随机过程课后答案_湖大何选森

合集下载

(整理)随机过程课后习题

(整理)随机过程课后习题

(整理)随机过程课后习题习题⼀1.设随机变量X 服从⼏何分布,即:(),0,1,2,...k P X k pq k ===。

求X 的特征函数、EX 及DX 。

其中01,1p q p <<=-是已知参数。

2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为(2)求其期望和⽅差;(3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。

3.设X 是⼀随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。

(1)(),(0,)Y aF X b a b =+≠是常数;(2)Z=ln F()X ,并求()k E Z (k 为⾃然数)。

4.设12,,...,n X X X 相互独⽴,具有相同的⼏何分布,试求的分布。

5.试证函数为⼀特征函数,并求它所对应的随机变量的分布。

6.试证函数为⼀特征函数,并求它所对应的随机变量的分布。

7.设12,,...,n X X X 相互独⽴同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协⽅差矩阵,再求的概率密度函数。

8.设X 、Y 相互独⽴,且(1)分别具有参数为(m, p)及(n, p)的⼆项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。

求X+Y 的分布。

9.已知随机向量(X, Y )的概率密度函数为试求其特征函数。

10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协⽅差矩阵为B σ?kl 44=(),求(X ,X ,X ,X E 1234)。

11.设X 1,X 2 和X 3相互独⽴,且都服从(0,1)N ,试求随机变量112Y X X =+和213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。

12.设X 1,X 2 和X 3相互独⽴,且都服从2(0,)N σ,试求:(1)随机向量(X 1, X 2, X 3)的特征函数;1,0()0,0()p p bxb x e x p x p x --?>?Γ??≤?=0,0b p >>1nkk X =∑(1)()(1)jt jnt jt e e f t n e -=-21()1f t t=+11ni i X X n ==∑221[1()],1,1(,)40,xy x y x y p x y ?+--<(2)设112123123,,S X S X X S X X X ==+=++,求随机向量(S 1, S 2, S 3)的特征函数;(3)121Y X X =-和232Y X X =-组成的随机向量(Y 1, Y 2)的特征函数。

随机过程-答案

随机过程-答案

2012-2013学年第一学期统计10本《随机过程》期中考试一. 填空题1.设马氏链的一步转移概率矩阵()ij P p =,n 步转移矩阵()()n ij P p =,二者之间的关系为(n)n PP =2.状态i 常返的充要条件为()n i i n p ∞==∑∞。

3.在马氏链{},0n X n ≥中,记()n i jp ={}0,11,n P Xm j m n X j X i ≠≤≤-==,n ≥1.i j p =()1n i j n p ∞=∑,若i j p <1,称状态i 为 。

二. 判断题1. S 是一个可数集,{:0n n X ≥}是取值于S 的一列随机变量,若()1011100111111,,...,(,...,)n n n n n n n n n n n n i i S P i X i X i X i P i i -+++--++-∀≥∀∈X =|====X =|X=并且满足,则{:0n n X ≥}是一个马氏链。

×2. 任意状态都与它最终到达的状态是互通的,但不与它自己是互通的。

×3. 一维与二维简单随机游动时常返的,则三维或更高维的简单随机游动也是常返的。

×4. 若状态i ↔状态j ,则i 与j 具有相同的周期。

√5. 一个有限马尔科夫链中不可能所有的状态都是暂态。

√三. 简答题1.什么是随机过程,随机序列?答:设T 为[0,+∞)或(-∞,+∞),依赖于t(t ∈T)的一族随机变量(或随机向量){t ξ}通称为随机过程,t 称为时间。

当T 为整数集或正整数集时,则一般称为随机序列。

2 .什么是时齐的独立增量过程?答:称随机过程{t ξ:t ≥0}为独立增量过程,如果对于01,0,n n t t t ∀∀≤<<< 起始随机变量及其后的增量s t s ξξ+-是相互独立的随机变量组;如果s t s ξξ+-的分布不依赖于s, 则此独立增量过程又称为时齐的独立增量过程。

(解答)《随机过程》第三章习题

(解答)《随机过程》第三章习题
义随机过程 Z (t) X (t) Y (t), t 0 ,且令: pn (t) P{Z (t) n}。
(1)试求随机过程{Z (t); t 0}的均值函数 E{Z (t)}和二阶矩 E{Z 2 (t)} ;

(2)试证明: pn (t)u n exp{(1 2 )t } exp{1ut 2u 1t }。 n
P{X (s) i}
P{N (s) 2(i 1)}
P{N (s) 2(i 1)}P{N (t s) 2( j i)} [(t s)]2( ji) e(ts) ; ( j i, t s)
P{N (s) 2(i 1)}
[2( j i)]!

lim
h0
Pt
2

h 2

S2

t2

h 2 ,t5 h2

h 2

S5

t5

h
2


5 2
t2 (t5
t2 )2 et5
,
0 t2 t5
(2)由于{N (t) 1} {S1 t} ,由泊松过程与指数分布的关系可知,在{S1 t} 条件 下, S1 的分布密度函数为
(3)由于{N (t) 1} {S1 t S2} ,令: 0 t1 t t2 ,取充分小的 h1, h2 0 ,
使得: t1 h1 t1 t t2 h2 t2 ,由
t1 h1 S1 t1, t2 h2 S2 t2 N t1 h1 0, N t1 N t1 h1 1,
3、 设{N1 (t); t 0}和{N 2 (t); t 0} 是相互独立的 Poisson过程,其参数分别为 1 和 2 .若 N0 (t) N1 (t) N 2 (t) ,问: (1) {N0 (t); t 0} 是否为 Poisson 过程,请说明理由; (2) {N0 (t); t 0} 是否为平稳过程,请说明理由。 解:(1)由于 N 0 (t) 的状态空间为 S {,1, 0,1,} ,因此 N 0 (t) 不是计数过程,更

随机过程作业和答案第一二章

随机过程作业和答案第一二章

随机过程作业第一章 P9例题6:随机过程X(t)=A+Bt, t ≥0, 其中A 和B 是独立随机变量,分布服从正态分布N(0, 1)。

求X(t)的一维和二维分布。

解 先求一维分布。

当t 固定,X(t)是随机变量,因为 EX(t)=EA+tEB=0, DX(t)=DA+2t DB=1+2t故X(t)具有正态分布N(0, 1+2t )。

这亦是随机过程X(t)的一维分布。

再求二维分布。

当1t , 2t 固定, X(1t )=A+B 1t , X(2t )=A+B 2t因A 、B 独立同正态分布,故(A, B)T 亦为二维正态分布。

则其线性变换也服从正态分布。

且所以二维分布是数学期望为(0, 0)T,协方差矩阵 的二维正态分布。

P10例题7:随机过程X(t)=Acost, -∞<t<∞,其中A 是随机变量,且有分布列 A 1 2 3 P 1/3 1/3 1/3 求 (1) 一维分布函数(2) 二维分布函数解 (1) 先求所以222211211)DX(t ,1)DX(t , 0)EX(t ,0)(t t t EX +=+===212121211))(())()X(t ())X(t ),(cov(t t Bt A Bt A E t X E t X +=++==⎥⎦⎤⎢⎣⎡++++222121211111t t t t t t )3π,0x x F )2πF(x;x F ;,( ),4;(21π( ;) 4F x π。

X()cos ,442A A ππ==显然,三值,,易知它仅取2232 22{()42P X π=={cos 42P A π==1P{A 1},3==31}223)4({ ,31 }2)4({====ππX P X P 同理,⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<= 2 23 x 1,2 23x 2 ,32 2 x 22 ,3122 x 0 )4; ( ,πx F进而有P18例题1:具有随机初相位的简谐波 其中a 与 是正常数,而 服从在区间[0,2 ]上的均匀分布, 求X(t)的数学期望方差和相关函数。

随机过程-方兆本-第三版-课后习题答案

随机过程-方兆本-第三版-课后习题答案

习题4以下如果没有指明变量t 的取值范围,一般视为R t ∈,平稳过程指宽平稳过程。

1. 设Ut t X sin )(=,这里U 为)2,0(π上的均匀分布.(a ) 若 ,2,1=t ,证明},2,1),({ =t t X 是宽平稳但不是严平稳, (b ) 设),0[∞∈t ,证明}0),({≥t t X 既不是严平稳也不是宽平稳过程. 证明:(a )验证宽平稳的性质,2,1,0)cos (2121)sin()sin()(2020==-=•==⎰t Ut tdU Ut Ut E t EX ππππ))cos()(cos(21)sin (sin ))(),((U s t U s t E Us Ut E s X t X COV ---=•=t U s t s t U s t s t πππ21}])[cos(1])[cos(1{212020•+++--= s t ≠=,021Ut Esin ))(),((2==t X t X COV (b) ,)),2cos(1(21)(有关与t t t t EX ππ-=.)2sin(8121DX(t)有关,不平稳,与t t tππ-=2. 设},2,1,{ =n X n 是平稳序列,定义 ,2,1},,2,1,{)(==i n X i n 为,,)1(1)1()2(1)1(---=-=n n n n n n X X X X X X ,证明:这些序列仍是平稳的. 证明:已知,)(),(,,2t X X COV DX m EX t t n n n γσ===+2121)1(1)1()1(2)(,0σγσ≡+=-==-=--n n n n n n X X D DX EX EX EX)1()1()(2),(),(),(),(),(),(111111)1()1(++--=+--=--=--+-+-++--+++t t t X X COV X X COV X X COV X X COV X X X X COV X X COV n t n n t n n t n n t n n n t n t n n t n γγγ显然,)1(n X 为平稳过程.同理可证, ,,)3()2(n n X X 亦为平稳过程.3.设1)nn k k k k Z a n u σ==-∑这里k σ和k a 为正常数,k=1,....n; 1,...n u u 是(0,2π)上独立均匀分布随机变量。

随机过程第一章习题答案

随机过程第一章习题答案
似水年华轻轻一瞥,年华似水轻描淡写
随机过程 第一章 习题答案
1.方法一: F (t ; x) P{ X (t ) x} P{ X sin t x} 当t k 时,P{ X (t ) 0} 1,其中k为整数,
k 当t 时,
x x sin t (i)若 sin t 0, F (t ; x) P{ X } ( x) dx sin t x 1 1 1 1 x 2 f (t ; x) ( ) exp{ ( )} sin t sin t sin t 2 2 sin t x x x sin t (ii )若 sin t 0, F (t ; x) P{ X } 1 P{ X } 1 ( x)dx sin t sin t 1 1 1 x 2 f (t ; x) Fx' (t ; x) exp{ ( )} sin t 2 2 sin t 1 1 x 2 f (t ; x) exp{ ( ) }, k 为整数。 2 sin t 2 sin t

时,k为整数,有 X
一维分布密度为:f (t ; x) 当t= k

时,k为整数,有P{ X (t ) 0} 1
1 1 Xt x}=P{e } e Xt x 1 1 1 =P{Xt ln }=P{Xt ln x}=P{X ln x}=1-P{X ln x} x t t 1 11 1 1 f (t ; x) Fx' (t ; x) f ( ln x)( ) f ( ln x) t t x tx t 2.F(t;x)=P{X(t) x}=P{e Xt x}=P{
方法二: X N(0,1) EX=0,EX 2 =DX=1 EX(t)=E(Xsin t)=sin tEX 0 k N(0 , sin 2 t) 1 1 x 2 exp{ ( ) }, x 2 sin t 2 sin t DX (t ) D(Xsin t) (sin t) 2 DX sin 2 t 当t

第1章 随机过程的基本概念习题答案

第一章 随机过程的基本概念1.设随机过程 +∞<<-∞=t t X t X ,cos )(0ω,其中0ω是正常数,而X 是标准正态变量。

试求X (t )的一维概率分布解:∵ 当0cos 0=t ω 即 πω)21(0+=k t 即 πω)21(10+=k t 时 {}10)(==t x p若 0cos 0≠t ω 即 πω)21(10+≠k t 时 {}{}x t X P x x X P t x F ≤=≤=0cos )(),(ω当 0cos 0>t ω时ξπωωξd et x X P t x F t x⎰-=⎭⎬⎫⎩⎨⎧≤=02cos 02021cos ),(此时 ()te xt x F t x f tx 0cos 2cos 121,),(022ωπω⋅=∂∂=-若 0cos 0<t ω时⎭⎬⎫⎩⎨⎧<-=⎭⎬⎫⎩⎨⎧≥=t x x P t x X P t x F 00cos 1cos ),(ωωξπωξd et x⎰--=02cos 02211同理有 tet x f tx 0cos 2cos 121),(022ωπω⋅-=-综上当:0cos 0≠t ω 即 πω)21(10+≠k t 时 tx et x f 022cos 20|t cos |121),(ωωπ-=2.利用投掷一枚硬币的试验,定义随机过程为⎩⎨⎧=,2,cos )(出现反面出现正面t t t X π 假定“出现正面”和“出现反面”的概率各为21。

试确定)(t X 的一维分布函数)21,(x F 和)1,(x F ,以及二维分布函数)1,21;,(21x x F解:(1)先求)21,(x F显然⎩⎨⎧=⎪⎩⎪⎨⎧-=⎪⎭⎫ ⎝⎛出现反面出现正面出现反面出现正面10,212,2cos 21πX随机变量⎪⎭⎫⎝⎛21X 的可能取值只有0,1两种可能,于是21021=⎭⎬⎫⎩⎨⎧=⎪⎭⎫ ⎝⎛X P 21121=⎭⎬⎫⎩⎨⎧=⎪⎭⎫ ⎝⎛X P 所以⎪⎩⎪⎨⎧≥<≤<=⎪⎭⎫ ⎝⎛1110210021,x x x x F再求F (x ,1)显然⎩⎨⎧-=⎩⎨⎧=出现反面出现正面出现反面出现正面 2 1 2cos (1)πX{}{}212)1(-1(1)====X p X p 所以⎪⎪⎩⎪⎪⎨⎧≥<≤<=2121- 21-10,1)(x x x x F(2) 计算)1,21;,(21x x F⎩⎨⎧-=⎩⎨⎧=出现反面出现正面出现反面出现正面21)1(, 1 0)21( X X于是2 ,1 121 ,12 ,10 211 ,00 )1(;211,21;,21212121212121⎪⎪⎪⎩⎪⎪⎪⎨⎧≥><≤->≤<≤-<≥+∞<<∞-<=⎭⎬⎫⎩⎨⎧≤≤⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛x x x x x x x x x x x X x X p x x F x 或或3.设随机过程(){}+∞<<-∞t t X ,共有三条样本曲线t X t X X cos )t,( ,sin )t,( ,1)t,(321===ϖϖϖ且,31)p()p()p(321===ϖϖϖ试求随机过程()t X 数学期望EX(t)和相关函数R x (t 1,t 2)。

随机过程 课后答案 何书元

= cos λ s cos λ tCov(Z1, Z1) + sin λ s sin λ tCov(Z2, Z2) = σ 2 cos λ (s − t)
只与 s − t 有关, ∴ 是宽平稳的
4. Poisson 过程 X(t),t 0 满足 (i) X(t) = 0; (ii) 对 t > s, X(t) − X(s) 服 从均值为 λ (t − s) 的 Possion 分布; (iii) 过程是有独立增量的. 试求其均值 函数和协方差函数. 它是宽平稳的吗? 解:
= cos λ s cos λ tCov(Z1, Z1) + sin λ s sin λ tCov(Z2, Z2)
= 2 cos λ (s − t)VarZ1
=
2
cos
λ
(s

t
)
( E
(Z12)

E
2
(Z1
) )
= cos λ (s − t)
∴ 是宽平稳
Ft(x) = P(Z1 cos λ t + Z2 sin λ t x)
= Cov(X(s + 1), X(t + 1)) +Cov(X(s), X(t)) −Cov(X(s), X(t + 1)) −Cov(X(s + 1), X(t))
= λ [min(s + 1,t + 1) + min(s,t) − min(s,t + 1) − min(s + 1,t)]
令 β = s − t, 当 β > 1 或 β < −1 时, RY (s,t) = 0
t
1, 这是 U1, · · · ,Un 的经验分布函数. 试求过

随机过程第二章作业及参考答案

第二章 平稳过程2. 设随机过程()sin X t Ut =,其中U 是在[]02π,上均匀分布的随机变量。

试证 (1)若t T ∈,而{}12T = ,,,则(){}12X t t = ,,,是平稳过程; (2)若t T ∈,而[)0T =+∞,,则(){}0X t t ≥,不是平稳过程。

证明:由题意,U 的分布密度为:()10220u f u ππ⎧<<⎪=⎨⎪⎩,,其它数学期望()()[]sin X m t E X t E Ut ==⎡⎤⎣⎦()()2220001111sin sin cos cos 212222ut du ut d ut ut t t t t ππππππππ=⋅==-=--⎰⎰.相关函数()()()()()sin sin X X R R t t E X t X t E Ut U t ττττ=+=+=⋅+⎡⎤⎡⎤⎣⎦⎣⎦,()()()2200111sin sin cos 2cos 222ut u t du ut u u du ππτττππ⎛⎫=⋅+⋅=⋅-+--⎡⎤ ⎪⎣⎦⎝⎭⎰⎰ ()()2220001111cos 2cos sin 2sin 442u t u du u t u t πππττττππττ⎡⎤=-+-=-+-⎡⎤⎢⎥⎣⎦+⎢⎥⎣⎦⎰()()11sin 22sin 2424t t πτπτπτπτ=-+++.(1)若t T ∈,而{}12T = ,,时,()0X m t =,()X R τ只与τ有关,二者均与t 无关,因此,(){}12X t t = ,,,是平稳过程。

(2)若t T ∈,而[)0T =+∞,时,()X m t 可能取到不是常数的值,所取到的值与t 有关,()X R τ取到的值也与t 有关,因此,(){}0X t t ≥,不是平稳过程。

3. 设随机过程()()0cos X t A t ωΦ=+,t -∞<<+∞其中0ω是常数,A 和Φ是独立随机变量。

随机过程_华东师范大学中国大学mooc课后章节答案期末考试题库2023年

随机过程_华东师范大学中国大学mooc课后章节答案期末考试题库2023年1.隐马尔可夫链的三类基本问题不包括_____________.答案:识别问题2.有限状态时齐马氏链的任意一个状态都不是零常返的答案:正确3.接上题。

试用切比雪夫不等式估计小王在一个小时完成的概率最大是________?答案:0.064.小王同学要做一个社会调查,为此他打算到某公共场所发放调查问卷。

他先去该场所观察人群到达情况,发现到达的人流可以用强度为1000人/小时的泊松过程拟合。

由于人手不够,小王只能在到达的人群中随机发放问卷,每个人拿到问卷的可能性是30%,另外,不是所有人都会配合调查问卷,根据经验每个人拿到问卷的人都有50%的可能配合完成调查。

小王要获得200份已完成的调查问卷,请问配合小王完成调查问卷的人群所构成的泊松过程的强度是______人/小时。

答案:1505.【图片】表示相继两列列车之间的等待时间(单位:小时),服从(1, 2)上的均匀分布,乘客按强度为100人/小时的泊松过程到达火车站,问乘上某列火车的乘客中等待时间超过1个小时的乘客数量。

答案:506.已知随机游动【图片】的步长分布为【图片】. 那么【图片】=——————(用小数表示,四舍五入,保留4位小数)。

答案:0.02887. 2. .若N(t)是个等待时间分布为F(t)的更新过程,g是一个定义在正整数上的函数, 满足g(0)=0, g(n+1)=g(1)+rg(n), 【图片】, 其中r是个常数,那么函数h(t)=E(g(N(t)))满足_____.答案:8.平稳独立增量过程一定是平稳过程答案:错误9.努利过程既是平稳过程也是严平稳过程答案:正确10.若随机变量序列【图片】为独立增量过程,那么【图片】.答案:错误11.对离散时间随机过程【图片】定义【图片】,那么【图片】是关于该随机过程的停时答案:错误12.已知W是初值为0, 步长分布为【图片】的随机游动,那么以下错误的是答案:13.已知非负整数值随机变量X的概率母函数为【图片】那么【图片】______.(用小数表示)答案:0.514.若X,Y是独立同分布的随机变量服从参数为a的指数分布, 那么在X+Y=1的条件下X的分布是_____.答案:均匀分布15.【图片】(注意结果用小数表示)答案:0.0516.【图片】(注意:结果用小数表示)答案:0.517.已知X, Y是两个方差有限的随机变量,若以X的一个函数随机变量g(X)作为Y的一个近似,为了使得近似误差的均方最小,那么在几乎处处意义下g(X)=_____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档