细胞因子风暴研究进展

细胞因子风暴研究进展
细胞因子风暴研究进展

细胞因子风暴研究进展

细胞因子风暴(英语:Cytokine storm)又称高细胞介质症(Hypercytokinemia),一种不适当的免疫反应,因为细胞因子与免疫细胞间的正回馈循环而产生。这也被认为就是1918

年流感大流行、2003年SARS事件、2009年H1N1流感大流行,以及H5N1高致病性禽流感中病毒致死的原因不过美国疾病控制与预防中心认为这一症状与H1N1之间的没有充分的证据可以展示其关联性。

症状为高烧、红肿、肿胀、极度疲倦与恶心。在某些情况下可能致命。治疗:当免疫系统对抗病原体时,细胞素会引导免疫细胞前往受感染处。同时,细胞素也会激活这些免疫细胞,被激活的免疫细胞则会产生更多的细胞素。通常来说,人体会检查并控制这个反馈循环。但就是在有些情况下,情况会失控,导致一个地方聚集了太多被激活的免疫细胞。目前为止,还没有完全了解这一现象的具体成因,但就是有推测认为可能就是由于免疫系统对新的、高致病的病原体产生的过激反应。

细胞因子风暴有可能会对身体组织与器官产生严重的损伤,比如当其发生于肺部,过多的免疫细胞与组织液可能会在肺部积聚,阻塞空气进出,并导致死亡。

细胞因子风暴与各种感染性与非感染性疾病有关,甚至就是治疗性干预尝试的不幸后果。已有研究证明其在移植物抗宿主病、多发性硬化症、胰腺炎或多器官功能障碍综合征中出现。随着研究的深入,对细胞因子风暴的细胞定位与分子机制有所了解,并有助于病毒性症状尤其就是流行性感冒的治疗。

细胞因子就是由细胞分泌出来用于细胞间信号传导与通信的多种小蛋白质,具有自分泌、旁分泌与/或内分泌活性,并且通过结合受体引发多种免疫应答。细胞因子的主要功能有控制细胞增殖与分化、血管发生、免疫、炎症反应的调节(表1)。

表一:与细胞因子风暴相关的因子主要类型及功能

类型功能

干扰素调节先天免疫,活化抗病毒性质,抗增殖作用。

白介素白细胞增殖与分化,

趋化因子控制趋向性,募集白细胞,很多就是促炎因子

集落刺激因子刺激造血祖细胞增殖与分化

肿瘤坏死因子促炎,激活细胞毒素T细胞

干扰素(IFNs)就是一种细胞因子家族,其在病毒与其她微生物病原体的先天免疫中起核

心作用。根据干扰素受体特异性可以将其分为三类(I、II、III类),I型IFN包含IFN-α与IFN-β,受体为异二聚体复合物IFNAR1 /IFNAR2;I型IFN包括IFN-γ,通过结合受体

IFN-γR1/IFN-γR2发挥作用。III型IFN就是一类新的干扰素,包括IFN-λ1、-λ2与-λ3,也称白介素IL-29、IL-28a与IL-28b,结合受体复合体IL-28R/IL-10Rβ,具有抗病毒活性,保护小鼠免受甲型流感病毒的侵害。IFNs通过Jak-STAT信号通路转导信号,结合受体导致下游信号级联的启动,其结果就是转录因子的激活与数百种IFN刺激的基因的诱导。这些基因编码具有抗病毒、抗增殖或免疫调节特性的蛋白质产物。IFNs(通常与其她药物组合)可以用来治疗病毒性疾病如丙型肝炎与乙型肝炎、某些类型的白血病与淋巴瘤以及多发性硬化中。

白介素与IFN相反,主要在免疫细胞分化与激活中起作用,属于免疫调节剂。白介素可以就是促炎或抗炎的,并且像所有细胞因子一样,引起多种反应。IL-1α与IL-1β就是通过直接与间接机制介导宿主对感染的反应的促炎细胞因子。在它们的生物学功能中,这些细胞因子增加了急性期信号传导,免疫细胞向原发感染部位的运送,上皮细胞活化与继发性细胞因子产生。

趋化因子就是细胞因子最大的家族,这些小分泌蛋白根据其前两个半胱氨酸残基的间隔分为四种类型(CXC、CC、C与CX3C)。趋化因子作为化学引诱物起到控制细胞迁移的作用,特别就是免疫系统的迁移,有助于胚胎发生,先天与适应性免疫系统发育与功能以及癌症转移等多种过程。大多数趋化因子被认为就是炎症性的,并且它们被响应于病毒(或其她微生物)感染的各种细胞释放。促炎趋化因子的释放导致免疫系统细胞(嗜中性粒细胞、单核细胞/巨噬细胞与淋巴细胞)募集到感染部位。尽管大多数细胞因子具有多效性,但就是对于特定细胞类型,免疫细胞的趋化因子募集可以就是高选择性的。例如,IL-8、CCL2(单核细胞趋化蛋白MCP-1)与CCL11(嗜酸细胞活化趋化因子)分别就是嗜中性粒细胞、单核细胞与嗜酸性粒细胞的主要化学引诱因子。

集落刺激因子(CSF),如粒细胞巨噬细胞集落刺激因子(GM-CSF)、巨噬细胞集落刺激因子(M-CSF)与粒细胞游离刺激因子(G-CSF)刺激造血祖细胞增殖与分化。集落刺激因子也与炎症有关,有证据表明,这些因子可能就是包含IL-1与肿瘤坏死因子(TNF)的相互依赖的促炎细胞因子网络的一部分。研究表明,CSF通过增加炎症部位的细胞因子,提高巨噬细胞的数量,使炎症反应持续。

肿瘤坏死因子(TNF)可能就是最有名的与最强烈的促炎细胞因子,它在细胞因子风暴中起着重要作用。TNF被认为就是急性病毒性疾病的中枢细胞因子,包括流感病毒、登革热病

毒与埃博拉病毒引起的疾病。TNF由多种免疫细胞表达。TNF蛋白超家族扩大了TNF的多效性。过量的TNF产生与许多慢性炎症与自身免疫性疾病相关。TNF抑制剂已被批准用于治疗炎症性肠病、牛皮癣与类风湿性关节炎。

肺部炎症反应的强度反映了促炎细胞因子(如TNF与IL-1)及其同源可溶性受体或抑制剂TNFR1,TNFR2与IL-1RA之间的平衡,抑制这些炎性细胞因子的活性在肺泡液的水相中。抑制肺部炎症的一种机制就是调节特定细胞类型的活化。例如,肺泡巨噬细胞上的CD200R表达有助于通过抑制巨噬细胞活性来解决流感病毒感染期间的肺部炎症。负调节因子如IL-1受体相关激酶(IRAK-M),细胞因子信号传导抑制因子1(SOCS1),磷酸肌醇-3-OH激酶

(PI3K),Toll相互作用蛋白(TOLLIP)与锌指蛋白A20,也有助于通过预防异常的TLR活化来维持先天免疫过程。巨噬细胞与某些类型的T细胞(Th2与调节性T细胞)与B细胞的抗炎细胞因子(主要就是IL-10)的产生代表调节促炎反应的另一种机制。尽管IL-10最常被认为就是抗炎细胞因子,但最近的证据将IL-10与纤维化中的潜在作用联系起来,据报道IL-10表达增加会诱导胶原蛋白生成与纤维细胞募集到肺中。相比之下,IL-6与其可溶性受体之间的相互作用增强了靶细胞上IL-6的活性,提供了当可溶性TNF受体与IL-1RA浓度非常高时增强TNF 与IL-1活性的机制。由于促炎与抗炎机制的平衡对于维持肺免疫稳态至关重要,可以想象,如果这些调节机制中的一种或多种不存在或异常调节,则结果可能有助于细胞因子风暴。

细胞因子风暴就是对急性或慢性损伤的免疫反应,可能由疾病本身或通过针对潜在疾病的治疗引起,结果就是可以引起脓毒症样反应并可能导致多系统器官衰竭甚至死亡的细胞因子的压倒性释放。

细胞因子风暴主要由以下几个特点:

?在细胞因子风暴中,大量产生的不同种族的细胞因子与趋化因子,其在急性严重全身性炎症并发症的发展中起病理作用。

?细胞因子风暴的发生可以引发多种疾病(包括感染(严重败血症,败血性休克))、创伤、损伤、急性胰腺炎、风湿性疾病。

? IL-6可以作为细胞因子风暴中疾病严重程度与预后指标的生物标志物,其表达优于TNF-α与IL-1。

?通过触发反式信号传导途径,高浓度的IL-6可以诱导血栓形成、血管渗漏与心肌功能障碍相关的各种病理功能,导致组织缺氧、低血压、多器官功能障碍与弥散性血管内凝血。

鱼类饲料中适宜蛋白质能量比研究的进展

鱼类饲料中适宜蛋白质能量比研究的进展 摘要: 能量是鱼类饲料组成定量的基础指标之一,但与畜禽不同,鱼类对饲料蛋白质的需要量较高[1],在饲料中往往被优先考虑。已有研究证实,碳水化合物与脂肪有节约蛋白质的作用[2]。但是,配合饲料中过多的非蛋白能源物质会影响鱼类的摄食和生长,造成体脂肪含量过高,商品性能降低,限制动物对其他营养成分的消化吸收[3],因此,在配合饲料的研发过程中,蛋白能量比(P/E)是一个重要的基础参数,适宜的饲料P/E(简称蛋能比)对于促进鱼类的生长、提高产品品质、节约饲料、降低养殖成本、提高经济效益等具有重要的作用。 关键词:蛋白能量比;饲料;鱼类 1蛋白质能量比的定义 起初对蛋白质营养水平有几种表示方法,即:蛋白质水平、蛋白质浓度、营养比,后来人们提出的“能量蛋白比(E/P)”也应作为蛋白质营养水平衡量方法之一,简称“能蛋比”。能量蛋白比=代谢能或净能(kJ/g)/粗蛋白质(%),E/P越小蛋白质营养水平越高,反之越低。但在实际应用中,由于E/P数值大小与其所表示的蛋白质营养水平高低相反,不太习惯,为此,有人建议用“P/E”表示,即:蛋白质营养水平=粗蛋白质(g/kg)/代谢能(或其他形态能)(MJ/kg)。P/E是表达动物日(饲)粮或配合饲料中蛋白指标同能量指标间的比例关系,即饲料中单位能值所对应的粗蛋白数,通常所说的配合饲料和饲粮的蛋白水平,是指其粗蛋白的含量百分数,是等量纲的比值,用百分率表示。而P/E则因二指标形式不同带来参数意义上的差别和取值大小的变化,但却能更进一步表示饲粮或配合饲料的蛋白营养内涵[4]。 2最适蛋白能量比的研究方法 在探寻鱼类饲料最适P/E时,通过投喂不同蛋白质、能量组合的浓度梯度饲料,使受试对象表现出不同的生长结果,其中生长最快、耗料最低组所摄食的饲料蛋白质、能量含量被认为最佳需要量,二者的比值即为该动物饲料的最佳P/E。在鱼类饲料的适宜P/E的研究中,用于估计最佳P/E时通常使用方差分析或建立多项式回归模型的方法。方差分析中,经多重比较后,最佳生长表现组饲料的P/E 即为该饲养对象所需的适宜P/E。当剂量-反应之间的真实关系未知时,多项式

抗菌肽的研究进展

抗菌肽的研究进展 摘要:抗菌肽是生物界中广泛存在的一类生物活性肽。它具有抗细菌、真菌、病毒和原虫作用,甚至对癌细胞也具有杀伤作用。本文就抗菌肽的来源、作用机理、研究进展做一简要的综述。 关键词:抗菌肽;活性肽;作用机理;研究进展 The progress of Antimicrobial Peptides research Abstract:Antibiotic peptides are a kind of bioactive peptides that exist in organism and biosphere widely. They possess the activities of anti-bacteria, anti-fungi,anti-virus and anti-plasmodium. This paper reviewed the source,mechanism and the progress of the antimicrobial peptides research. Key words:antimicrobial peptides;bioactive peptides;mechanism;research progress 抗菌肽( antibacterial peptides) 又称抗微生物肽( antimicrobial peptides,AMPs) ,是生物体在抵抗病原微生物的防御反应过程中产生的一类具有抗微生物活性的小分子多肽。抗菌肽是机体天然免疫系统的重要组成部分,一般由20 -60 个氨基酸组成,分子量在 1 -7 kD 左右,具有广谱的抗微生物活性,对革兰氏阳性菌、革兰氏阴性菌、真菌、原生生物、某些病毒和肿瘤均表现出较强的抑制作用,其独特的抗菌机制可较好地解决病原微生物对抗生素不断增强的抗性问题[1]。 20 世纪80 年代,由瑞典科学家Boman 研究小组用蜡状芽孢杆菌( Bacillus cereus) 诱导惜古比天蚕( Hyalophora cecropia) 后产生了抗菌多肽类物质,随后发现了第一个抗菌肽——天蚕素( cecropins)[2]。人们最初把这类具有抗菌活性的多肽称为“antibacterial peptides”,原意为“抗细菌肽”;后来发现其有抗真菌等微生物的作用,便改称为“antimicrobial peptides”,意为“抗微生物肽” [3]。抗菌肽是由基因编码在核糖体内合成的多肽,不同种类的抗菌肽通常有共同的特点:短肽( 30 ~60 个氨基酸) ,强阳离子性( 等电点范围为8.9 ~10.7 ) ,热稳定性好( 100 ℃,15 min),分子质量约为 4 ku,无药物屏蔽且不影响真核细

细胞因子风暴研究进展

细胞因子风暴研究进展 细胞因子风暴(英语:Cytokine storm)又称高细胞介质症(Hypercytokinemia),一种不适当的免疫反应,因为细胞因子与免疫细胞间的正回馈循环而产生。这也被认为是1918年流感大流行、2003年SARS事件、2009年H1N1流感大流行,以及H5N1高致病性禽流感中病毒致死的原因不过美国疾病控制与预防中心认为这一症状与H1N1之间的没有充分的证据可以展示其关联性。 症状为高烧、红肿、肿胀、极度疲倦与恶心。在某些情况下可能致命。治疗:当免疫系统对抗病原体时,细胞素会引导免疫细胞前往受感染处。同时,细胞素也会激活这些免疫细胞,被激活的免疫细胞则会产生更多的细胞素。通常来说,人体会检查并控制这个反馈循环。但是在有些情况下,情况会失控,导致一个地方聚集了太多被激活的免疫细胞。目前为止,还没有完全了解这一现象的具体成因,但是有推测认为可能是由于免疫系统对新的、高致病的病原体产生的过激反应。 细胞因子风暴有可能会对身体组织和器官产生严重的损伤,比如当其发生于肺部,过多的免疫细胞和组织液可能会在肺部积聚,阻塞空气进出,并导致死亡。 细胞因子风暴与各种感染性和非感染性疾病有关,甚至是治疗性干预尝试的不幸后果。已有研究证明其在移植物抗宿主病、多发性硬化症、胰腺炎或多器官功能障碍综合征中出现。随着研究的深入,对细胞因子风暴的细胞定位和分子机制有所了解,并有助于病毒性症状尤其是流行性感冒的治疗。 细胞因子是由细胞分泌出来用于细胞间信号传导和通信的多种小蛋白质,具有自分泌、旁分泌和/或内分泌活性,并且通过结合受体引发多种免疫应答。细胞因子的主要功能有控制细胞增殖和分化、血管发生、免疫、炎症反应的调节(表1)。 表一:与细胞因子风暴相关的因子主要类型及功能 类型功能 干扰素调节先天免疫,活化抗病毒性质,抗增殖作用。 白介素白细胞增殖和分化, 趋化因子控制趋向性,募集白细胞,很多是促炎因子 集落刺激因子刺激造血祖细胞增殖和分化 肿瘤坏死因子促炎,激活细胞毒素T细胞 干扰素(IFNs)是一种细胞因子家族,其在病毒和其他微生物病原体的先天免疫中起核

动物乳腺生物反应器

万方数据

万方数据

万方数据

动物乳腺生物反应器 作者:刘静, Liu Jing 作者单位:山东省济宁学院生命科学与工程系,273155 刊名: 生物学教学 英文刊名:BIOLOGY TEACHING 年,卷(期):2009,34(12) 参考文献(15条) 1.杨雪峰;刘玉梅;张文娟动物乳腺生物反应器在现代生物制药中的应用[期刊论文]-黑龙江畜牧兽医 2008(06) 2.李志勇细胞工程 2007 3.Wiilmut I;Schnieke AE;Mcwhir J Viable off-spring derived from fetal adult mammalian cells[外文期刊] 1997(6619) 4.Velander WH;Johnson JL;Page RL High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C 1992(24) 5.Wright G;Carver A;Cottom D High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep 1991(09) 6.曾邦哲转基因动物的基础与应用研究 1997(06) 7.Gordon K;Lee E;Vitale J Production of human tissue plaminogen activator in transgenic mouse milk 1987(11) 8.Palmiter RD;Brinster RL;Hammer RE Dramatic growth of mice that develop from eggs microinjected with metallothioneingrowth hormone fusion genes 1982(5893) 9.Gordon JW;Scangos GA;Plotkin DJ Genetic transformation of mouse embryos by microinjection of purified DNA 1980(12) 10.王洪岩;仲跻峰;刘文浩动物乳腺生物反应器的研究进展[期刊论文]-山东农业科学 2004(03) 11.刘殿峰;刘秀霞;姚 伟转基因动物乳腺反应器与生物制药[期刊论文]-黑龙江动物繁殖 2004(03) 12.王庆忠;李国荣;尹 昆乳腺生物反应器的研究现状和产业化前景[期刊论文]-生命科学 2005(01) 13.Denning C;Burl S;Ainslie A Deletion of alpha (1,3) galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep[外文期刊] 2001(06) 14.McCreath KJ;Howcroft J;Campbell KHS Production of gene-targeted sheep by nuclear transfer from cultured somatic cells[外文期刊] 2000(6790) 15.朱小甫;渠敬峰;吴旭转基因动物乳腺生物反应器研究进展[期刊论文]-畜牧兽医杂志 2007(03) 本文链接:https://www.360docs.net/doc/ec8092038.html,/Periodical_swxjx200912001.aspx

三种消化酶测定

蛋白酶活力的测定 [目的与原理] 掌握蛋白酶活力的测定方法,测定鱼、虾、贝等水产动物主要消化器官肝胰脏、胃、肠等蛋白酶的活力。 动物消化器官内含有各种消化腺,这些消化腺分泌消化酶进行化学性消化作用,将机体摄入的大分子营养物质转变为可溶性小分子物质而吸收进入血液循环。本实验采用福林—酚法测定机体内主要消化酶—蛋白酶活力。福林—酚试剂(Folinphenol)在碱性溶液中极不稳定,易被酚类化合物还原为蓝色化合物。蛋白质中含有酚基的氨基酸包括(酪氨酸、色氨酸、苯丙氨酸),用蛋白酶分解酪蛋白(底物),生成含酚基的氨基酸与福林-酚试剂成蓝色反应,可从蓝色的深浅测知酶活力多少。 [试剂与器材] 试剂: 1、福林试剂:在2000ml磨口回流装置内加入钨酸钠(Na2WO4·2 H2O)100g,钼酸钠 (Na2MoO4·2H2O)25g,水700ml,35%磷酸50ml,浓盐酸100ml,文火回流10小时,然后加人硫酸锂50g,水50ml和溴水数滴,摇匀,去除冷凝器,继续煮沸15分钟,以除去多余的溴。溶液呈金黄色,冷却后,定容至1000ml,过滤,滤液即福林试剂(试剂不应呈绿色,否则需重配)。置于棕色瓶中保存,使用时用氢氧化钠标定,稀释至1N。 2、0.55M碳酸钠溶液 3、10%三氯乙酸 4、0.02M pH7.5磷酸缓冲液: 0.02M 磷酸氢二钠溶液的配制:取Na2HPO4·2H2O 3.561g (或Na2HPO412H2O 7.164g),溶解于1L蒸馏水中。0.02M 磷酸二氢钠溶液的配制:取NaH2PO4 H2O 2.76g (或NaH2PO4 2H2O 3.121g),溶解于1L蒸馏水中。 将0.02M 磷酸氢二钠溶液84ml与0.02M 磷酸二氢钠溶液16ml混合,即为0.02M pH7.5磷酸缓冲液。 5、0.5%酪素:(酪蛋白)0.5克,以0.5N NaOH 1ml湿润。再加少量0.02MpH7.5磷酸缓冲液稀释。在热水浴中溶解,定容至100ml,冰箱中可保存一周。 材料: 鲜活鱼、虾、贝的肝胰脏、胃、肠标本。 器材: 分光光度计、光径1.0cm比色杯、离心管、电子天平、离心机、匀浆器、剪子、镊子、冰块、试管若干、移液管若干。 [实验步骤] 1、酶粗提液的制备

细胞因子风暴研究进展

细胞因子风暴研究进展 细胞因子风暴(英语:Cytokine storm)又称高细胞介质症(Hypercytokinemia),一种不 适当的免疫反应,因为细胞因子与免疫细胞间的正回馈循环而产生。这也被认为就是1918年流感大流行、2003年SARS事件、2009年H1N1流感大流行,以及H5N1高致病性禽流感中 病毒致死的原因不过美国疾病控制与预防中心认为这一症状与H1N1之间的没有充分的证据 可以展示其关联性。 症状为高烧、红肿、肿胀、极度疲倦与恶心。在某些情况下可能致命。治疗:当免疫系统对抗病原体时,细胞素会引导免疫细胞前往受感染处。同时,细胞素也会激活这些免疫细胞,被激活的免疫细胞则会产生更多的细胞素。通常来说,人体会检查并控制这个反馈循环。但 就是在有些情况下,情况会失控,导致一个地方聚集了太多被激活的免疫细胞。目前为止,还没有完全了解这一现象的具体成因,但就是有推测认为可能就是由于免疫系统对新的、高致 病的病原体产生的过激反应。 细胞因子风暴有可能会对身体组织与器官产生严重的损伤,比如当其发生于肺部,过多的免疫细胞与组织液可能会在肺部积聚,阻塞空气进出,并导致死亡。 细胞因子风暴与各种感染性与非感染性疾病有关,甚至就是治疗性干预尝试的不幸后 果。已有研究证明其在移植物抗宿主病、多发性硬化症、胰腺炎或多器官功能障碍综合征中 出现。随着研究的深入,对细胞因子风暴的细胞定位与分子机制有所了解,并有助于病毒性症 状尤其就是流行性感冒的治疗。 细胞因子就是由细胞分泌出来用于细胞间信号传导与通信的多种小蛋白质,具有自分泌、旁分泌与/或内分泌活性,并且通过结合受体引发多种免疫应答。细胞因子的主要功能有 控制细胞增殖与分化、血管发生、免疫、炎症反应的调节(表1)。 表一:与细胞因子风暴相关的因子主要类型及功能 类型功能 干扰素调节先天免疫,活化抗病毒性质,抗增殖作用。 白介素白细胞增殖与分化, 趋化因子控制趋向性,募集白细胞,很多就是促炎因子 集落刺激因子刺激造血祖细胞增殖与分化 肿瘤坏死因子促炎,激活细胞毒素T细胞 干扰素(IFNs)就是一种细胞因子家族,其在病毒与其她微生物病原体的先天免疫中起核

I型细胞因子及其受体研究进展

I型细胞因子及其受体研究进展 细胞因子一般分子量较小、生物活性高,主要由免疫细胞或非免疫细胞(如血管内皮细胞,表皮细胞和成纤维细胞等)经刺激而产生。细胞因子间可以相互作用形成网络,进而参与免疫应答和炎症反应过程或促进细胞增殖生长。但是细胞因子需要与相应的受体结合才能发挥效应。细胞因子及其受体会对机体免疫应答进行调控,在细胞及分子水平上揭示细胞因子与疾病之间的关系,尤其是对某些自身免疫性疾病、肿瘤、免疫缺陷疾病的发病机理的研究,为临床治疗和诊断提供指导下依据。现在已有近几十个细胞因子及其受体的药物批准上市。 细胞因子受体命名规则比较简单,基本是在相应的细胞因子名称后面加Receptor(R)表示,如IL-2的受体就写成IL-2R。细胞因子受体一般分成四个类型:Ⅰ型细胞因子受体(Type ⅠCytokine Receptor)、Ⅱ型细胞因子受体家族(Type ⅡCytokine Receptor)、TNF超家族受体以及趋化因子受体。 在本文,将主要介绍Ⅰ型细胞因子及其受体的研究进展及其应用。 细胞因子受体(Type ⅠCytokine Receptor),也称红细胞生成素受体家族(hematopoietin receptor family)。这类受体的结构特点:胞外区含有同源区(大概有200个氨基酸构成),膜外区近氨基端有二个保守的半胱氨酸残基(C),其羧基端存在Trp-Ser-X-Trp-Ser(WSXWS,X代表任一氨基酸)残基序列。按照细胞因子家族可以分为如下类型:Ⅰ型白介素(IL-2,IL-3,IL-4,IL-5,IL-7,IL-9)受体,粒细胞巨噬细胞集落刺激因子(GM-CSF)受体,粒细胞集落刺激因子(G-CSF)受体,促红细胞生成素(EPO)受体,生长激素(GH)受体,催乳素(PRL)受体,抑癌蛋白M(OSM)受体,白血病抑制因子(LIF)受体等。 Ⅰ型细胞因子受体大多数由多个亚单位构成,其中有属于结合细胞因子的亚单位或用来进行信号转导的亚单位。信号转导亚单位可以有多种细胞因子受体共用,比如人的IL-3R,IL-5R和CSF2R均由α和β亚单位组成,其中α亚单位就属于细胞因子结合单位,β亚单位就由三种细胞因子共用来转导信号,这也使得IL-3,IL-5和GM-CSF在功能上有很多相似之处,如三者都可以刺激嗜酸性粒细胞增殖和嗜碱性粒细胞脱颗粒,还有IL-3和GM-CSF 均可作用于造血干细胞。还有一种共用信号亚单位——γ亚单位,主要由IL-2,IL-4,IL-7,IL-9和IL-15的受体共用。在X-性连锁中正联合免疫缺陷病患者中,正是由于这五个细因子受体介导的信号转导发生严重障碍造成的,使得细胞和体液免疫缺陷。

饥饿对鱼类生理生化指标影响的研究进展

饥饿对鱼类生理生化指标影响的研究进展 前言: 由于自然界中季节更替,环境剧变或生物分布不均等原因,野生鱼类普遍存在周期性缺食或营养匮乏的现象。作为生理学上的一种适应,野生鱼类能够通过降低基本代谢水平及消耗自身组织贮存的营养物质,从生理、生化和行为等方面发展了对食物不足甚至饥饿胁迫的忍受能力。 从50年代以来,为了评价鱼类营养状况,探讨摄食水平,区分正常摄食鱼和饥饿鱼,不同学者已从形态学、生态学、组织学、组织化学、细胞学、生物化学、酶学、代谢生理学等不同方面作了许多研究。研究表明:在饥饿状态下,鱼类行为异常,组织结构发生改变,通过改变酶活性、激素水平来降低代谢水平,并通过利用鱼体自身的贮能物质(如糖原、脂肪、蛋白质等)提供能量,从而能忍耐一段时间的饥饿。另外,不同种类的鱼对饥饿的耐受力和适应性不同。 有关饥饿对鱼类生理学状况影响的研究有助于了解鱼类适应饥饿胁迫的生态对策具有重要的理论意义;该方面的资料对渔业资源管理及水产养殖等方面的实践也有重要的指导意义。 1.饥饿对鱼类代谢水平的影响 鱼类可调节自身的能量分配以适应食物的缺乏,饥饿状态下鱼类代谢水平将明显下降。Mehner & Wieser发现河鲈幼鱼在20℃下饥饿15d后代谢率下降了约45%;Du Preeze报道了斑点石鲈饥饿5d后耗氧率下降了34%;张波等发现南方鲇幼鱼在27.5℃下饥饿20d代谢率下降了约47%;崔奕波等测得草鱼在30℃下饥饿35d后的代谢率明显低于Wiley等在正常状态下的测定值。

由于饥饿对代谢有明显的影响,因此标准代谢的测定方法中应考虑饥饿因素。标准代谢是指鱼类在禁食、静止状态下的代谢率。它代表在一定环境条件下,鱼类维持生命的最低代谢水平,即标准代谢是定义在一定饥饿状态下的。而饥饿状态下鱼的代谢率将逐渐下降,饥饿处理的时间不同测得的代谢率将会不同。因此我们认为在测定标准代谢时有必要将对鱼处理的时间进行规范化,使标准代谢的测定值更具有可比性。 卢波等对仔龟的研究发现,在饥饿状态下仔龟代谢水平不仅明显下降,而且下降过程还呈阶段性。人们在鱼类中也发现了类似现象。Mehner & Wieser发现河鲈幼鱼在饥饿期内代谢率的变化呈阶段性;张波等发现南方鲇幼鱼在27.5℃下饥饿至半数死亡的时间为156d,该过程中代谢率的变化可分为4个阶段:(1)饥饿开始至第20d代谢率明显下降;(2)第21d至第80d呈相对稳定状态(代谢率平均为初始时48.6%);(3)第81d至第90d再度下降;(4)第91d至第156d(死亡)稳定在一个更低的水平上(代谢率平均为初始时的38.5%)。Mehner & Wieser提出鱼类在长期饥饿状态下对其自身储存能量的利用上有两方面的适应:一方面降低代谢水平以节约能量消耗;另一方面又尽可能将代谢保持在一定水平上,以保证在重新获得食物供应或面临其它环境胁迫时能产生适当的应激反应。张波等认为鱼类的代谢水平在饥饿过程中出现阶段性变化,就是这两种相互拮抗的适应性反应发生交替变化所致。 2.饥饿对鱼类机体生化组成的影响 在饥饿状态下,鱼类代谢机能发生变化,通过降低代谢水平,利用自身贮能物质(糖类、脂类、蛋白质)提供能量以维持生命。不同种类的鱼,由于食性、生活方式、摄食饵料质量和身体结构等差异,对

抗菌肽研究及进展

一、抗菌肽概念 抗菌肽是生物体内存在的一种具有抗菌活性的小分子蛋白,氨基酸数目小于100,常带正电荷,并具广谱抗菌性的一类小肽,是生物体免疫防御系统产生的一类对抗外源性病原体致病作用的防御性多肽活性物质,是生物体先天免疫的重要组成成分,与干扰素、补体等组成了宿主的免疫防御系统,这类生物活性小分子是非专一性的免疫应答产物,具有广谱抗菌作用,它对革兰阳性菌、革兰阴性菌、真菌均有抑杀作用,还可以抗原虫、病毒,杀伤动物体内的肿瘤细胞,却不破坏动物体内的正常细胞。抗菌肽抗菌时一般没有特殊受体,直接通过物理作用造成细胞膜的穿孔而达到广谱抗菌的效果,因而不会诱导抗药株的产生,它属于小分子多肽,在动物体内容易降解,并且无毒副作用及药物残留问题,因而是绿色环保型药物。抗菌肽具有广谱的抗菌性,包括抗革兰氏阴性菌(G -)和阳性菌(G +)、抗真菌、抗病毒、抗肿瘤等尤其对耐药性细菌有杀灭作用。 二、抗菌肽分类 抗菌肽在自然界分布广泛,来源不一,种类繁多,分类也多种多样。抗菌肽除了具有广谱抗菌、抗真菌、抗病毒功能外,还具有抑制一些肿 瘤细胞生长的作用。(一)根据抗菌肽的结构分类 根据抗菌肽的结构可将其分为五 类:(1)单链无半胱氨酸残基的α-螺旋,或由无规卷曲连接的两段α-螺旋组成的肽。(2)富含某些氨基酸残基但不含半胱氨酸残基的抗菌肽。(3)含1个二硫键的抗菌多肽。(4)有2个或2个以上二硫键、具有β-折叠结构的抗菌肽。(5)由其它已知功能的较大的多肽衍生而来的具有抗菌活性的肽。 (二)根据抗菌肽的来源分 类 根据来源分类可分为4类: (1)昆虫抗菌肽包括天蚕素类和昆虫防御素。天蚕素是从美洲天蚕的蛹中分离到的抗菌多肽。此后,人们相继从家蚕、柞蚕、果蝇、麻蝇中分离到了此类多肽抗生素。第1种昆虫防御素(M-asturyama)于1988年在一种双翅目昆虫肉蝇中发现,至今昆虫纲中已有15大类30多种防御素被报道。杀菌肽类对革兰氏阳性菌和革兰氏阴性菌都具有很强的杀伤力,而对真菌和真核细胞没有毒性。(2)植物源抗菌肽是植物自身合成的能够防御环境中微生物侵害的一类小分子多肽。包括硫素、 植物防御素、脂转移蛋白、橡胶蛋白类、打结素类、凤仙花素、蜕皮素等。(3)鱼类抗菌肽是鱼体天然免疫的重要组成部分,是一类小分子蛋白质,其结构与组成复杂多样。鱼类抗菌肤的分布范围相对比较广,在鱼类体表黏液、皮肤、鳃、血液、血清、小肠和肝脏组织等均有过分离得到抗菌肽的报道。成熟肽具有很强的抑菌活性,其最小抑制浓度多在毫摩尔水平。(4)哺乳动物中,抗菌肽在吞噬细胞和黏膜上皮细胞表达。主要有3类,分别是防御素、cathelicidins 和histatins。 三、抗菌肽作用机制 抗菌肽的结构影响其生物学活性,因为抗菌肽存在着多种结构所以其生物学活性也多种多样。 (一)抗菌肽的抗菌作用 抗 菌肽对革兰氏阴性及阳性细菌均有高效广谱的杀伤作用。对大肠杆菌、沙门氏菌、金黄色葡萄球菌、链球菌等常见细菌都有很强的杀灭作用。 国内外已报道至少有113种以上的不同细菌能被抗菌肽所杀灭。目前对于其作用机制并不是很清晰,国内外学者对此研究很多,但在认 抗菌肽研究及进展 王 涛,常维山 (山东农业大学动物科技学院预防兽医系,山东泰安 271018) 胺一类药物时, 以间隔8 h 为佳。 2.中毒时注意停药和补充饮水。出现中毒时,应立即停药,并给予充足的饮水,在饮水中加0.50%~1.00%的碳酸氢钠或5%的葡萄糖液。中毒严重的鸡可肌注V B121~2μg 或叶酸50~100μg。 3.产蛋鸡禁用。蛋鸡如果用了此类药物,此药物就会与碳酸酐酶 结合,使其降低活性,从而使碳酸盐的形成和分泌物减少,使鸡产软蛋和薄壳蛋。从而影响产蛋量。 4.配伍禁忌。磺胺类药物忌与酸性药物(如维生素C、氯化钙等) 配伍,用药期间,禁用普鲁卡因等含对氨苯甲酸的制剂。不能与拉沙菌素、莫能菌素、盐霉素配伍 5.肾受损伤及3周龄以内的雏 鸡应慎用。磺胺类药物体内代谢主要在肝脏中进行, 而出壳不久的雏鸡肝脏中的代谢酶系统不健全, 解毒功能低,容易发生中毒。 6.勿在免疫接种时使用。畜禽在接种活菌疫苗时,不能同时使用磺胺类药物,否则会导致免疫效果差甚至失效。■

细胞因子的免疫应用及研究进展

细胞因子的免疫应用及研究进展 摘要:细胞因子( cytokine) 是一类由各种免疫细胞和非免疫细胞产生的具有生物活性的多肽或糖蛋白。通常所说的细胞因子包括淋巴细胞因子、单核细胞因子及其他细胞产生的细胞因子。细胞因子具有强大的免疫调节和免疫激活作用,有关细胞因子方面的研究已成为当今基础免疫学和临床免疫学研究中十分活跃的领域,并取得了令人瞩目的成绩,特别是近年来由于分子生物学技术的发展,使得细胞因子的研究和应用进入了一个全新的阶段。本文主要对其应用做一个综述。 关键词:细胞因子、免疫、应用 1.细胞因子的特性 尽管细胞因子种类繁多,功能复杂广泛,但其也有一些共同的特点,主要表现为: ①多为糖蛋白,分子质量一般为10~25ku,有的为8~10ku。②通过与受体的特异性结合而发挥其相应的生物学效应。这类结合的细胞因子亲和力较高,在极低浓度下亦显示出生物学活性。③一般在局部发挥效应,这种效应既可针对产生该细胞因子并且具有受体的细胞———即自分泌(autocrine)作用,也可针对邻近的细胞———即旁分泌(paracrine)作用。④分泌期短,一般仅为数天,且其半衰期也很短。⑤一种细胞因子可作用于多种靶细胞,并显示出多种生物学功能,即具有多效性;同时多种细胞因子也可作用于同一种细胞发挥相似的生物学作用。⑥细胞因子之间通过合成分泌的相互调节、受体表达的相互调控、生物学效应的相互影响而组成一个相互协同又相互制约的复杂的免疫反应协调网络,共同维持机体免疫系统的平衡。⑦细胞因子具有强大的免疫调节作用,是机体发挥免疫功能不可缺少的成分。 2.细胞因子的应用 大多数细胞因子是机体免疫应答的产物,对机体免疫系统具有强大的调节作用,是机体发挥免疫功能,清除病原体不可缺少的成分,与疾病的发生、发展有着密切的关系;另一方面,体内分泌的细胞因子过多,亦可引起病理性反应。因此,细胞因子在疾病的诊断、治疗和预防等方面有着极为广阔的应用前景。进入20世纪80年代以来,细胞因子的临床应用已成为医学研究和产品开发的重要领域,进入临床应用的细胞因子逐年增多,它们在人类和动物疾病的诊断、治疗和预防等方面发挥着越来越重要的作用。 2.1在诊断和治疗方面的应用 细胞因子一方面可以治疗某些疾病,如免疫缺陷性疾病、病毒性疾病、细菌性疾病及肿瘤等,另一方面可以导致和/ 或促进某些疾病的发生和发展,如自身免疫性疾病、移植排斥反应等。因此,细胞因子在疾病的诊断和治疗方面发挥着独特作用并取得了较为明显的效果。支气管哮喘患者体内的IL24、IL25、IL210及IL213等Th2型细胞因子浓度显著升高,在其作用下IgE合成增多,IgE与嗜碱性粒细胞和肥大细胞上的高亲和力受体结合,从而引起本病的发生。应用IFN2γ和抗IL24抗体或IL24R可减少Th2型细胞因子产生,从而抑制过敏反应,达到治疗的目的。在多发性硬化症患者的病灶中IL22和IFN2γ产生明显增加,而在恢复

白斑狗鱼生物学研究进展(5.18)

附件一: 新疆农业大学 专业文献综述 题目:白斑狗鱼的生物学研究进展 姓名:李帅 学院:动科学院 专业:动物科技与生产管理 班级:062班 学号:053531230 指导教师:张俊杰职称:讲师 2010年3月19日 新疆农业大学教务处制

白斑狗鱼的生物学研究进展 作者:李帅指导教师:张俊杰 摘要:白斑狗鱼(esox lucius linnaeus)属鲑形目、狗鱼科,是一种具发展前途的淡水鱼类。本文主要介绍白斑狗鱼生物学特性的研究现状,包括白斑狗鱼的基本特征,血液生理生化指标,温度和PH对白斑狗鱼消化酶活性的影响,遗传相关生物学研究,以及白斑狗鱼的人工繁殖技术,池塘无公害高产养殖技术和饲养过程中应注意的事项等方面,以便通过对这些生物学特性的了解和掌握,探寻白斑狗鱼的健康养殖方法,解决饲养过程中存在诸多问题。 关键词:白斑狗鱼;生物学特性;人工繁殖;高产养殖 The progress of research on northern pike(Esox lucius L.)biology Author:Li Shuai Teacher:Zhang Junjie Abstract:Esox lucius linnaeus of the salmon and pike perches falconiformes and is a promising freshwater fish.this paper mainly introduces Esox lucius linnaeus biological characteristics of Esox lucius linnaeus,including the basic feature of the physical,chemical,temperature and ph on Esox lucius linnaeus the enzyme activity of the relevant study of biology,inheritance,and Esox lucius linnaeus artificial propagation technologies,techniques and pollution-free high in the process should pay attention to issues such as to pass on the biological characteristics of and knowledgeable about and Esox lucius linnaeus the health of the special method,the process of solving problems. Key words:Esox lucius linnaeus;biological characteristics;artificial propagation;culture yields

细胞因子风暴研究进展

细胞因子风暴研究进展标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

细胞因子风暴研究进展 细胞因子风暴(英语:Cytokine storm)又称高细胞介质症(Hypercytokinemia),一种不适当的免疫反应,因为细胞因子与免疫细胞间的正回馈循环而产生。这也被认为是1918年流感大流行、2003年SARS事件、2009年H1N1流感大流行,以及H5N1高致病性禽流感中病毒致死的原因不过美国疾病控制与预防中心认为这一症状与H1N1之间的没有充分的证据可以展示其关联性。 症状为高烧、红肿、肿胀、极度疲倦与恶心。在某些情况下可能致命。治疗:当免疫系统对抗病原体时,细胞素会引导免疫细胞前往受感染处。同时,细胞素也会激活这些免疫细胞,被激活的免疫细胞则会产生更多的细胞素。通常来说,人体会检查并控制这个反馈循环。但是在有些情况下,情况会失控,导致一个地方聚集了太多被激活的免疫细胞。目前为止,还没有完全了解这一现象的具体成因,但是有推测认为可能是由于免疫系统对新的、高致病的病原体产生的过激反应。 细胞因子风暴有可能会对身体组织和器官产生严重的损伤,比如当其发生于肺部,过多的免疫细胞和组织液可能会在肺部积聚,阻塞空气进出,并导致死亡。 细胞因子风暴与各种感染性和非感染性疾病有关,甚至是治疗性干预尝试的不幸后果。已有研究证明其在移植物抗宿主病、多发性硬化症、胰腺炎或多器官功能障碍综合征中出现。随着研究的深入,对细胞因子风暴的细胞定位和分子机制有所了解,并有助于病毒性症状尤其是流行性感冒的治疗。 细胞因子是由细胞分泌出来用于细胞间信号传导和通信的多种小蛋白质,具有自分泌、旁分泌和/或内分泌活性,并且通过结合受体引发多种免疫应答。细胞因子的主要功能有控制细胞增殖和分化、血管发生、免疫、炎症反应的调节(表1)。 表一:与细胞因子风暴相关的因子主要类型及功能

(推荐)II型细胞因子及其受体研究进展

II型细胞因子及其受体研究进展 目前已经发现的细胞因子有200多种,随着基因测序技术的快速发展,相信会有更多的因子被发现,并且随着细胞工程技术和蛋白重组技术的发展,一定会有更多的细胞因子重组蛋白被纯化制备。细胞因子功能多样,不同因子间可以相互作用,同一因子可以有不同的功能,因此,细胞因子构成了一个复杂的网络功能图。而细胞因子想要发挥作用,必须与相应的受体结合行。细胞因子与其受体结合后,会对细胞产生作用,可以刺激细胞生长增殖分化,调控机体免疫应答,为在细胞及分子水平研究某些自身免疫性疾病、肿瘤、免疫缺陷疾病的发病机理提供数据,为临床治疗和诊断提供指导依据。 细胞因子受体一般分成四个类型:Ⅰ型细胞因子受体(Type ⅠCytokine Receptor)、Ⅱ型细胞因子受体家族(Type ⅡCytokine Receptor)、TNF超家族受体以及趋化因子受体。在本文,将主要介绍Ⅱ型细胞因子及其受体的研究进展及其应用。 Ⅱ型细胞因子受体家族(Type ⅡCytokine Receptor ),也称干扰素受体家族(Interferon receptors family)。主要包含Ⅱ型白介素(IL-10,IL-19,IL-20,IL-22等)受体,Ⅰ型干扰素(IFNA,IFNB)受体和Ⅱ型干扰素(IFNG)受体。此类受体的结构特点治是在膜外区近氨基端含有四个保守半胱氨酸残基细无Trp-Ser-X-Trp-Ser序列,一般为具有高亲和力的异二聚体或多聚体。II型细胞因子受体的细胞外结构域由串联Ig样结构域组成,细胞内结构域通常与属于Janus激酶(JAK)家族的酪氨酸激酶相关。

鱼类的消化系统

? 消化系统 讲授重点: 1 、鱼类消化管的结构 2 、鱼类消化管构造与食性的关系 3 、肝脏、胰脏在鱼体的位置和机能 第一节 体腔和系膜 脊椎动物的体腔源于中胚层。体腔囊向腹面延伸,其背部及中部的腔不久消失,而腹部的腔残留下来,即形成将来的体腔。腔的外侧壁后来因肌节向腹面延伸,并和肌节里层相接,形成体壁的一层衬里,称为腹膜壁层。腔的内壁层称为腹膜脏层,包围内脏各器官。包围消化道外的腹膜脏层,称浆膜层。在消化道的背腹面各形成一条双层的薄膜,即肠系膜。背面一条称背肠系膜,腹面的一条称腹肠系膜,后者不久中断,左右两腔便合成一个大腔,称为体腔。 鱼类的体腔不久被一横隔(即围心腹腔隔膜)分隔成两个腔。前面的小腔包围心脏,称围心腔;后面的大腔容纳消化、生殖等器官,称腹腔。腹腔的形状随鱼的体形而异。有的处延长形腹腔如鳗鲡、黄鳝、玉筋鱼等;平扁形腹腔如鳐、平鳍鳅、鮟鱇等;侧扁形腹腔台银鲳、长春鳊、团头鲂等。肉食性鱼类的腹腔一般较大,而杂食性及草食性鱼类则较小。 腹腔脏层由于包围着各种不同内脏器官,其悬系的系膜因而有各种不同的名称,如胃脾系膜、胃肝系膜、精巢系膜、卵巢系膜等,它们能使各器官稳固在一定位置上。 第二节 鱼类的消化管 消化管是一肌肉的管子,它从口开始,向后延伸,经过腹腔,最后以泄殖腔或肛门开口于体外。 消化管包括口咽腔、食道、胃、肠、肛门等部分,有些鱼类这几部分的界限不明显,但可凭借不同的管径,不同性质的上皮组织及特殊的括约肌或一定腺体导管的入口来区别。 一、口咽腔

鱼类的口腔和咽没有明显的界限,鳃裂开口处为咽,其前即为口腔,故一般统称为口咽腔。 口咽腔常覆盖以复层上皮,其中有粘液细胞和味蕾的分布,口咽腔内有齿、舌及鳃耙等构造。 鱼类口咽腔的形态和大小与食性有关。凶猛的肉食性鱼类口咽腔较大,便于吞食大的食物,如鳜、鲈鱼、带鱼、 鳡 、鲶等。有些专食微小浮游生物的滤食性鱼类口咽腔也宽大,如鲢、鳙等,这是与它们不停地滤取水中食物的习性相适应的。 (一)齿 鱼类的牙齿在口咽腔中分布很广,齿的形状、大小、排列及锋利与否,均因鱼的种类而异,这与鱼类生活的水环境食物的多样性有关。 鱼类的牙齿主要用于捕食,咬住食物免于逃脱。有些鱼类的牙齿有撕裂和咬断食物的作用,然而一般都没有咀嚼的作用。 1 、软骨鱼类的齿 分布:软骨鱼类的齿借结缔组织附在腭方软骨和米克尔氏软骨上。 形状:食甲壳类、贝类等温和食性的板鳃类,齿一般呈铺石状,如:星鲨、何氏鳋等。凶猛的肉食性板鳃类,齿尖锐,边缘常有小锯齿。 全头亚纲中银鲛的齿呈板状,由许多小齿愈合而成,终生不换,损伤过程中,齿的基部可以不断生长。 2 、硬骨鱼类的齿 分布:上下颌(颌齿)、犁骨(犁齿)、腭骨(腭齿)、鳃弓(咽齿)、舌(舌齿)。 硬骨鱼类的牙齿不仅在上下颌有生长,甚至有的在口咽腔周围的一些骨骼上,如犁骨、腭骨、舌骨、鳃弓上均能生长牙齿。着生在上下颌骨上的齿称颌齿( Jaw teeth );着生在口腔背部两侧腭骨上的牙齿称为腭齿( Palatin teeth );着生在口腔背部前方中央犁骨上的齿称犁齿( Vomeine teeth );着生在鳃弓上的齿称为咽齿( Phaiyngeal teeth );着生在舌骨上的齿称舌齿。所有这些着生在口腔不同部位的牙齿,统称为口腔齿。 口腔齿的形态、数目、分布状态常作为分类标志之一,其中以犁齿和腭齿的有无,左右下咽齿是否分离或愈合等用得较多。 鲤科鱼类无颌齿,而第五对鳃弓的角鳃骨特别扩大,特称为咽骨( Phaiyngeal tone )或下咽骨( Aypophaiyngeal tone ),上生牙齿,即为咽齿,也称咽喉

鱼类必需脂肪酸营养研究现状

鱼类必需脂肪酸营养研究现状 摘要:从必需脂肪酸种类、对鱼类的影响、必需脂肪酸需要量、必需脂肪酸缺乏症等几个方面综述了近年来鱼类必需脂肪酸营养的研究状况,以期为脂肪研究和合理饲料配方提供参考。 关键词:必需脂肪酸种类必需脂肪酸需要量必需脂肪酸缺乏症 脂类不仅是生物的能量储存库,而且是构成生物膜的重要物质,与细胞识别和组织免疫有密切关系;此外,脂类物质参与激素和维生素代谢,在机体内具有重要的生物学作用和生理学调控功能。鱼体中含有丰富的脂肪酸,有的脂肪酸鱼体本身可以生物合成,有的则不能或合成量很少,远不能满足鱼类生长发育各阶段的需要,必须由外源供给补充。那些为鱼类生长发育所必需,但鱼体本身不能合成,必须由饲料直接提供的脂肪酸称为必需脂肪酸 (EFA),如亚油酸、亚麻酸、EPA、DHA等。通常认为,必需脂肪酸必须符合下列特定的分子构型:1)在脂肪酸分子结构中的二乙烯基甲烷链结构中,至少有2个或2个以上双键;2)双键必须是顺式构型;3)距离羧基最远的双键,应在由末端-CH3数起的第六与第七碳原子之间。必需脂肪酸对于维持正常的细胞功能是必不可少的,而且大多不能由动物自己合成或合成很少必须由饲料中提供。鱼虾不能合成必需脂肪酸,必须从饲料中吸收,但鱼虾具有将亚油酸和亚麻酸转化为同系列更长链不饱和脂肪酸的能力。 1.鱼类必需脂肪酸的种类 大多动物体内能够合成饱和脂肪酸和单不饱和脂肪酸,但不能合成亚油酸(C18:2)和亚麻酸 (C18:3)。一般鱼体本身只能合成n-7、n-9系列不饱和脂肪酸,而不能合成n-3、n-6系列不饱和脂肪酸,因此,n-3、n-6系列不饱和脂肪酸被认为是鱼类的必需脂肪酸。鱼类生存和生长需要的必需脂肪酸因种类而异。不同脂肪酸对鱼类生长的影响很大程度上与不饱和脂肪酸,尤其与高度不饱和脂肪酸的差异有关。温水性鱼类对必需脂肪酸需求与冷水性鱼类差别很大,冷水性鱼类需要的n-3序列数量>n-6序列的数量。虹鳟饵料中添加C18:3n-6或C18:3n-3,会有明显的促生长效果。而且同时使用这两种脂肪酸比单独使用促生长效果更好。鲤鱼对这两种脂肪酸的需求量均为饲料的1%。鳗鲡与虹鳟和鲤鱼一样需要必需脂肪酸。鳗鱼丽添加C18:3n-3后生长显著改善,这与虹鳟相似。添加C18:3n-6和C18:3n-3有相加效果,这与鲤鱼相似。对这两种脂肪酸的需求量,均为饵料的5%左右[1]。德国柏林淡水生态和内陆渔业研究所[1]对虹鳟幼鱼投喂富含十八碳三烯酸 (1 8:3n-3 )、十八碳四烯酸主要是廿二碳六烯酸 (22:6n-3 )的商品饲料,证实廿二碳六烯酸是虹鳟生长发育必需的脂肪酸。 刘玮等[2]认为团头鲂必需脂肪酸除n-3HUFA之外,还应包括18:2n-6和8:3n-3;团头鲂的18:2n-6的需要量比18:3n-3的量要大;在18:2n-6和 18:3n-3之间还可能存在复杂的相互作用。 2.必需脂肪酸对鱼类生长发育的影响 鱼类不同的生发育阶段,对脂肪酸的需要不同。真鲷等海产鱼仔、稚鱼必须直接摄取含有高度不饱和脂肪酸的饵料才能生长发育[3]。刘镜恪[4]等发现n-3不饱和脂肪酸对黑鲷仔鱼和稚鱼的生长和存活都有重要影响。高淳仁[5]等认为,n-3 HUFA为海水鱼类的必需脂肪酸,而其中 EPA和 DHA对海水鱼类生长、存活、发育的影响尤为重要;同时不同种类的海水鱼类对 n-3 HUFA的需求量略有不同,而饵料中 EPA与 DHA的比例也是影响海水仔、稚、幼鱼生长和存活的重要因素;海水鱼类对不同脂型的脂类的吸收和同化作用不同。在鱼类繁殖期间,鱼类需要n-3系列不饱和脂肪酸数量大于n-6系列的数量,尤其是雌鱼。 3.鱼类对必需脂肪酸的需要量 鱼类对必须脂肪酸的需要量依鱼的种类而不同。温水性的鲤鱼,对必需脂肪酸的需求比冷水性鱼类低,但

鱼类抗菌肽的研究进展

万方数据

万方数据

万方数据

鱼类抗菌肽的研究进展 作者:江丽娜, 赵瑞利, 雷连成, 王教玉, 韩文瑜 作者单位:江丽娜,赵瑞利,雷连成,韩文瑜(吉林大学畜牧兽医学院), 王教玉(吉林省水产技术推广总站) 刊名: 中国水产 英文刊名:CHINA FISHERIES 年,卷(期):2008(5) 本文读者也读过(8条) 1.张书剑.Zhang Shujian几种鱼类抗菌肽的研究进展[期刊论文]-饲料研究2007(12) 2.李华.杨桂文.温武军鱼类抗菌肽研究概况[期刊论文]-科技信息2010(2) 3.黄平.章怀云.HUANG Ping.ZHANG Huai-yun鱼类抗菌肽研究进展[期刊论文]-中南林业科技大学学报2009,29(2) 4.杨学明.江林源.蒋和生.YANG Xue-ming.JIANG Lin-yuan.JIANG He-sheng水生动物抗菌肽及其基因工程研究[期刊论文]-生物技术通讯2006,17(1) 5.王克坚.林志勇.杨明.任洪林.黄文树.周红玲.邓尚龙.陈君慧.蔡灵.蔡晶晶海水养殖鱼类抗菌肽hepcidin基因的研究进展[会议论文]-2005 6.王小玲.尹建文.Wang Xiaolin.Yin Jianwen鱼类的先天性抗菌和抗病毒机制[期刊论文]-现代渔业信息2006,21(7) 7.叶星.白俊杰抗菌肽的研究及其在水产上的应用前景[期刊论文]-大连水产学院学报2000,15(4) 8.单晓枫.郭伟生.张洪波.钱爱东鱼类体液中的几种抗菌因子研究进展[期刊论文]-河南农业科学2010(5) 本文链接:https://www.360docs.net/doc/ec8092038.html,/Periodical_zhongguosc200805040.aspx

相关文档
最新文档