分式指数函数和分式对数函数的对称中心的探究

合集下载

高中数学函数题型全归纳

高中数学函数题型全归纳

高中数学函数题型全归纳
一、函数定义与性质
函数的基本定义:函数的定义域、值域、对应法则。

函数的性质:奇偶性、对称性、周期性、连续性等。

二、一次函数与反比例函数
一次函数的表达式及性质。

反比例函数的表达式及性质。

一次函数与反比例函数的图像及性质。

三、二次函数
二次函数的表达式及性质。

二次函数的图像及性质。

二次函数的极值问题。

四、分式函数与根式函数
分式函数的表达式及性质。

根式函数的表达式及性质。

分式函数与根式函数的图像及性质。

五、三角函数
正弦、余弦、正切的定义及性质。

三角函数的图像及性质。

三角函数的变换公式。

三角函数的值域及最值问题。

六、指数函数与对数函数
指数函数的表达式及性质。

对数函数的表达式及性质。

指数函数与对数函数的图像及性质。

指数函数与对数函数的运算性质。

七、幂函数与反函数
幂函数的表达式及性质。

反函数的定义及性质。

幂函数与反函数的图像及性质。

八、复合函数
复合函数的定义及性质。

复合函数的分解与化简。

复合函数的值域及最值问题。

复合函数的单调性及极值问题。

九、函数的单调性与极值
函数的单调性的判断方法。

函数的极值的定义及求法。

高中各种函数图像画法与函数性质

高中各种函数图像画法与函数性质

高中常见函数归纳一次函数二次函数反比例函数1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线指数函数概念:一般地,函数y二a x(a>0,且aH1)叫做指数函数,其中x是自变量,函数的定义域是R。

注意:指数函数对外形要求严格,前系数要为1,否则不能为指数函数。

指数函数的图像与性质Lt .-*10V&V 1f “过点"■>•1>•L!fl "=0时、$亍I <4><E 1<上足増函数规律:1.当两个指数函数中的a 互为倒数时,两个函数关于y 轴对称,但这两个函数都不具有奇偶性。

2当a>l 时,底数越大,图像上升的越快,在y 轴的右侧,图像越靠近y轴;当0VaV1时,底数越小,图像下降的越快,在y 轴的左侧,图像越靠近y轴。

〔11定义域:代 <2)fr*i 域:(O -!■■-OLt.-*10V&V13.四字口诀“大增小减”即:当a>1时,图像在R上是增函数;当0VaV1时,图像在R上是减函数。

4.指数函数既不是奇函数也不是偶函数比较幂式大小的方法:1.当底数相同时,则利用指数函数的单调性进行比较;2.当底数中含有字母时要注意分类讨论;3.当底数不同,指数也不同时,则需要引入中间量进行比较;104. 对多个数进行比较,可用0或1作为中间量进行比较对数函数1•对数函数的概念我们把指数函数y=a x (a>0,aH1)的反函数称为对数函数,并记为y=logx(aa >0,aH1).因为指数函数y=a x 的定义域为(-g,+x),值域为(0,+x),所以对数函数y=logx 的定义域为(0,+*),值域为(-X,+*).a2. 对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x.据此即可以画出对数函数的图像,并推知它的性质.为了研究对数函数y=logx(a>0,aH1)的性质,我们在同一直角坐标系中a作出函数y=log 2x,y=log 10x ,y=log 10x‘y=log 1x,y =log 丄x的草图a>1aV1j k - 4-图iy;y=log^xtd>l)\\U.O)象—Fo — vrof:Ay=log a x(0<a<l)(1)x>0比较对数大小的常用方法有:(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.(3)若底数不同、真数相同,则可用换底公式化为同底再进行比较.(4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较.3.指数函数与对数函数对比幕函数所有幕函数y二x a(x e R,a是常数)的图像都过点(1,1);对号函数b函数y二ax+—(a>0,b>0)叫做对号函数,因其在(0,+*)的图象似xy=ax+b(a>o,b>o)在区间(0,待)上是减函数,在区间冷a‘S上是增函数。

高中数学-- 指数函数与对数函数复习总结与检测(解析版)

高中数学-- 指数函数与对数函数复习总结与检测(解析版)

第四章指数函数与对数函数复习总结与检测知识点1:根式1.根式及相关概念(1)a的n次方根定义:如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.(2)a的n次方根的表示n的奇偶性a的n次方根的表示符号a的取值范围n为奇数na Rn为偶数±na[0,+∞)(3)根式:式子na叫做根式,这里n叫做根指数,a叫做被开方数.2.根式的性质(n>1,且n∈N*)(1)n为奇数时,na n=a.(2)n为偶数时,na n=|a|=⎩⎪⎨⎪⎧a,a≥0,-a,a<0.(3)n0=0.(4)负数没有偶次方根.知识归纳知识点2:指数幂及运算1.分数指数幂的意义分数指数幂正分数指数幂规定:n ma=n a m(a>0,m,n∈N*,且n>1)负分数指数幂规定:nma =1amn=1na m(a>0,m,n∈N*,且n>1) 0的分数指数幂0的正分数指数幂等于0,0的负分数指数幂没有意义2.有理数指数幂的运算性质(1)a r a s=a r+s(a>0,r,s∈Q).(2)(a r)s=a rs(a>0,r,s∈Q).(3)(ab)r=a r b r(a>0,b>0,r∈Q).3.无理数指数幂一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.知识点3:指数函数的概念、图象与性质1.指数函数的概念一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R.2.指数函数的图象和性质a的范围a>10<a<1图象性质定义域R值域(0,+∞)过定点(0,1),即当x=0时,y=1单调性在R上是增函数在R上是减函数奇偶性非奇非偶函数对称性函数y=a x与y=a-x的图象关于y轴对称知识点4:对数的概念1.对数(1)指数式与对数式的互化及有关概念:(2)底数a 的范围是a >0,且a ≠1. 2.常用对数与自然对数3.对数的基本性质 (1)负数和零没有对数. (2)log a 1=0(a >0,且a ≠1). (3)log a a =1(a >0,且a ≠1). 知识点5:对数的运算1.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么: (1)log a (MN )=log a M +log a N ; (2)log a MN =log a M -log a N ;(3)log a M n =n log a M (n ∈R ). 2.对数的换底公式若a >0且a ≠1;c >0且c ≠1;b >0,则有log a b =log c blog c a .知识点6:对数函数的概念、图象及性质1.对数函数的概念函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 2.对数函数的图象及性质(0,+∞)3.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数.知识点7:三种函数模型的性质知识点8:函数的零点与方程的解1.函数的零点对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.2.方程、函数、函数图象之间的关系方程f(x)=0有实数根∈函数y=f(x)的图象与x轴有交点∈函数y=f(x)有零点.3.函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.知识点9:用二分法求方程的近似解1.二分法的定义对于在区间[a,b]上图象连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把它的零点所在的区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2.二分法求函数零点近似值的步骤(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0.(2)求区间(a,b)的中点c.(3)计算f(c),并进一步确定零点所在的区间:∈ 若f(c)=0(此时x0=c),则c就是函数的零点;∈ 若f(a)f(c)<0(此时x0∈(a,c)),则令b=c;∈ 若f(c)f(b)<0(此时x0∈(c,b)),则令a=c.(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).知识点10:函数模型的应用1.常用函数模型常用函数模型(1)一次函数模型y=kx+b(k,b为常数,k≠0)(2)二次函数模型y=ax2+bx+c(a,b,c为常数,a≠0)(3)指数函数模型y=ba x+c(a,b,c为常数,b≠0,a>0且a≠1)(4)对数函数模型y=m log a x+n(m,a,n为常数,m≠0,a>0且a≠1)(5)幂函数模型y=ax n+b(a,b为常数,a≠0)(6)分段函数模型y=⎩⎪⎨⎪⎧ax+b(x<m),cx+d(x≥m)2.建立函数模型解决问题的基本过程题型1:指数与对数的运算【例1】计算:(1)2log32-log3329+log38-5log53;(2)1.5-⎪⎭⎫⎝⎛-⨯67310+80.25×42+(32×3)6-⎝⎛⎭⎫-2323.【解析】(1)原式=log322×8329-3=2-3=-1.(2)原式=⎝⎛⎭⎫2313+234×214+22×33-⎝⎛⎭⎫2313=21+4×27=110.【方法技巧】题型讲解指数、对数的运算应遵循的原则指数式的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算,其次若出现分式则要注意分子、分母因式分解以达到约分的目的.对数运算首先注意公式应用过程中范围的变化,前后要等价,熟练地运用对数的三个运算性质并结合对数恒等式,换底公式是对数计算、化简、证明常用的技巧.【针对训练】1.设3x =4y =36,则2x +1y 的值为( )A .6B .3C .2D .1【解析】D 由3x =4y =36得x =log 336,y =log 436, ∈2x +1y =2log 363+log 364=log 369+log 364=log 3636=1.题型2:指数函数、对数函数的图象及应用【例2】(1)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数正确的是( )A B C D(2)已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x⎪⎭⎫ ⎝⎛21∈ 如图,画出函数f (x )的图象;∈ 根据图象写出f (x )的单调区间,并写出函数的值域.【解析】(1)B 由已知函数图象可得,log a 3=1,所以a =3.A 项,函数解析式为y =3-x,在R 上单调递减,与图象不符;C 项中函数的解析式为y =(-x )3=-x 3,当x >0时,y <0,这与图象不符;D 项中函数解析式为y =log 3(-x ),在(-∞,0)上为单调递减函数,与图象不符;B 项中对应函数解析式为y =x 3,与图象相符.故选B.](2)[解] ∈先作出当x ≥0时,f (x )=⎝⎛⎭⎫12x的图象,利用偶函数的图象关于y 轴对称,再作出f (x )在x ∈(-∞,0)时的图象.∈函数f (x )的单调递增区间为(-∞,0),单调递减区间为[0,+∞),值域为(0,1]. 【方法技巧】1.识别函数的图象从以下几个方面入手: (1)单调性:函数图象的变化趋势; (2)奇偶性:函数图象的对称性; (3)特殊点对应的函数值.2.指数函数与对数函数图象经过定点的实质是a 0=1,log a 1=0.【针对训练】2.函数y =1+log 12(x -1)的图象一定经过点( )A .(1,1)B .(1,0)C .(2,1)D .(2,0)【解析】C 把y =log 12x 的图象向右平移1个单位,再向上平移1个单位即可得到y =1+log 12(x -1)的图象,故其经过点(2,1).题型3:比较大小【例3】 若0<x <y <1,则( )A .3y <3xB .log x 3<log y 3C .log 4x <log 4y D.yx ⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛4141【解析】C 因为0<x <y <1,则对于A ,函数y =3x 在R 上单调递增,故3x <3y ,A 错误.对于B ,根据底数a 对对数函数y =log a x 的影响:当0<a <1时,在x ∈(1,+∞)上“底小图高”.因为0<x <y <1,所以log x 3>log y 3,B 错误.对于C ,函数y =log 4x 在(0,+∞)上单调递增,故log 4x <log 4y ,C 正确.对于D ,函数y =⎝⎛⎭⎫14x在R 上单调递减,故⎝⎛⎭⎫14x>⎝⎛⎭⎫14y,D 错误.【方法技巧】1.比较两数大小常用的方法有单调性法、图象法、中间值法等.2.当两个数都是指数幂或对数式时,可将其看成某个指数函数、对数函数或幂函数的函数值,然后利用该函数的单调性比较.3.比较多个数的大小时,先利用“0”“1”作为分界点,然后在各部分内再利用函数性质比较大小.4.含参数的问题,要根据参数的取值进行分类讨论. 【针对训练】3.设a =log 2π,b =log 12π,c =π-2,则( )A .a >b >cB .b >a >cC .a >c >bD .c >b >a【解析】C ∈a =log 2π>log 22=1,b =log 12π<log 121=0,c =π-2=1π2,即0<c <1,∈a >c >b ,故选C.题型4:指数函数、对数函数的性质【例4】(1)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( )A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数 (2)已知a >0,a ≠1且log a 3>log a 2,若函数f (x )=log a x 在区间[a,3a ]上的最大值与最小值之差为1.∈ 求a 的值;∈ 若1≤x ≤3,求函数y =(log a x )2-log a x +2的值域.【解析】(1)A [由题意可得,函数f (x )的定义域为(-1,1),且f (-x )=ln(1-x )-ln(1+x )=-f (x ),故f (x )为奇函数.又f (x )=ln 1+x 1-x =ln ⎝⎛⎭⎫21-x -1,易知y =21-x -1在(0,1)上为增函数,故f (x )在(0,1)上为增函数.](2)[解] ∈因为log a 3>log a 2,所以f (x )=log a x 在[a,3a ]上为增函数. 又f (x )在[a,3a ]上的最大值与最小值之差为1, 所以log a (3a )-log a a =1,即log a 3=1,所以a =3. ∈函数y =(log 3x )2-log 3x +2=(log 3x )2-12log 3x +2=⎝⎛⎭⎫log 3x -142+3116. 令t =log 3x ,因为1≤x ≤3, 所以0≤log 3x ≤1,即0≤t ≤1.所以y =⎝⎛⎭⎫t -142+3116∈⎣⎡⎦⎤3116,52, 所以所求函数的值域为⎣⎡⎦⎤3116,52.【方法技巧】1.研究函数的性质要树立定义域优先的原则.2.换元法的作用是利用整体代换,将问题转化为常见问题.该类问题中,常设u =log a x 或u =a x ,转化为一元二次方程、二次函数等问题.要注意换元后u 的取值范围.题型5:函数的应用【例5】 一种放射性元素,最初的质量为500 g ,按每年10%衰减. (1)求t 年后,这种放射性元素的质量w 的表达式;(2)由求出的函数表达式,求这种放射性元素的半衰期(结果精确到0.1). 【解析】 (1)最初的质量为500 g. 经过1年,w =500(1-10%)=500×0.9; 经过2年,w =500×0.92; 由此推知,t 年后,w =500×0.9t . (2)由题意得500×0.9t =250,即0.9t =0.5,两边同时取以10为底的对数,得 lg 0.9t =lg 0.5,即t lg 0.9=lg 0.5,所以t =lg 0.5lg 0.9≈6.6.即这种放射性元素的半衰期约为6.6年. 【方法技巧】指数函数模型的应用在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常可以用指数函数模型表示.通常可以表示为y =N (1+p )x (其中N 为基础数,p 为增长率,x 为时间)的形式.【针对训练】4.某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,问至少应过滤几次才能使产品达到市场要求?(已知:lg2≈0.301 0,lg 3≈0.477 1)【解析】 设过滤n 次能使产品达到市场要求,依题意,得2100×⎝⎛⎭⎫23n≤11 000,即⎝⎛⎭⎫23n≤120. 则n (lg 2-lg 3)≤-(1+lg 2), 故n ≥1+lg 2lg 3-lg 2≈7.4,考虑到n ∈N ,故n ≥8,即至少要过滤8次才能达到市场要求.指数函数与对数函数(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a <12,则化简4(2a -1)2的结果是( )A.2a -1 B .-2a -1 C.1-2aD .-1-2a【解析】C ∈a <12,∈2a -1<0.于是,原式=4(1-2a )2=1-2a . 2.计算:log 225·log 522=( ) A .3 B .4 C .5D .6 章节检测【解析】A log 225·log 522=lg 25lg 2·lg 22lg 5=2lg 5·lg 232lg 2·lg 5=2×32=3.3.函数y =x -1·ln(2-x )的定义域为( ) A .(1,2) B .[1,2) C .(1,2]D .[1,2]【解析】B 要使解析式有意义,则⎩⎪⎨⎪⎧x -1≥0,2-x >0,解得1≤x <2,所以所求函数的定义域为[1,2).4.下列幂函数中过点(0,0),(1,1)的偶函数是( ) A .y =x 12 B .y =x 4 C .y =x -2D .y =31x【解析】B 对A ,y =x 12的定义域为[0,+∞),不是偶函数;C 中,y =x -2不过(0,0)点,D 中,y =31x 是奇函数,B 中,y =x 4满足条件.5.函数f (x )=21x -x⎪⎭⎫⎝⎛21的零点个数为( )A .0B .1C .2D .3【解析】B 令f (x )=0,可得x 12=⎝⎛⎭⎫12x,在同一平面直角坐标系中分别画出幂函数y =x 12和指数函数y =⎝⎛⎭⎫12x的图象,如图所示,可得交点只有一个,所以函数f (x )的零点只有一个.6.若log a 3=m ,log a 5=n ,则a 2m +n的值是( ) A .15 B .75 C .45D .225【解析】C 由log a 3=m ,得a m =3, 由log a 5=n ,得a n =5, ∈a 2m +n =(a m )2·a n =32×5=45.7.函数f (x )=4x +12x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称【解析】D 易知f (x )的定义域为R ,关于原点对称.∈f (-x )=4-x +12-x =1+4x2x =f (x ),∈f (x )是偶函数,其图象关于y 轴对称.8.若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1)B.⎪⎭⎫ ⎝⎛210,C. ⎪⎭⎫⎝⎛1,21 D .(0,1)∈(1,+∞)【解析】C 由题意得a >0且a ≠1,故必有a 2+1>2a . 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,∈a >12,综上,a ∈⎝⎛⎭⎫12,1. 9.已知a =5log 23.4,b =5log 43.6,c =⎝⎛⎭⎫15log 30.3,则( ) A .a >b >c B .b >a >c C .a >c >bD .c >a >b【解析】C c =5log 3103,只需比较log 23.4,log 43.6,log 3103的大小,又0<log 43.6<1,log 23.4>log 33.4>log 3103>1,所以a >c >b .10.函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是( ) A .f (-4)=f (1) B .f (-4)>f (1) C .f (-4)<f (1)D .不能确定【解析】B 因为函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),所以a >1,又函数f (x )=a |x +1|(a >0,且a ≠1)的图象关于直线x =-1对称,所以f (-4)>f (1).11.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2) B.⎝⎛⎦⎤-∞,138 C .(-∞,2]D.⎣⎡⎭⎫138,2【解析】B [由题意知函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,(a -2)×2≤⎝⎛⎭⎫122-1,由此解得a ≤138,即实数a 的取值范围是⎝⎛⎦⎤-∞,138,选B. 12.函数f (x )=ax 5-bx +1,若f (lg(log 510))=5,则f (lg(lg 5))的值为( ) A .-3 B .5 C .-5D .-9【解析】A lg(log 510)=lg ⎝⎛⎭⎫1lg 5=-lg(lg 5), 设t =lg(lg 5),则f (lg(log 510))=f (-t )=5. 因为f (x )=ax 5-bx +1, 所以f (-t )=-at 5+bt +1=5, 则f (t )=at 5-bt +1, 两式相加得f (t )+5=2,则f (t )=2-5=-3,即f (lg(lg 5)的值为-3.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.函数f (x )=a x -1+3的图象一定过定点P ,则P 点的坐标是________.【解析】(1,4) 由于函数y =a x 恒过(0,1),而y =a x -1+3的图象可看作由y =a x 的图象向右平移1个单位,再向上平移3个单位得到的,则P 点坐标为(1,4).14.将进货单价为8元的商品按10元一个销售,每天可卖出100个.若每个涨价1元,则日销售量减少10个.为获得最大利润,则此商品日销售价应定为每个________元.【解析】14 设每个涨价x 元,则实际销售价为10+x 元,销售的个数为100-10x , 则利润为y =(10+x )(100-10x )-8(100-10x )=-10(x -4)2+360(0≤x <10,x ∈N ).因此,当x =4,即售价定为每个14元时,利润最大.15.若f (x )=a ·2x +2a -12x +1为R 上的奇函数,则实数a 的值为________.【解析】13 因为f (x )=a ·2x +2a -12x +1为R 上的奇函数,所以f (0)=0,即a ·20+2a -120+1=0,所以a =13.16.已知125x =12.5y =1 000,则y -xxy=________.【解析】13 因为125x =12.5y =1 000,所以x =log 125 1 000,y =log 12.5 1 000,y -x xy =1x -1y =log 1 000 125-log 1 000 12.5=log 1 00012512.5=log 1 000 10=13.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)求值: (1)⎝⎛⎭⎫21412-(-9.6)0-⎝⎛⎭⎫338-23+(1.5)-2; (2)log 2512·log 45-log 133-log 24+5log 52.【解析】(1)⎝⎛⎭⎫21412-(-9.6)0-⎝⎛⎭⎫338-23+(1.5)-2 =⎝⎛⎭⎫9412-1-⎝⎛⎭⎫278-23+⎝⎛⎭⎫32-2=32-1-⎝⎛⎭⎫32-2+⎝⎛⎭⎫232=32-1-49+49=12. (2)log 2512·log 45-log 133-log 24+5log 52=-14+1-2+2=34.18.(本小题满分12分)已知指数函数f (x )=a x (a >0,且a ≠1)过点(-2,9). (1)求函数f (x )的解析式;(2)若f (2m -1)-f (m +3)<0,求实数m 的取值范围.【解析】(1)将点(-2,9)代入f (x )=a x (a >0,a ≠1)得a -2=9,解得a =13,∈f (x )=⎝⎛⎭⎫13x . (2)∈f (2m -1)-f (m +3)<0, ∈f (2m -1)<f (m +3). ∈f (x )=⎝⎛⎭⎫13x 为减函数, ∈2m -1>m +3,解得m >4, ∈实数m 的取值范围为(4,+∞).19.(本小题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,求实数a 的取值范围.【解析】如图,在同一坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线在y 轴上的截距,由图可知,当a >1时,直线y =-x +a 与y =log 2x 只有一个交点.所以实数a 的取值范围是(1,+∞).20.(本小题满分12分)已知1≤x ≤4,求函数f (x )=log 2x 4·log 2x2的最大值与最小值.【解析】 ∈f (x )=log 2x 4·log 2x2=(log 2x -2)(log 2x -1) =⎝⎛⎭⎫log 2x -322-14, 又∈1≤x ≤4,∈0≤log 2x ≤2,∈当log 2x =32,即x =232=22时,f (x )有最小值-14.当log 2x =0时,f (x )有最大值2,此时x =1. 即函数f (x )的最大值是2,最小值是-14.21.(本小题满分12分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过15万元时,按销售利润的10%进行奖励;当销售利润超过15万元时,若超过部分为A 万元,则超出部分按2log 5(A +1)进行奖励,没超出部分仍按销售利润的10%进行奖励.记奖金总额为y (单位:万元),销售利润为x (单位:万元).(1)写出该公司激励销售人员的奖励方案的函数表达式;(2)如果业务员老张获得5.5万元的奖金,那么他的销售利润是多少万元? 【解析】(1)由题意,得y =⎩⎪⎨⎪⎧0.1x ,0<x ≤15,1.5+2log 5x -14,x >15.(2)∈当x ∈(0,15]时,0.1x ≤1.5, 又y =5.5>1.5,∈x >15, ∈1.5+2log 5(x -14)=5.5, 解得x =39.答:老张的销售利润是39万元. 22.(本小题满分12分)已知函数f (x )=lg ⎝ ⎛⎭⎪⎫1-x 1+x .(1)求证:f (x )是奇函数; (2)求证:f (x )+f (y )=f ⎝ ⎛⎭⎪⎫x +y 1+xy ;(3)若f ⎝⎛⎭⎪⎫a +b 1+ab =1,f ⎝ ⎛⎭⎪⎫a -b 1-ab =2,求f (a ),f (b )的值.【解析】(1)证明:由函数f (x )=lg ⎝⎛⎭⎪⎫1-x 1+x ,可得1-x 1+x >0,即x -11+x <0,解得-1<x <1,故函数的定义域为(-1,1),关于原点对称.再根据f (-x )=lg 1+x 1-x =-lg 1-x1+x=-f (x ),可得f (x )是奇函数.(2)证明:f (x )+f (y )=lg 1-x 1+x +lg 1-y 1+y =lg (1-x )(1-y )(1+x )(1+y ),而f ⎝ ⎛⎭⎪⎫x +y 1+xy =lg1-x +y 1+xy 1+x +y 1+xy =lg1+xy -x -y 1+xy +x +y =lg (1-x )(1-y )(1+x )(1+y ),∈f (x )+f (y )=f ⎝ ⎛⎭⎪⎫x +y 1+xy 成立.(3)若f ⎝⎛⎭⎪⎫a +b 1+ab =1,f ⎝ ⎛⎭⎪⎫a -b 1-ab =2,则由(2)可得f (a )+f (b )=1,f (a )-f (b )=2, 解得f (a )=32,f (b )=-12.。

知识讲解_对数函数及其性质_基础

知识讲解_对数函数及其性质_基础

对数函数及其性质【学习目标】1.理解对数函数的概念,体会对数函数是一类很重要的函数模型;2.探索对数函数的单调性与特殊点,掌握对数函数的性质,会进行同底对数和不同底对数大小的比较;3.了解反函数的概念,知道指数函数xy a =与对数函数log a y x =互为反函数()0,1a a >≠.【要点梳理】要点一、对数函数的概念1.函数y=log a x(a>0,a≠1)叫做对数函数.其中x 是自变量,函数的定义域是()0,+∞,值域为R . 2.判断一个函数是对数函数是形如log (0,1)a y x a a =>≠且的形式,即必须满足以下条件: (1)系数为1;(2)底数为大于0且不等于1的常数; (3)对数的真数仅有自变量x . 要点诠释: (1)只有形如y=log a x(a>0,a≠1)的函数才叫做对数函数,像log (1),2log ,log 3a a a y x y x y x =+==+等函数,它们是由对数函数变化得到的,都不是对数函数。

(2)求对数函数的定义域时应注意:①对数函数的真数要求大于零,底数大于零且不等于1;②对含有字母的式子要注意分类讨论。

要点诠释:关于对数式log a N 的符问题,既受a 的制约又受N 的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.以1为分界点,当a ,N 同侧时,log a N>0;当a ,N 异侧时,log a N<0. 要点三、底数对对数函数图象的影响 1.底数制约着图象的升降. 如图要点诠释:由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于1,不要忽略.2.底数变化与图象变化的规律在同一坐标系内,当a>1时,随a 的增大,对数函数的图像愈靠近x 轴;当0<a<1时,对数函数的图象随a 的增大而远离x 轴.(见下图)要点四、反函数 1.反函数的定义设,A B 分别为函数()y f x =的定义域和值域,如果由函数()y f x =所解得的()x y ϕ=也是一个函数(即对任意的一个y B ∈,都有唯一的x A ∈与之对应),那么就称函数()x y ϕ=是函数()y f x =的反函数,记作1()x fy -=,在1()x f y -=中,y 是自变量,x 是y 的函数,习惯上改写成1()y f x -=(,x B y A ∈∈)的形式.函数1()x fy -=(,y B x A ∈∈)与函数1()y f x -=(,x B y A ∈∈)为同一函数,因为自变量的取值范围即定义域都是B ,对应法则都为1f-.由定义可以看出,函数()y f x =的定义域A 正好是它的反函数1()y f x -=的值域;函数()y f x =的值域B 正好是它的反函数1()y fx -=的定义域.要点诠释:并不是每个函数都有反函数,有些函数没有反函数,如2y x =.一般说来,单调函数有反函数. 2.反函数的性质(1)互为反函数的两个函数的图象关于直线y x =对称.(2)若函数()y f x =图象上有一点(),a b ,则(),b a 必在其反函数图象上,反之,若(),b a 在反函数图象上,则(),a b 必在原函数图象上.【典型例题】类型一、对数函数的概念例1.下列函数中,哪些是对数函数? (1)log 0,1)ay a a =>≠;(2)2log 2;y x =+ (3)28log (1)y x =+;(4)log 6(0,1)x y x x =>≠; (5)6log y x =.【答案】(5) 【解析】(1)中真数不是自变量x ,不是对数函数. (2)中对数式后加2,所以不是对数函数.(3)中真数为1x +,不是x ,系数不为1,故不是对数函数. (4)中底数是自变量x ,二非常数,所以不是对数函数.(5)中底数是6,真数为x ,符合对数函数的定义,故是对数函数.【总结升华】已知所给函数中有些形似对数函数,解答本题需根据对数函数的定义寻找满足的条件. 类型二、对数函数的定义域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.例2. 求下列函数的定义域:(1)2log a y x =; (2)log (4-)(01)a y x a a =>≠且.【答案】(1){|0}x x ≠;(2){|4}x x <.【解析】由对数函数的定义知:20x >,40x ->,解出不等式就可求出定义域.(1)因为20x >,即0x ≠,所以函数2log {|0}a y x x x =≠的定义域为;(2)因为40x ->,即4x <,所以函数log (4-){|4}a y x x x =<的定义域为.【总结升华】与对数函数有关的复合函数的定义域:求定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于log ()a y f x =的定义域时,应首先保证()0f x >.举一反三:【变式1】求函数y =.【答案】(1,23) (23,2] 【解析】因为121210log (1)0log (1)1x x x ⎧⎪->⎪⎪-≥⎨⎪⎪-≠⎪⎩, 所以101132x x x ⎧⎪>⎪<-≤⎨⎪⎪≠⎩,所以函数的定义域为(1,23) (23,2].类型三、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.例3. 比较下列各组数中的两个值大小: (1)33log 3.6,log 8.9;(2)0.20.2log 1.9,log 3.5; (3)2log 5与7log 5; (4) 3log 5与6log 4.(5)log 4.2,log 4.8a a (01a a >≠且).【思路点拨】利用函数的单调性比较函数值大小。

高中数学必修一北师大版本《4.3.3.1 对数函数的图像和性质》教学课件

高中数学必修一北师大版本《4.3.3.1 对数函数的图像和性质》教学课件

跟踪训练2 (1)函数y=x+a与y=logax的图象只可能是下图中 的( )
解析:(1)A中,由y=x+a的图象知a>1,而y=logax为减函 数,A错;B中,0<a<1,而y=logax为增函数,B错;C中,0<a <1,且y=logax为减函数,所以C对;D中,a<0,而y=logax无 意义,也不对.
3
log 2 0.5>log 2 0.6,A错;B中,因为函数y=log1.5x是增函数,且
3
3
1.6>1.4,所以log1.51.6>log1.51.4,B正确;C中,因为
0>log70.6>log70.5,所以
1 log70.6
<
1 log70.5
,即log0.67<log0.57,C不正
确;D中,因为log3π>log31=0,log20.8<log21=0,所以
解析:若0<a<1,则函数y=ax的图象下降且过点(0,1),函数y =loga(-x)的图象上升且过点(-1,0),以上图象均不符合.若 a>1,则函数y=ax的图象上升且过点(0,1),函数y=loga(-x)的图 象下降且过点(-1,0),只有B中图象符合.故选B.
答案:B
易错警示 易错原因
易混淆函数类型或忽视底数a对 函数图象的影响致错.
纠错心得 判断指数函数与对数函数图象 时,抓住底数a分两种0<a<1和
a>1分别逐一验证.
故函数的
(2)函数f(x)= x3-x 1+ln(2x-x2)的定义域为________.
解析:(2)由题意得
x-1>0, 2x-x2>0,
以函数f(x)的定义域为(1,2).

对数函数的运算法则

对数函数的运算法则

对数函数的运算法则对数函数是数学中常用的一种函数,它在计算和分析复杂问题时具有重要的作用。

对数函数的运算法则是指对数函数在运算中满足的一些基本规律和性质,下面将详细介绍这些运算法则。

一、对数函数的定义对数函数是指以一个固定底数为基,将一个正数作为函数的自变量,得到的函数值为其对数的函数。

通常我们使用以e为底的自然对数函数ln(x),以及以10为底的常用对数函数logx。

二、对数函数的基本性质1.对数函数的定义域:对数函数的自变量必须是正数,所以其定义域为正实数集合。

(0,+∞)2.对数函数的值域:对数函数的函数值可为任何实数。

3.对数函数的奇偶性:对数函数是无论基数是正数还是负数,都是奇函数,即具有对称中心点(1,0)。

4. 对数函数的单调性:对数函数以底数大于1时是递增函数;以底数小于1时是递减函数。

即logx(loga(x))的值在[0,+∞)区间上递增;在(0,1]区间上递减。

这也是由定义可得。

三、对数函数的运算性质1. 对数的对数:loga(logb(x)) = logb(a)logb(x)这个性质是对数函数运算中的一个重要性质,可以帮助我们将一个对数函数转化为另一个对数函数来简化问题。

2. 对数的乘方:loga(x^k) = kloga(x)这个性质可以帮助我们简化对数函数中的乘方运算,将其转化为对数与乘法的关系。

3. 底数的换底公式:loga(x) = logb(x)/logb(a)当我们需要将一个对数函数以底数a的形式表示为以底数b的对数函数时,可以使用换底公式将其转化为以底数b的对数函数来表示。

4. 对数与指数的关系:loga(x) = y 与 a^y = x 互为逆运算这是对数函数和指数函数之间的基本关系,对数和指数运算可以互相转化,相互补充。

5. 对数的乘法公式:loga(x×y) = loga(x) + loga(y)这个公式可以帮助我们将对数函数的乘法运算转化为加法运算。

高中数学同步教学课件 对数函数的性质与图像(一)


[微体验]
1.下列函数中是对数函数的是(
A.y=log1x
3
C.y=logx2
) B.y=log3(x+1)
D.y=log3x+2
【答案】A
2.若对数函数 y=f(x)过点(4,1),则 f(x)=________.
【答案】log4x
【解析】设 f(x)=logax,则 loga4=1,∴a=4,∴f(x)=log4x.
(2)对数函数 y=logax(a>0,且 a≠1)在区间(0,+∞)上是增函数.( )
(3)当 a>1 时,若 0<x<1,则 logax<0.( )
(4)函数 y=log1
a
x 与 y=logax(a>0,且 a≠1)的图像关于 y 轴对称.(
)
【答案】(1)√ (2)× (3)√ (4)×
2.函数f(x)=log2(3x+1)的值域为( )
方法二:作直线 y=1 与四条曲线交于四点,由 y=logax=1,得 x=a(即交点 的横坐标等于底数),所以横坐标小的底数小,所以 c1、c2、c3、c4 对应的 a 值分别为 3、43、35、110.
[方法总结] 1.画对数函数 y=logax 的图像时,应牢牢抓住三个关键点(a,1), (1,0),1a,-1. 2.对数函数图像与直线 y=1 的交点横坐标越大,则对应的对数函 数的底数越大.
2
2
∴函数 y=log1 (3+2x-x2)的值域为[-2,+∞).
2
【课堂小结】
1.判断一个函数是不是对数函数关键是分析所给函数是否具有 y= logax(a>0 且 a≠1)这种形式. 2.在对数函数 y=logax(a>0,且 a≠1)中,底数 a 对其图像直接产生影 响,学会以分类的观点认识和掌握对数函数的图像和性质. 3.涉及对数函数定义域的问题,常从真数和底数两个角度分析.

对数函数y=loga x的图像和性质 高中数学北师大版必修第一册

高中数学北师大版必修第一册
第四章
对数运算与对数函数
4.3.3 对数函数y=loga x的图像和
性质
第1课时
对数函数的概念、图象和性质
课标阐释
1.通过具体实例,了解对数函数
的概念.(数学抽象)
2.能用描点法或借助计算工具
画出对数函数的图象,探索并
了解对数函数的单调性与特殊
点.(直观想象)
3. 知道对数函数 y=logax 与指
-3
1
a=8 3
1
= 2.
1 2 1
所以 f(x)=log 1 x,故由 B(n,2)在函数图象上可得 f(n)=log 1 n=2,所以 n=
= .
2
4
2
2
答案(1)4
1
(2)
4
探究二
指数函数与对数函数关系的应用
例2(2020四川宜宾高一检测)已知函数f(x)=log2x,若函数g(x)是f(x)的反
②).
图①
图②
最后把y=lg(x-1)的图象在x轴下方的部分对称翻折到x轴上方(原来在x轴
上方的部分不变),即得出函数y=|lg(x-1)|的图象(如图③).
图③
由图易知函数的定义域为在区间(1,+∞),值域为[0,+∞),函数在区间(1,2]
上单调递减,在区间(2,+∞)上单调递增.
探究五
利用对数函数的性质比较大小
以10为底的对数函数为常用对数函数,记作y=lg x;以无理数e为底的对数
函数为自然对数函数,记作y=ln x.
3.反函数
对数函数表示为y=logax(a>0,且a≠1),指数函数表示为y=ax(a>0,且a≠1),

高考数学函数题的解题方法

高考数学函数题的解题方法高考数学中,函数题一直是重点和难点,令许多考生感到头疼。

但其实只要掌握了正确的解题方法,函数题也并非难以攻克。

下面,我将为大家详细介绍高考数学函数题的解题方法。

一、熟悉函数的基本概念首先,要对函数的定义、定义域、值域、单调性、奇偶性、周期性等基本概念有清晰的理解。

定义域是函数的基础,它决定了函数的存在范围。

例如,对于分式函数,分母不能为零;对于根式函数,根号内的表达式必须大于等于零。

值域则是函数所能取得的所有值的集合。

通过对函数的性质和运算进行分析,可以求出函数的值域。

单调性是函数的重要性质之一。

如果函数在某个区间内随着自变量的增大而增大,那么函数在该区间上单调递增;反之,如果随着自变量的增大而减小,函数在该区间上单调递减。

奇偶性反映了函数的对称性。

奇函数关于原点对称,偶函数关于 y 轴对称。

周期性则是指函数在一定的区间内重复出现相同的性质。

二、掌握常见函数的图像和性质常见的函数包括一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数等。

一次函数的图像是一条直线,其斜率和截距决定了函数的性质。

二次函数的图像是抛物线,通过判别式可以判断函数与 x 轴的交点情况,顶点坐标和对称轴的公式也需要牢记。

反比例函数的图像是双曲线,其渐近线和对称中心要清楚。

指数函数和对数函数互为反函数,它们的底数对函数的单调性有重要影响。

三角函数的周期性和特殊值是解题的关键。

熟悉这些函数的图像和性质,能够在解题时迅速找到思路。

三、运用函数的运算和变换函数的四则运算包括加、减、乘、除。

在解题时,要善于将复杂的函数拆分成简单函数的运算组合。

函数的变换包括平移、伸缩、对称等。

例如,函数的平移是按照“左加右减,上加下减”的原则进行的。

四、利用导数求解函数问题导数是研究函数单调性、极值和最值的有力工具。

通过求导,可以得到函数的导数表达式。

当导数大于零时,函数单调递增;当导数小于零时,函数单调递减。

利用导数求函数的极值和最值,需要先找到导数为零的点,再判断这些点是极大值点还是极小值点。

高中类反比例函数对称中心

高中类反比例函数对称中心比较反比例函数的对称中心与几何图形的对称中心相似之处,由此分析了类反比例函数与其它三种类型函数的联系与区别。

下面我们看看,这四种函数的特点和相似之处。

有一次,我做数学考试卷子,考到函数时,发现我总是解不出来,老师说,等你复习完后,一定要把函数多看几遍,也可以买那本《高中类反比例函数对称中心》书,因为那里面有很多关于函数的知识,包括正比例函数、反比例函数、指数函数、对数函数和幂函数。

下面就让我们去看看,他们的区别与联系吧!通过刚才这个问题,我们就能发现函数的类型都是正比例函数、反比例函数和指数函数。

而且他们之间还存在着一些联系与区别:一)、正比例函数的对称中心与几何图形的对称中心相似之处,首先让我们先研究下正比例函数的对称中心,我们从最基础的开始,只要是从x=0的解析式开始,到无限大的解析式结束,把对称中心转化为无限大,然后按照这样的方法一直到终止。

在这里边要注意一下,中间任何一个点都不能停留,当然,也不能重复。

这里边必须满足两个条件:(1)、 x=0;(2)、是最基础的解析式。

(2)x=0,就要想到它的对称中心一定是点(0),就是零点,因为函数是连续的,所以一般要求对称中心为0。

(1)x=0,就是无限大,就可以推广成一个直线,而直线是无限延长的,那么,这个无限延长的直线的另一端也是一个无限大,如果用一根带有箭头的直线,那么另一端的无限延长线,也是一个无限大。

(3)对称中心和几何图形的对称中心相似之处就在这里边。

这里边,他们共同满足的条件,是几何图形是一个平面图形。

而这些几何图形是由平行线段围成的,那么就和数学上的几何证明有一定的相似性,但是要记住,几何证明是为了说明而进行的假设,但是函数的证明是为了解决问题,用数学归纳法来证明。

(二)正比例函数的对称中心与几何图形的对称中心相似之处,接下来我们再看一下反比例函数的对称中心。

这样一种说法,反比例函数的对称中心是两个函数的交点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式指数函数和分式对数函数的对称中心的探究
首先,我们来了解一下分式指数函数和分式对数函数的定义。

分式对数函数可以表示为f(x)=loga(x)/b,其中a和b为常数且a>0,b≠0,且a≠1、它的自变量x位于定义域D={x,x > 0}上。

接下来,我们来探讨它们的对称中心。

对于分式指数函数f(x)=a^(b/x)来说,我们将自变量x替换为-x,
可以得到f(-x)=a^(b/-x)。

然而,我们知道指数函数的对称中心是在x
轴上的,因此我们将自变量x替换为-x并不会改变函数的图像。

所以,
分式指数函数的对称中心是x轴上的点(x,0)。

对于分式对数函数f(x)=loga(x)/b来说,我们将自变量x替换为
1/x,可以得到f(1/x)=loga(1/x)/b。

同样地,我们知道对数函数的对称
中心是在y=x这条直线上的,而y=x通过(1,1)这个点。

所以,分式对数
函数的对称中心是点(1,1)。

由此可见,分式指数函数的对称中心在x轴上,而分式对数函数的对
称中心在y=x这条直线上。

接下来,我们将探讨分式指数函数和分式对数函数的对称性质。

对于分式指数函数f(x)=a^(b/x)来说,当自变量x取任意非零实数时,函数值f(x)总是非零的。

这意味着函数的图像不会穿过x轴,因此
它在x轴上具有反射对称性。

对于分式对数函数f(x)=loga(x)/b来说,当自变量x取任意正实数时,函数值f(x)总是非负的。

这意味着函数的图像不会穿过y轴的负半轴,因此它在y轴和y=x这条直线上都具有反射对称性。

综上所述,分式指数函数的对称中心在x轴上,具有x轴的反射对称性;而分式对数函数的对称中心在y=x这条直线上,具有y轴和y=x这条直线的反射对称性。

在实际应用中,分式指数函数和分式对数函数的对称性质有着重要的意义。

通过对称中心的分析,我们可以更好地理解和解释这两种函数的性质,并能更灵活地进行函数的图像绘制等相关问题的处理。

总结起来,分式指数函数和分式对数函数是数学中常见的函数类型,它们具有一种特殊的对称性。

分式指数函数的对称中心在x轴上,分式对数函数的对称中心在y=x这条直线上。

这种对称性质在实际应用中起到了重要的作用。

Reference:。

相关文档
最新文档