六年级上册数学知识点归纳整理
六年级上册数学知识点归纳整理

六年级上册数学知识点归纳整理
六年级上册数学主要内容包括以下知识点:
1. 整数运算:加法、减法、乘法、除法等整数的运算。
2. 小数运算:加法、减法、乘法、除法等小数的运算。
3. 分数运算:加法、减法、乘法、除法等分数的运算。
4. 有理数与小数之间的转换。
5. 线段的比较与运算:通过比较线段的长短、进行线段的加法、减法等运算。
6. 直角、钝角、锐角的概念与判断。
7. 三角形的性质与分类:根据三角形的边长、角度判断其性质与分类。
8. 平方与平方根的计算:对给定的正整数,求其平方与平方根。
9. 长方体与正方体的体积计算。
10. 二维图形的边长、面积计算:例如矩形、正方形、三角形、圆等二维图形的边长和面积的计算。
11. 数据处理:通过图表的形式进行数据的整理、归纳、分析和解读。
以上是六年级上册数学的主要知识点,通过学习这些知识点,可以帮助学生提高数学
运算能力和问题解决能力。
需要注意的是,对于不同教材和学校可能会有略微的差异,建议结合具体的教材内容进行学习和复习。
部编版六年级上册数学全册知识点考点归纳

部编版六年级上册数学全册知识点考点归
纳
一、整数
- 正整数、负整数和零
- 整数的大小比较
- 整数的加法和减法运算
- 整数与自然数的关系
二、小数
- 小数的读法和写法
- 小数与分数的关系
- 小数的加法和减法运算
三、图形与几何
- 点、线、线段和射线的基本概念
- 角的基本概念
- 直线、曲线、折线和封闭曲线的区别
- 简单图形的认识和绘制:直线、折线、封闭曲线、矩形、正方形、三角形等
四、三角形
- 三角形的定义和性质
- 等边三角形、等腰三角形和普通三角形的区别
- 三角形的分类:锐角三角形、直角三角形和钝角三角形- 三角形的内角和等于多少
五、长度、面积和体积
- 长度的比较和单位的换算
- 长度的加法和减法运算
- 面积的认识和计算
- 体积的认识和计算
六、时间与空间
- 时、刻、秒的认识和运用
- 时间的计算:几点几分到几点几分的时间长度
- 方向与位置的概念
- 空间的认识和观察
七、数据和图表
- 数据的收集和整理
- 表格和图表的制作和分析
- 直方图和条形图的认识和绘制
八、应用题
- 实际问题的数学建模
- 运用所学知识解决实际问题
以上是部编版六年级上册数学全册的知识点和考点的归纳。
将这些知识点掌握并灵活运用,能够帮助学生更好地理解数学知识并解决实际问题。
请注意,以上总结的内容基于部编版六年级上册数学教材的内容,仅供参考。
具体教材知识点还请以教材为准。
六年级上册数学知识点整理归纳

六年级上册数学知识点整理归纳长方体和正方体L氏方体和面体的特征:长方体有6个面,每个面都是长方形(翩的有百寸面是正方形). 相对的面完全相同有12条棱r越寸的棱平行且相等府8个顶点.访形有6个面」每个药都是正方形,所有的面都完全相同;有1琮标,所有的标都相等;有8个顶点।L长、鼠高:相交I■质点的三条棱的长度分别叫做长方睡乩患高I长方体的棱长思保斗竞斗匐M正方体的棱长总和二楼长H24、表面积:长方体或正方体6个面的总面积叫做它的袤面既5、立体的表面积二(长K宽-长m高+克工高工2s项b+ah+hh)x2正方体的表面和二棱长x棱兵工6用字母表示:s=6、表面积单位:平方厘米平方分米平方米相件弹位的进率为1007、W?:物体所占空间的大小叫雌体丽.&、长方体的体枳=长乂奇工高用字母薪:2亦11长=体积7 (竟因匐克=体积*长X高息=体积一(长X周9,体积单位:立方厘米立方分米ffl立方米相邻单位的进率为1000⑪、长方体和正方体的体积统一公式;长方体或正方体的体根;层面根工高丫=§11 11.体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;把低级单位聚成高级单位,用嗾单位数除以进率.12、容积:容器所能容纳物体的体积0以容积单位:升和皇升(1和巾1)11=1000同11 = 100口立方厘米1刑=1立方厘米14,容积的计算:长方体H正方体容翳容积的计算方法跟体积的计算方法相同,但要从县面量分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:义7表示:求7个的和是多少?或表示:的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)例如:义表示:求的是多少?9 X表示:求9的是多少?A X表示:求a的是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
六年级上册数学知识点总结

六年级上册数学知识点总结小学六年级上册数学知识点总结篇一1、理解比例的意义和基本性质,会解比例。
2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4、解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
7、比例的意义:表示两个比相等的式子叫做比例。
如:2:1=6:8、组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。
10、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
11、正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④y=5x,y和x成正比例,因为:y÷x=5(一定)。
最新人教版六年级上册数学知识点归纳与整理-六年级数学上学期知识点

最新人教版六年级上册数学知识点归纳与整理-六年级数学上学期知识点亲爱的小伙伴们,今天我们来聊聊最新人教版六年级上册数学知识点归纳与整理-六年级数学上学期知识点。
我们要明白数学可是个很重要的学科哦,它就像我们的生活一样,充满了各种各样的数字和形状。
让我们一起来探索一下这个神奇的世界吧!一、认识图形1.1 长方形、正方形和平行四边形长方形、正方形和平行四边形是我们生活中最常见的图形。
长方形就像我们的课桌,有四条边,四个角;正方形就像我们家里的门,四条边相等,四个角都是直角;平行四边形就像我们的书本,对边平行。
1.2 三角形三角形是由三条边组成的图形。
我们可以把三角形分成等腰三角形、等边三角形和不等边三角形。
等腰三角形有两条相等的边,等边三角形的三条边都相等,而不等边三角形的三条边都不相等。
二、认识数字2.1 数字的大小比较我们要学会比较数字的大小,可以用大于、小于、等于符号表示。
例如:3 > 2,5 < 7,8 = 8。
2.2 分数和小数分数就是把一个整体平均分成若干份,取其中的一份或者几份。
例如:1/2表示把一个整体平均分成2份,取其中一份;0.5表示把一个整体平均分成10份,取其中5份。
三、认识时间和速度3.1 时钟的认识时钟上有12个数字,上面有三个指针,分别是时针、分针和秒针。
时针表示小时,分针表示分钟,秒针表示秒。
我们要学会看时钟,知道现在是几点几分几秒。
3.2 速度的认识速度是指物体在单位时间内移动的距离。
我们可以用“米/秒”来表示速度。
例如:小明跑得很快,他的速度是10米/秒。
四、认识面积和体积4.1 面积的认识面积是指一个平面区域所占的大小。
我们可以用“平方米”来表示面积。
例如:这个房间的面积是20平方米。
4.2 体积的认识体积是指一个立体空间所占的大小。
我们可以用“立方米”来表示体积。
例如:这个盒子的体积是0.5立方米。
五、认识加减乘除法5.1 加法和减法加法就是把两个或多个数合并在一起。
小学六年级数学全册知识点归纳

一、数与代数1.数的读法:百分数、小数、分数、整数2.数的大小比较:大小关系、用大小符号表示大小关系3.数的进位与退位:百位、千位、万位4.数的四则运算:加法、减法、乘法、除法5.数的倍数和约数:倍数的概念、约数的概念6.乘法的应用:乘法与加法、乘法与减法、乘法与除法7.除法的应用:商的概念、余数的概念、数的整除性质8.分数的认识与比大小:分数的概念、分数的大小比较、分数的简化与扩展9.分数的四则运算:分数的加法、分数的减法、分数的乘法、分数的除法10.整数的认识:正整数、负整数、零、整数的大小比较11.纸带图与有向数线:纸带图的绘制、有向数线的绘制、正负数坐标轴上数的位置表示二、空间与图形1.点、线、面:点的认识、线的认识、面的认识2.平面图形:三角形、四边形、多边形、圆形、椭圆形、正方形、长方形、平行四边形、直角三角形、等腰三角形、等边三角形3.立体图形:长方体、正方体、棱柱、棱锥、棱台、球、圆柱、圆锥、圆台4.图形的名称和性质:平行四边形、矩形、正方形、菱形、三角形、四边形等5.平面镜像与空间镜像:平面图形的镜像、立体图形的镜像6.位置与方向:方向的认识、位置的认识、位置关系的认识三、量的认识与运用1.长度的换算:米与厘米的换算、分米与厘米的换算、运用换算计算长度2.长度和重量的比较:比较长度的大小、比较重量的大小3.时间的认识与计算:时、分、秒的认识、时间段的计算、时钟的读法4.面积的认识与计算:长方形的面积计算、正方形的面积计算5.体积的认识与计算:长方体的体积计算、正方体的体积计算6.资料的收集和整理:资料的收集方法、用表格整理资料四、数据的收集与处理2.数据的处理与分析:数据的整理、数据的比较、数据的运算3.数据的表示与解释:数据的图表表示、图表的读取与解读五、解决问题的策略与方法1.数学问题求解:分析问题、选择适当的计算方法、验证和总结解答结果2.解决实际问题:问题与计算、问题与图形3.数学建模:抽象、分析、解决。
六年级上册数学重点知识点归纳
六年级上册数学重点知识点归纳六年级数学上册重要章节知识点总结一、分数乘法一)分数乘法的意义:1.分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
例如,9/8 × 5 表示求5个 9/8 的和是多少?2.分数乘分数是求一个数的几分之几是多少。
例如,83/83 × 94/94 表示求的是多少?二)分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变,整数和分母约分。
2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3.为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
三)规律:(乘法中比较大小时)一个数(除外)乘大于1的数,积大于这个数。
一个数(除外)乘小于1的数(除外),积小于这个数。
一个数(除外)乘1,积等于这个数。
四)分数混合运算的运算顺序和整数的运算顺序相同。
五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a × (b × c)乘法分配律:(a + b) × c = a × c + b × c = a × c + b × c = (a + b) × c二、分数乘法的解决问题已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1.画线段图:1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
2.找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面。
3.求一个数的几倍:一个数 ×几倍;求一个数的几分之几是多少:一个数 ×分数。
写数量关系式技巧:几 ÷几 = 分数1)“的”相当于“×”。
六上数学知识点归纳整理
六上数学知识点归纳整理每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。
下面是小编给大家整理的一些六上数学的知识点,希望对大家有所帮助。
小学六年级上册数学知识点1.根据方向和距离可以确定物体在平面图上的位置。
2.在平面图上标出物体位置的方法:先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。
3.描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。
4.绘制路线图的方法:(1)确定方向标和单位长度。
(2)确定起点的位置。
(3)根据描述,从起点出发,找好方向和距离,一段一段地画。
除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。
(4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。
小学六年级数学知识点(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。
能约分的可以先约分,再计算。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的公因数。
六年级上册数学知识点归纳笔记
六年级上册数学知识点归纳笔记1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12,12是1/12的倒数。
8.小数的倒数普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
六年级上册数学课本知识点归纳
六年级上册数学课本知识点归纳真正的知识分子该有一副傲骨,不善趋炎附势。
这使他们当中绝大多数显得个色,总是鹤立鸡群,混不进人堆里。
下面小编给大家分享一些六年级上册数学课本知识点归纳,希望能够帮助大家,欢迎阅读!六年级上册数学课本知识点1第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b<1时,c<a(b≠0)。
< p="">一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学上册知识梳理 第一单元 分数乘法 一、分数乘法意义和计算 (一)分数乘法的意义: 1、分数乘整数与整数乘法的意义相同。 都是求几个相同加数的和的简便运算。 2、分数乘分数是求一个数的几分之几是多少。 (二)、分数乘法的计算法则: 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 注意 (1)分数的化简:分子、分母同时除以它们的最大公因数。 (2)关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。 (3)当带分数进行乘法计算时,要先把带分数化成假分数再进行计算. (三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。 一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。 (四)、分数混合运算的运算顺序和整数的运算顺序相同。 (五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律: a×b=b×d 乘法结合律: a×b×c=a×(b×c) 乘法分配律:a×(b+c)=ab+ac 或a×(b-c)=ab—ac 二、分数乘法的解决问题 (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、找单位“1”: “占"、“是”、“比”的后面,“的”前面 2、求一个数的几倍是多少; 求一个数的几分之几是多少。用乘法 对应量=单位“1"的量×对应分率 第二单元 位置与方向 要比较准确的确定一个物体的位置,方向和距离这两个条件缺一不可,一般通过定方向、测角度、量距离、定位置这几个基本步骤完成。
第三单元 分数除法 一、倒数 1、倒数的意义: 乘积是1的两个数互为倒数。 (互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在.) 2、求倒数的方法: (1)、求分数的倒数:交换分子分母的位置。 (2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。 (3)、求带分数的倒数:把带分数化为假分数,再求倒数。 (4)、求小数的倒数: 把小数化为分数,再求倒数。 3、1的倒数是1; 0没有倒数。 4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
二、分数除法 1、分数除法的意义: 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。 2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。 3、规律(分数除法比较大小时): (1)当除数大于1,商小于被除数; (2)当除数小于1(不等于0),商大于被除数; (3)当除数等于1,商等于被除数. 4、分数混合运算顺序: (1)同级运算要按从左往右顺序计算。 (2)先算乘、除后算加、减,有括号的,要先算括号里面的 (3)一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。 (4)能用运算律的要用运算律. 三、分数除法解决问题 1、已知单位“1”的几分之几是多少,求单位“1”的量. ①用方程解应用题步骤: 解。(写“解"字,打冒号。)找。(找等量关系) 设。(设未知数,根据题目设未知数,问什么设什么。) 列。(根据等量关系列方程)解。(解方程)答.(写答数) ②用算术方法解答:已乘未除,多加少减. 单位“1”的量=对应量÷对应分率 2、求一个数是另一个数的几分之几: 一个数÷另一个数 3、求一个数比另一个数多(少)几分之几: 两个数的相差量÷单位“1”的量
第四单元 比 (一)、比的意义 1、比的意义:两个数的比表示两个数相除. 2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。 3、比可以表示两个相同量的关系,即倍数关系.也可以表示两个不同量的比,得到一个新量. 4、根据比与除法、分数的关系,可以理解比的后项不能为0. 体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系. 5、比和除法、分数的联系: 比 前 项 比号“:” 后 项 比值 除 法 被除数 除号“÷” 除 数 商 分 数 分 子 分数线“-” 分 母 分数值 (二)、比的基本性质 1、(1)商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。 (2)分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。 (3)比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。 2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比. 3、化简比的类型: (三)、按比分配 把一个数量按照一定的比来进行分配.这种方法通常叫做按比分配。 按比分配问题的解题方法(已知总数和比) 方法一:①先求出总份数;②求出一份是多少;③分别求出几份是多少. 方法二:①先求出总份数;②求出各部分占总份数的几分之几;③最后按照“求一个数的几分之几是多 少”的方法,求出各部分的量.
第五单元 圆 一、认识圆形 1、圆的定义:圆是由曲线围成的一种平面图形。 2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心.一般用字母O表示。它到圆上任意一点的距离都相等. 3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。 把圆规两脚分开,两脚之间的距离就是圆的半径。 4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。 直径是一个圆内最长的线段。 5、圆心确定圆的位置,半径确定圆的大小。 6、在同圆或等圆内,有无数条半径,有无数条直径.所有的半径都相等,所有直径都相等。 7、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。 用字母表示为:d=2r或r=d/2 8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫做对称轴。 二、圆的周长 1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示. 2、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把 它 叫做圆周率。用字母π(pai) 表示。圆周率π是一个无限不循环小数。在计算时,一般取π ≈ 3.14。 3、圆的周长公式:C= πd → d = C ÷π或C=2π r → r = C ÷ 2π 已知直径求周长:C=πd 已知半径求周长:C=2πr 已知周长求直径:d=C÷π 已知周长求半径:r=C÷π÷2 三、圆的面积 1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母S表示。 2、圆面积公式的推导: 用逐渐逼近的转化思想: 体现化圆为方,化曲为直; 已知半径求面积:S=πr² 已知直径求面积:S= π(d÷2) ² 3、环形的面积:一个环形,外圆的半径是R,内圆的半径是r。 (R=r+环的宽度.) S环 = πR2-πr2 或 S环 = π(R2-r2)。 4、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小的倍数是这倍数的平方倍. 5、两个圆:半径比 = 直径比 = 周长比;而面积比等于这半径的平方比. 6、确定起跑线: 每相邻两个跑道相隔的距离是: 2×π×跑道的宽度 7、常用各π值结果: 2π = 6。28 3π = 9.42 4π = 12.56 5π = 15。7 6π = 18。84 7π = 21.98 8π = 25。12 9π = 28.26 10π = 31。4 16π = 50。24 25π = 78。5 36π = 113。04 常用平方数结果:
112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361
第六单元:百分数 一、概念:如18%、50%、64。2%-——-—这样的数,叫做百分数。百分数表示一个数是另一个数的百分之几。百分数也叫做百分率或百分比。 1、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。 2、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%"来表示. 3、百分数和分数的区别:百分数只能表示两个数的比的关系,而分数不仅可以表示数的关系,还可以表示成一个具体的量,可以带上单位名称。 4、百分数和小数及分数的互化 (1)小数化成百分数:把小数点向右移动两位再在数的后面加上百分号. (2)百分数化成小数:把百分号去掉,同时把小数点向左移动两位。 (3)百分数化成分数:化成分母是100的分数,能约分的要约分.如果百分数分子是小数,要先根据分数的基本性质,把百分数改写成分数是整数的分数,再约分。 (4)分数化成百分数有两种方法:一种是根据分数的基本性质,把分数的分母化成为100的分数,然后改写成百分数。另一种是先把分数化成小数,在利用小数化百分数的方法.(利用第二种时,除不尽,通常保留三位小数,即百分号前保留一位小数) 二:用百分数解决问题: 1、在生产工作中常用的百分率有:
及格率=总人数及格人数100% 增产率=原来的产量增加的产量100%
合格率=产品总数合格产品数100% 出勤率=应该出勤人数实际出勤人数100% 一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。 2、解答百分数应用题时,要注意弄清楚谁和谁比,比的标准不同,单位“1”也不同,解题时要注意找准把谁看单位“1”。 3、在实际生活中,人们常用“增加百分之几"、“减少百分之几"、“节约百分之几”-—-—来表示增加、减少的幅度.(占谁的把谁看成单位“1”) 第七单元:统计 1、常用统计图:条形统计图、折线统计图、扇形统计图。 2、用整个圆的面积表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数,这样的统计图我们称为扇形统计图.特点:通过扇形统计图我们可以很清楚地表示出各部分数量同总数之间的关系。 3、条形统计图的的特点:条形统计图可以清楚地看出每个数量的多少。 折线统计图的特点:折线统计图不仅可以看出数量的多少而且可以看出数量的增减变化情况. 第八单元:数学广角—数与形 数与形,重在观察,先找出图形与数(或算式)之间的关系,然后找出数与形的潜在规律,利用规律解决