在D EC D AE x x x x x x CE CBE Rt CH DHC Rt ---=∴-=?+-=

+∴+-=?=?

法2:以D 为坐标原点,直线DA 、DC 、DD 1分别为x 、y 、z 轴,建立空间直角坐标系,设AE=x ,则A 1(1,0,1),D 1(0,0,1),E(1,x ,0),A(1,0,0), C(0,2,0).

(1),0)1,,1(),1,0,1(,1111D DA x D DA ⊥=-=所以因为(2)因为E 为AB 的中点,则E (1,1,0), 从而)0,2,1(),1,1,1(1-=-=D ,)1,0,1(1-=AD ,

设平面ACD 1的法向量为),,(c b a n =,

则?????=?=?,

0,

01AD AC n 也即???=+-=+-002c a b a ,得???==c a b a 2,

从而)2,1,2(=n ,所以点E 到平面AD 1C 的距离为.3

1

32121=-+=

?=h (3)设平面D 1EC 的法向量),,(c b a =, ∴),1,0,0(),1,2,0(),0,2,1(11=-=-=DD C D x CE

由???=-+=-??????=?=?.0)2(0

2,

0,01x b a c b C D n 令b =1, ∴c=2, a =2-x , ∴).2,1,2(x -=依题意.22

5

)2(222||||4cos 211=+-?=?=

x DD n π ∴321+=x (不合,舍去),322-=x . ∴AE=32-时,二面角D 1—EC —D 的大小为

4

π

. 变式:如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.

(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA⊥BD. 解析:(Ⅰ)如图,取AD 的中点E , 连结PE ,则PE⊥AD.

作PO⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE⊥AD,

所以∠PEO 为侧面PAD 与底面所成的二面角 的平面角,由已知条件可知∠PEO=60°,PE=6,所以PO=33,

四棱锥P —ABCD 的体积V P —ABCD =.96333483

1=???

(Ⅱ)法1 如图,以O 为原点建立空间直角坐标系.通过计算可得P(0,0,33), A(23,-3,0),B(23,5,0),D(-23,-3,0)

所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=? 所以PA⊥BD. 法2:连结AO ,延长AO 交BD 于点F.通过计算 可得EO=3,AE=23,又知AD=43,AB=8, 得

.AB

AD

AE EO =所以Rt△AEO∽Rt△BAD.得∠EAO=∠ABD. 所以∠EAO+∠ADF=90° 所以 AF⊥BD.

因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA⊥BD.

【点晴】本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力,解题的关键是二面角的使用。使用空间向量能降低对空间想象能力的要求,但坐标系的位置不规则,注意点坐标的表示。

空间垂直关系的相互转化

空间垂直关系的相互转化 山东省莱芜市第五中学数学组(271121) 刘峰 空间的垂直关系包括线线垂直,线面垂直,面面垂直。解决此类问题的关键是利用相关的定理,性质将三者或其中的两者进行合理的转化。 线线垂直,线面垂直,面面垂直三者之间的关系可以用下图来表示: 线线垂直线面垂直面面垂直 (1) (2)(3)(4) 其中:(1)线面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面 (2)如果一条直线和一个平面垂直那么这条直线和这个平面内的任意一条直线都垂直。 (3)面面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 (4)面面垂直的性质定理:若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面 下面我们通过几个例子来看一下在具体题目中是如何进行转化的。 例1、设ABCD 是空间四边形,,AB AD CB CD ==. 求证:AC BD ⊥. 【证明】如右图,设BD 的中点为K ,连结,AK CK . AB AD =Q ,K 为BD 的中点,AK BD ∴⊥ 同理CK BD ⊥. 又,,AK CK K BD AKC =∴⊥I 面 又,.AC AKC BD AC ?∴⊥面 【点悟】(1)证明线线垂直问题往往转化为线面垂直来解决;直线垂直于平面,则这条直线垂直于这个平面内的所有直线,这是证明线线垂直的一条有效途径。(2)本题的转化过程为线线垂直→线面垂直→线线垂直。 例2、如右图,已知平面PAB ABC ⊥平面, 平面PAC ABC ⊥平面,AE PBC ⊥平面,E 为垂足. (1) 求证:PA ABC ⊥平面; (2) 当E 为PBC ?的垂心时,求证:ABC ?是直角三角形.

空间中直线与直线之间的位置关系

2.1.2 空间中直线与直线之间的位置关系 整体设计 教学分析 空间中直线与直线的位置关系是立体几何中最基本的位置关系,直线的异面关系是本节的重点和难点.异面直线的定义与其他概念的定义不同,它是以否定形式给出的,因此它的证明方法也就与众不同.公理4是空间等角定理的基础,而等角定理又是定义两异面直线所成角的基础,请注意知识之间的相互关系,准确把握两异面直线所成角的概念. 三维目标 1.正确理解空间中直线与直线的位置关系,特别是两直线的异面关系. 2.以公理4和等角定理为基础,正确理解两异面直线所成角的概念以及它们的应用. 3.进一步培养学生的空间想象能力,以及有根有据、实事求是等严肃的科学态度和品质. 重点难点 两直线异面的判定方法,以及两异面直线所成角的求法. 课时安排 1课时 教学过程 导入新课 思路1.(情境导入) 在浩瀚的夜空,两颗流星飞逝而过(假设它们的轨迹为直线),请同学们讨论这两直线的位置关系. 学生:有可能平行,有可能相交,还有一种位置关系不平行也不相交,就像教室内的日光灯管所在的直线与黑板的左右两侧所在的直线一样. 教师:回答得很好,像这样的两直线的位置关系还可以举出很多,又如学校的旗杆所在的直线与其旁边公路所在的直线,它们既不相交,也不平行,即不能处在同一平面内.今天我们讨论空间中直线与直线的位置关系. 思路2.(事例导入) 观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与线段C′C所在直线的位置关系如何? 图1 推进新课 新知探究 提出问题 ①什么叫做异面直线? ②总结空间中直线与直线的位置关系. ③两异面直线的画法. ④在同一平面内,如果两直线都与第三条直线平行,那么这两条直线互相平行.在空间这个结论成立吗? ⑤什么是空间等角定理? ⑥什么叫做两异面直线所成的角? ⑦什么叫做两条直线互相垂直?

空间位置关系的判断与证明

. . 空间中的线面关系 要求层次 重难点 空间线、面的位置关系 B ① 理解空间直线、平面位置关系的定 义,并了解如下可以作为推理依据的公 理和定理. ◆公理1:如果一条直线上的两点 在一个平面,那么这条直线上所有的点 在此平面. ◆公理2:过不在同一条直线上的 三点,有且只有一个平面. ◆公理3:如果两个不重合的平面 有一个公共点,那么它们有且只有一条 过该点的公共直线. ◆公理4:平行于同一条直线的两 条直线互相平行. ◆定理:空间中如果一个角的两边 与另一个角的两边分别平行,那么这两 个角相等或互补. ② 以立体几何的上述定义、公理和 定理为出发点,认识和理解空间中线面 平行、垂直的有关性质与判定. 公理1,公理2,公理3,公理4,定理* A 高考要求 模块框架 空间位置关系的判断与证明

. . 理解以下判定定理. ◆如果平面外一条直线与此平面的 一条直线平行,那么该直线与此平面平 行. ◆如果一个平面的两条相交直线与 另一个平面都平行,那么这两个平面平 行. ◆如果一条直线与一个平面的两条 相交直线都垂直,那么该直线与此平面 垂直. ◆如果一个平面经过另一个平面的 垂线,那么这两个平面互相垂直. 理解以下性质定理,并能够证明. ◆如果一条直线与一个平面平行, 经过该直线的任一个平面与此平面相 交,那么这条直线就和交线平行. ◆如果两个平行平面同时和第三个 平面相交,那么它们的交线相互平行. ◆垂直于同一个平面的两条直线平 行. ◆如果两个平面垂直,那么一个平 面垂直于它们交线的直线与另一个平面 垂直. ③ 能运用公理、定理和已获得的结 论证明一些空间位置关系的简单命题. *公理1:如果一条直线上的两点在一个平面,那么这条直线在此平面. 公理2:过不在一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线平行. 定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补. 1.集合的语言: 我们把空间看做点的集合,即把点看成空间中的基本元素,将直线与平面看做空间的子集,这样便可以用集合的语言来描述点、直线和平面之间的关系: 点A 在直线l 上,记作:A l ∈;点A 不在直线l 上,记作A l ?; 点A 在平面α,记作:A α∈;点A 不在平面α,记作A α?; 直线l 在平面α(即直线上每一个点都在平面α),记作l α?; 直线l 不在平面α(即直线上存在不在平面α的点),记作l α?; 直线l 和m 相交于点A ,记作{}l m A =,简记为l m A =; 知识内容

最新空间几何—平行垂直证明(高一)

空间几何平行垂直证明专题训练知识点讲解 (一)直线与直线平行的证明 1)利用某些平面图形的特性:如平行四边形的对边互相平行 2)利用三角形中位线性质 3)利用空间平行线的传递性:m//a,m//b = a//b 平行于同一条直线的两条直线互相平行。 4)利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行 a II - ' a= a II b -b - 5)利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. -// I _ o(nY = a〉= a // b 6)利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行 a _ :' b _ = a // b 7)利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行 8)利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明

平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 两个平面互相平行,则其中一个平面内的任一直线平行于另 (二)平面与平面平行的证明 常见证明方法: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 、“垂直关系”常见证明方法 (一)直线与直线垂直的证明 1) 利用某些平面图形的特性:如 直角三角形的两条直角边互相垂直 等。 2) 看夹角:两条共(异)面直线的夹角为 90°,则两直线互相垂直。 3) 利用直线与平面垂直的性质: 1) 利用直线与平面平行的判定定理: 2) a // b 丿 利用平面与平面平行的性质推论: 个平面 3) 1) 利用平面与平面平行的判定定理: 2) 3) // // b = P :?:〃: 利用某些空间几何体的特性:如 利用定义:两个平面没有公共点 利用定义:直线在平面外,

空间中点线面位置关系(经典)

第一讲:空间中的点线面 一,生活中的问题? 生活中课桌面、黑板面、教室墙壁、门的表面都给我们以“平面”形象.如果想把一个木棍钉在墙上,至少需要几个钉子?教室的门为什么可以随意开关?插上插销后为什么不能开启?房顶和墙壁有多少公共点?通过本节课学习,我们将从数学的角度解释以上现象. 二,概念明确 1,点构成线,线构成面,所以点线面是立体几何研究的主要对象。 所以:点与线的关系是_____________________,用符号______________。 线与面的关系是_____________________,用符号______________。 点与面的关系是_____________________,用符号______________。 2,高中立体几何主要研究内容:点,线,面的位置关系和几何量(距离,角) 3,直线是笔直,长度无限的;平面是光滑平整,向四周无限延伸,没有尽头的。点,线,面都是抽象的几何概念。不必计较于一个点的大小,直线的长度与粗细。 4,平面的画法与表示 描述几何里所说的“平面”是从生活中的一些物体抽象出来的,是无限的 画法通常把水平的平面画成一个,并且其锐角画成45°,且横边长等于其邻边长的倍,如图a所示,如果一个平面被另一个平面遮挡住,为了增强立体感,被遮挡部分用 画出来,如图b所示

记法 (1)用一个α,β,γ等来表示,如图a中的平面记为平面α (2) 用两个大字的(表示平面的平行四边形的对角线的顶 点)来表示,如图a中的平面记为平面AC或平面BD (3) 用三个大写的英文字母(表示平面的平行四边形的不共线的顶点)来表示,如图a 中的平面记为平面ABC或平面等 (4) 用四个大写的英文字母(表示平面的平行四边形的)来表示,如图a中的平面可记作平面ABCD 检验检验: 下列命题:(1)书桌面是平面;(2)8个平面重叠起来要比6个平面重叠起来厚;(3)有一 个平面的长是50m,度是20m;(4)平面是绝对的平、无厚度、可以无限延展的抽象的数学概念.其中正确命题的个数为() A.1B.2C.3D.4 三,点,线,面的位置关系和表示 A是点,l,m是直线,α,β是平面. 文字语言符号语言图形语言 A在l上 A在l外 A在α内 A在α外 文字语言符号语言图形语言 l在α内 l与α平行

空间几何——平行与垂直证明

c c ∥∥b a b a ∥?一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那 么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β b a a =??βαβ α∥b a ∥? b a b a ////??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα∥?a β ∥a ?b ∥a b a αα??α ∥a ?

最新空间位置关系的判断与证明

空间中的线面关系 要求层 次 重难点 空间线、面的位置关系 B ①理解空间直线、平面位置关系的定 义,并了解如下可以作为推理依据的公 理和定理. ◆公理1:如果一条直线上的两点 在一个平面内,那么这条直线上所有的 点在此平面内. ◆公理2:过不在同一条直线上的 三点,有且只有一个平面. ◆公理3:如果两个不重合的平面 有一个公共点,那么它们有且只有一条 过该点的公共直线. ◆公理4:平行于同一条直线的两 条直线互相平行. ◆定理:空间中如果一个角的两边 与另一个角的两边分别平行,那么这两 个角相等或互补. ②以立体几何的上述定义、公理和 定理为出发点,认识和理解空间中线面 平行、垂直的有关性质与判定. 理解以下判定定理. ◆如果平面外一条直线与此平面内 的一条直线平行,那么该直线与此平面公理1,公理2,公理3, 公理4,定理* A 高考要求 模块框架 空间位置关系的判断与证明

*公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线平行. 定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补. 1.集合的语言: 我们把空间看做点的集合,即把点看成空间中的基本元素,将直线与平面看做空间的子集,这样便可以用集合的语言来描述点、直线和平面之间的关系: 点A 在直线l 上,记作:A l ∈;点A 不在直线l 上,记作A l ?; 点A 在平面α内,记作:A α∈;点A 不在平面α内,记作A α?; 直线l 在平面α内(即直线上每一个点都在平面α内),记作l α?; 直线l 不在平面α内(即直线上存在不在平面α内的点),记作l α?; 直线l 和m 相交于点A ,记作{}l m A =,简记为l m A =; 平面α与平面β相交于直线a ,记作a αβ=. 2.平面的三个公理: ⑴ 公理一:如果一条直线上的两点在一个平面内,那么这条直线上所 有的点都在这个平面内. 图形语言表述:如右图: 知识内容

空间图形的基本关系的认识

空间图形的基本关系的认识 【学习目标】 1.通过长方体这一常见的空间图形,了解空间中点、线、面的基本位置关系,并会用符号语言进行表述。 2.掌握空间图形的公理1、2。 【学习重点】 以长方体为载体,直观认识和理解空间点、线、面之间的位置关系,加强符号语言的运用能力和推理论证能力。 【学习难点】 异面直线的理解,公理1、2的应用。 【课前预习案】

一、空间图形的基本关系,注关于异面直线 (1)若直线α,b是异面直线,则在空间中找不到一个平面,使其同时经过这两条直线. (2)不可以误解为分别在不同平面的两条直线. (3)异面直线既不平行又不相交. (4)直线a交平面α于点A,直线b在平面α内且不过点A,则直线α,b异面.

l ,A ∈α, B α∈,则__________. 公 理 2 经过__________上的三点,有且_____一个平面 (即可以确定一个平面). 若A 、B 、C 三点不共线,则____________一个平面α使A α∈,B α∈,C α∈. 【课堂探究案】 学法指导:根据题意画出直观图,利用直观图分析点、线、面之间的位置关系。 1.用符号语言表示下列语句,并画出图形 (1)直线 经过平面α内两点A 、B (2)直线 在平面α外,且经过平面α内一点P (3)直线 是平面α与平面β的交线,平面α内有一条直线m 与 平行 2.如图,在三棱锥S —ABC 的六条棱所在的直线中,异面直线共有( ) A.2对 B.3对 C.4对 D.6对 3.若直线m α平面?=P ,则下列结论中正确的是( ) A.平面α内的所有直线与直线m 异面 B.平面α内不存在与直线m 平行的直线 C.平面α内存在唯一的直线与m 平行 D.平面α 内的所有直线与直线m 相交 4.如图在长方体1111ABCD A B C D -所有棱中 (1)与11B A 异面的直线有_________________ (2)与1BD 异面的直线有_________________ A B C S A B C D

空间点线面之间位置关系知识点总结

高中空间点线面之间位置关系知识点总结 第一章空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。 棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台. 球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.(二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。平行投影分为正投影和斜投影。 2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则:长对齐、高对齐、宽相等 3.直观图:直观图通常是在平行投影下画出的空间图形。 4.斜二测法:在坐标系''' x o y中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。重点记忆:直观图面积=原图形面积 (三)空间几何体的表面积与体积 1、空间几何体的表面积 ①棱柱、棱锥的表面积:各个面面积之和 ②圆柱的表面积③圆锥的表面积2 S rl r ππ =+ ④圆台的表面积22 S rl r Rl R ππππ =+++⑤球的表面积2 4 S R π = ⑥扇形的面积公式 21 3602 n R S lr π == 扇形 (其中l表示弧长,r表示半径) 2、空间几何体的体积 ①柱体的体积V S h =? 底 ②锥体的体积1 3 V S h =? 底 ③台体的体积1) 3 V S S S S h =+? 下下 上上 (④球体的体积3 4 3 V R π = 2 π 2 π 2r rl S+ =

空间位置关系的判断与证明.板块一.对平面的进一步认识.学生版

题型一 平面的基本性质 【例1】 在空间中,“两条直线没有公共点”是“这两条直线平行”的( ) A .充分不必要条件. B .必要不充分条件. C .充要条件. D .既不充分也不必要条件. 【例2】 判断下面说法是否正确: ①如果一条直线与两条直线都相交,那么这三条直线确定一个平面. ②经过一点的两条直线确定一个平面. ③经过空间任意三点有且只有一个平面. ④若四边形的两条对角线相交于一点,则该四边形是平面图形. ⑤两个平面的公共点的集合,可能是一条线段. ⑥空间中的四个点只可能确定一个平面或四个平面. 【例3】 若P 是正方体1111ABCD A B C D -上底面对角线AC 上一点,则B 、D 、P 三点可以确定平面( ) A .1个 B .2个 C .无数个 D .1个或无数个 【例4】 下列推理错误的是( ) A .,,,A l A B l B l ααα∈∈∈∈?? B .,,,A A B B AB αβαβαβ∈∈∈∈?= C .,,,,,A B C A B C αβ∈∈,且,,A B C 不共线?,αβ重合 D .,l A l A αα?∈?? 【例5】 已知点A ,直线l ,平面α, ①,A l l A αα∈??? ②,A l l A αα∈∈?∈ ③,A l l A αα???? ④,A l A l αα∈??? 以上命题表达正确,且是真命题的有________. 共线问题 【例6】 在正方体1111ABCD A B C D -中,O ,1O 分别是上,下底的中心,P 是1DB 的中点,则O 、P 、1 O 典例分析 板块一.对平面的进一步认识

空间中的垂直关系(带答案)教学提纲

空间中的垂直关系(带 答案)

空间中的垂直关系专题训练 知识梳理 一、线线垂直: 如果两条直线于一点或经过后相交于一点,并且交角 为,则称这两条直线互相垂直. 二、线面垂直: 1.定义:如果一条直线和一个平面相交,并且 和这个 平面内的_________________,则称这条直线和这个平 面垂直. 也就是说,如果一条直线垂直于一个平面,那么他就和平面内任意一条直线都 .直线l和平面 α互相垂直,记作l⊥α. 2.判定定理:如果一条直线与平面内的直线垂直,则这条直线 与这个平面垂直. 推论①:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也于这个平面. 推论②:如果两条直线同一个平面,那么这两条直线平行. 3.点到平面的距离:长度叫做点到平面的距离. 三、面面垂直: 1.定义:如果两个相交平面的交线与第三个平面,又这两个平面与第 三个平面相交所得的两条交线,就称这两个平面互相垂直.平面α,β互相垂直,记作 α⊥β. 2.判定定理:如果一个平面经过另一个平面的___________,则这两个平面互相垂直. 3.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于 直线垂直于另一个平面. 四、求点面距离的常用方法:

1.直接过点作面的垂线,求垂线段的长,通常要借助于某个三角形. 2.转移法:借助线面平行将点转移到直线上某一特殊点到平面的距离来求解. 3.体积法:利用三棱锥的特征转换位置来求解. 题型一线线垂直、线面垂直的判定及性质 例1.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD, A C⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求证: (1)CD⊥AE; (2)PD⊥平面ABE. 【变式1】已知:正方体ABCD﹣A1B1C1D1 ,AA1=2,E为棱CC1的中点. (Ⅰ)求证:B1D1⊥AE; (Ⅱ)求证:AC∥平面B1DE. 【解答】(Ⅰ)连接BD,则BD∥B1D1,∵ABCD是正方形,∴AC⊥ BD.

(新)高中数学黄金100题系列第64题空间垂直关系的证明理

第64题 空间垂直关系的证明 I .题源探究·黄金母题 【例1】如图,在正方体1111ABCD A B C D -中,求证: (1)1B D ⊥平面11A C B ; (2)1B D 与平面11A C B 的交点H 是11A C B ?的重心 (三角形三条中线的交点). 【解析】(1)连接11B D ,1111B D A C ⊥, 又1DD ⊥面1111A B C D ,∴111DD AC ⊥, ∵1111B D A C ⊥,1 111DD B D D = ∴11A C ⊥面1D DB ,因此111AC B D ⊥. 同理可证:11B D A B ⊥,∴1B D ⊥平面11A C B . (2)连接11A H BH C H ,,, 由11111A B BB C B ==,得11A H BH C H ==. ∴点H 为11A BC ?的外心.又11A BC ?是正三角形, ∴点H 为11A BC ?的中心,也为11A BC ?的重心. H C 1 D 1 B 1 A 1 C D A B II .考场精彩·真题回放 【例2】【2017课标1理18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=. (1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,90APD ∠=,求二面角 A -P B - C 的余弦值. 【解析】分析:(1)根据题设条件可以得出 AB ⊥AP ,CD ⊥PD .而AB ∥CD ,就可证明出AB ⊥平 面PAD .进而证明平面PAB ⊥平面PAD .试题解析:(1)由已知90BAP CDP ∠=∠=?,得AB ⊥AP , CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平 面PAD .又AB ?平面PAB , 所以平面PAB ⊥平面PAD . (2)略 【例3】【2017课标3理19】如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD . (1)证明:平面ACD ⊥平面ABC ; (2)过AC 的平面交BD 于点E ,若平面AEC 把四 面体ABCD 分成体积相等的两部分,求二面角 D –A E –C 的余弦值. 【答案】(1)证明略;(2) 7 7 . 【解析】分析:(1)利用题意证得二面角的平面角为90°,则可得到面面垂直; 解析:(1)由题设可得,ABD CBD ???,从而 AD DC = 又ACD ?是直角三角形,所以 0=90ACD ∠取AC 的中点O ,连接DO ,BO ,则

2018届高考数学复习—立体几何:(二)空间直线、平面关系的判断与证明—2.平行与垂直关系的证明(试题版)

【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质 【典型例题】 [例1]?(1)如图,在四面体P ABC中,点D,E,F,G分别是棱 AP,AC,BC,PB的中点.求证:DE∥平面BCP . ?(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC . ?(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF . [例2]?(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证: ①B,C,H,G四点共面; ②平面EF A1∥平面BCHG . ?(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证: ①EG∥平面BB1D1D; ②平面BDF∥平面B1D1H . 【变式训练】 1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1 的中点,则BD1与平面ACE的位置关系为______. 2.如图,四边形ABCD是平行四边形,点P是平面ABCD外 一点,M是PC的中点,在DM上取一点G,过G和AP作平 面交平面BDM于GH. 求证:AP∥GH . 3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱 A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1 相交,交点分别为F,G,求证:FG∥平面ADD1A1 . 4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G= 1,H是B1C1的中点. (1)求证:E,B,F,D1四点共面; (2)求证:平面A1GH∥平面BED1F . 题型2:直线、平面垂直的判断及性质 【典型例题】 [例1]?(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE . ?(2)如图所示,在四棱锥P-ABCD中,AB⊥平面

利用空间向量证明空间位置关系

利用空间向量证明立体几何中的平行与垂直问题 [考纲要求] 1.了解空间直角坐标系,会用空间直角坐标表示点的位置.会简单应用空间两点间的距离公式. 2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.掌握空间向量的数量积及其坐标表示.能用向量的数量积判断向量的共线和垂直. 4.理解直线的方向向量及平面的法向量.能用向量语言表述线线、线面、面面的平行和垂直关系. 5.能用向量方法证明立体几何中有关线面位置关系的一些简单定理(包括三垂线定理). 知识点一:空间向量及其运算 1.空间向量及其有关概念 (1)空间向量的有关概念 (2) 2. (1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉. (2)空间向量数量积的运算律 ①结合律:(λa)·b=λ(a·b); ②交换律:a·b=b·a; ③分配律:a·(b+c)=a·b+a·c. 3.空间向量的运算及其坐标表示 设a=(a1,a2,a3),b=(b1,b2,b3).

[基本能力] 1.如图,已知空间四边形ABCD ,则13AB ―→+13BC ―→+13CD ―→ 等于________. 答案:13 AD ―→ 2.已知i ,j ,k 为标准正交基底,a =i +2j +3k ,则a 在i 方向上的投影为________. 答案:1 3.若空间三点A (1,5,-2),B (2,4,1),C (p,3,q +2)共线,则p =________,q =________. 答案:3 2 4.已知向量a =(-1,0,1),b =(1,2,3),k ∈R ,若k a -b 与b 垂直,则k =________. 答案:7 考法一 空间向量的线性运算 [例1] 已知四边形ABCD 为正方形,P 是ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形的中心O .Q 是CD 的中点,求下列各题中x ,y 的值: (1)O Q ―→=P Q ―→+x PC ―→+y PA ―→; (2)PA ―→=x PO ―→+y P Q ―→+PD ―→. [解] (1)如图,∵O Q ―→=P Q ―→-PO ―→=P Q ―→-12(PA ―→+PC ―→)=P Q ―→- 1 2PA ―→-12 PC ―→, ∴x =y =-1 2 . (2)∵PA ―→+PC ―→=2PO ―→, ∴PA ―→=2PO ―→-PC ―→. 又∵PC ―→+PD ―→=2P Q ―→,∴PC ―→=2P Q ―→-PD ―→. 从而有PA ―→=2PO ―→-(2P Q ―→-PD ―→)=2PO ―→-2P Q ―→+PD ―→ . ∴x =2,y =-2. 考法二 共线、共面向量定理的应用 [例2] 已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点, 用向量方法求证: (1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH . [证明] (1)如图,连接BG ,则EG ―→=EB ―→+BG ―→=EB ―→+12 (BC ―→+BD ―→ ) =EB ―→+BF ―→+

高中数学空间点线面之间的位置关系的知识点总结

高中空间点线面之间位置关系知识点总结 2.1空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 D C B A α L A · α C · B · A · α

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为 简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; P · α L β 共面直线 =>a ∥c 2

空间位置关系与距离专题

1 C _ A _ B _ M _ D _ E O _ C 空间位置关系与距离专题 【考题回放】 1.已知平面α外不共线的三点A,B,C 到α的距离都相等,则正确的结论是( ) A.平面ABC 必平行于α B. 存在△ABC 的一条中位线平行于α或在α内 C. 平面ABC 必与α相交 D. 平面ABC 必不垂直于α 2.如图,过平行六面体ABCD-A 1B 1C 1D 1任意两条棱的中 点作直线,其中与平面DBB 1D 1平行的直线共有( ) A.4条 B.6条 C.8条 D.12条 3.设三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别 是侧棱AA 1、 CC 1 上的点,且PA=QC 1,则 四棱锥B —APQC 的体积为( ) A .16 B .14 C .13V D .12 4.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列 四个命题:①若βαβα//,,则⊥⊥m m ; ②若βααβγα//,,则⊥⊥ ③若βαβα//,//,,则n m n m ? ?; ④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ??, 其中真命题是( ) A .①和② B .①和③ C .③和④ D .①和④ 5.在正方形''''D C B A ABCD -中,过对角线' BD 的一个平面交'AA 于E ,交'CC 于F ,则( ) ① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形 ③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD ' 有可能垂直于平面D BB ' 以上结论正确的为 。(写出所有正确结论的编号) 6.如图,四面体ABCD 中,O 、E 分别BD 、BC 的中点,2,CA CB CD BD ==== AB AD == (Ⅰ)求证:AO ⊥平面BCD ; (Ⅱ)求异面直线AB 与CD 所成角的大小; (Ⅲ)求点E 到平面ACD 的距离. 【考点透视】 判断线线、线面、面面的平行与垂直,求点到平面的距离及多面体的体积。 【热点透析】 1. 转化思想: ① ??⊥?⊥?⊥线线平行线面平行面面平行,线线线面面面 ; ② 异面直线间的距离转化为平行线面之间的距离, 平行线面、平行面面之间的距离转化为点与面的距离。 2.空间距离则主要是求点到面的距离主要方法: ①体积法; ②直接法,找出点在平面内的射影

高考数学命题角度4_3空间位置关系证明与二面角求解大题狂练理

命题角度4.3:空间位置关系证明与二面角求解 1.如图所示,已知三棱柱111ABC A B C -中, 1111AC B C =, 111A A A B =, 1160AA B ∠=?. (1)求证: 1AB B C ⊥; (2)若1112A B B C ==, 112B C =,求二面角11C AB B --的余弦值. 【答案】(1)见解析;(2) 21 7 . 【解析】试题分析: (1)证明线面垂直,一般利用线面垂直判定定理,即从线线垂直出发给予证明,而线线垂直的寻找与论证往往需要结合平几知识,如利用等腰三角形性质得底边上中线垂直底面得线线垂直,(2)一般利用空间向量数量积求二面角大小,先根据条件确定恰当空间直角坐标系,设立各点坐标,利用方程组求各面法向量,利用向量数量积求法向量夹角余弦值,最后根据法向量夹角与二面角关系确定二面角的余弦值. (2)∵1ABB ?为等边三角形, 2AB =,∴13OB =,

∵在ABC ?中, 2AB =, 2BC AC ==, O 为AB 中点, ∴1OC = , ∵12B C =, 13OB =,∴222 11OB OC B C +=, ∴1OB OC ⊥, 又1OB AB ⊥, ∴1OB ⊥平面ABC . 以O 为原点, OB , OC , 1OB 方向为x , y , z 轴的正向,建立如图所示的坐标系, ()1,0,0A -, () 10,0,3B , ()1,0,0B , ()0,1,0C , 则() 1111,1,3OC OC CC OC BB =+=+=-,则()11,1,3 C -, ()1 1,0,3AB =, () 10,1,3AC =, 则平面1BAB 的一个法向量()0,1,0m =, 设(),,n x y z =为平面11AB C 的法向量,则1130, {30, n AB x z n AC y z ?=+=?=+=令1z =-,∴3x y ==, ∴( ) 3,3,1n = -, ∴21 cos ,7m n m n m n ?= =?. 点睛:垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直.

空间中直线间的位置关系

翔宇教育集团课时设计纸 总课题:7.1直线的倾斜角和斜率 总课时2 第2课时 主备人:杨玉叶 课题: 直线的倾斜角和斜率(二) 课型:新授课 教学目的:(1)掌握经过两点的直线的斜率公式。 (2)能结合三角函数和反三角函数知识进行斜率和倾斜角间的转化运算。 (3)准确运用倾斜角和斜率的对应关系解题。 教学重点: 过两点的直线的斜率公式。 教学难点:过两点的直线的斜率公式的建立。 教学过程: 一 复习引入 1.判断正误(1)直线的倾斜角为α,则直线的斜率为tan α;(2)直线的斜率值为tan β,则该直线倾斜角为β;(3)因为所有直线都有倾斜角,故所有直线都有斜率;(4)因平行y 轴的直线斜率不存在,故平行y 轴的直线倾斜角不存在。 2.直线有倾斜角是直线斜率存在的 条件。 3.直线过A (1,1)B (-1,-1)求直线AB 的倾斜角和斜率。若B 点坐标改为(3,2)或(-3,-2),结果又如何? 先求倾斜角再求斜率较繁,能否直接用点的坐标表示斜率? 二 讲授新课 1.斜率公式 P 1(x 1,y 1) P 2(x 2,y 2) 当向量P 1 P 2方向向上时,斜率k= 当向量方向向下,斜率k= 当向量P 1 P 2垂直y 轴时,斜率k= 当向量P 1 P 2垂直x 轴时,斜率k= 综上有:当直线P 1 P 2斜率存在时,斜率k=2 121x x y y -- 指出:(1)斜率公式与两点的顺序无关; (2)若x 1≠x 2 ,y 1 =y 2直线平行x 轴或x 轴,k =0 (3)若x 1=x 2 ,y 1≠ y 2直线垂直x 轴 k 不存在。 (4)在同一直线上的任两点所确定的斜率都相等 2.直线的方向向量 直线上的向量P 1 P 2及与它平行的向量都称为方向向量. 思考:(1)方向向量P 1 P 2的坐标为多少? (2)当x 1≠x 2时向量2 11x x - P 1 P 2是直线P 1 P 2的方向向量吗?坐标为多少?由公式可知:如果知道直线上两点的坐标,即可求出直线的斜率。

利用空间向量证明空间中的位置关系-新人教B版高考数学一轮总复习测试

核心素养测评四十三利用空间向量证明空间中的位置关系 (30分钟60分) 一、选择题(每小题5分,共25分) 1.若直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,1,1), 则( ) A.l∥α B.l⊥α C.l?α或l∥α D.l与α斜交 【解析】选C.因为a=(1,0,2),n=(-2,1,1), 所以a·n=0,即a⊥n,所以l∥α或l?α. 2.已知a=(1,1,1),b=(0,2,-1),c=m a+n b+(4,-4,1).若c与a及b都垂直,则m,n的值分别为 ( ) A.-1,2 B.1,-2 C.1,2 D.-1,-2 【解析】选 A.由已知得c=(m+4,m+2n-4,m-n+1),故a·c=3m+n+1=0,b·c=m+5n-9=0.解得m=-1,n=2. 3.已知平面α内有一点M(1,-1,2),平面α的一个法向量为n=(6,-3,6),则下列点P中,在平面α内的是( ) A.P(2,3,3) B.P(-2,0,1) C.P(-4,4,0) D.P(3,-3,4) 【解析】选A. 逐一验证法,对于选项A,=(1,4,1),所以·n=6-12+6=0,所以⊥n,所以点P在平面α内,同理可验证其他三个点不在平面α内. 4.如图所示,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则: ①A1M∥D1P;②A1M∥B1Q; ③A1M∥平面DCC1D1;④A1M∥平面D1PQB1.

以上说法正确的个数为( ) A.1 B.2 C.3 D.4 【解析】选C.=+=+,=+=+,所以∥,所以A1M∥D1P,由线面平行的判定定理可知,A1M∥平面DCC1D1,A1M∥平面D1PQB1.①③④正确. 5.如图,F是正方体ABCD-A1B1C1D1的棱CD的中点.E是BB1上一点,若D1F⊥DE,则有( ) A.B1E=EB B.B1E=2EB C.B1E=EB D.E与B重合 【解析】选A.分别以DA,DC,DD1为x,y,z轴建立空间直角坐标系,设正方体的棱长为2, 则D(0,0,0),F(0,1,0),D1(0,0,2), 设E(2,2,z),则=(0,1,-2),=(2,2,z),因为·=0×2+1×2-2z=0,所以z=1,所以B1E=EB. 二、填空题(每小题5分,共15分) 6.若A0,2,,B1,-1,,C-2,1,是平面α内的三点,设平面α的法向量a=(x,y,z),则x∶y∶z=________. 【解析】=1,-3,-,=-2,-1,-, a·=0,a·=0,x∶y∶z

相关文档
最新文档