第六章 刚体的基本运动

合集下载

刚体的转动

刚体的转动

质心的平动
刚体的转动
+
绕质心的转动
2/31
一、刚体转动的角量描述
角坐标 (t ) 角位移
ቤተ መጻሕፍቲ ባይዱ
z
(t )
(t t ) (t )
角速度
x
参考平面
d lim t 0 t dt
方向:
角加速度




参考轴
右手螺旋方向
d dt
J m r
j
2 j j
J r dm
M J
刚体定轴转动的角加速度与它所受的合外力矩成 正比 ,与刚体的转动惯量成反比.
刚体的转动 10/31
五、转动惯量
J m r , J r dm
2 j j 2 j
物理意义:转动惯性的量度.类似于平动的质量
转动惯性的计算方法 质量离散分布刚体的转动惯量
r O
m
刚体的转动
21/31
一根质量为m、长为l的均匀细杆,可在水平桌面上 绕通过其一端的竖直固定轴转动.已知细杆与桌面的 滑动摩擦系数为μ,求杆转动时受的摩擦力矩大小.
刚体的转动
22/31
有一质量为m半径为R的均匀圆形平板平放在水平桌面 上,平板与水平桌面的摩擦系数为μ,若平板绕通过其 中心且垂直板面的固定轴以角速度ω0开始旋转,它将 在旋转几圈后停止?
2m
⅓l
⅓l
O
0 2
2 3
l
0

m
m
刚体的转动
24/31
力的空间累积效应
力矩的空间累积效应
力的功,动能,动能定理.
力矩的功,转动动能,动能定理.

2刚体基本运动

2刚体基本运动


R
M
v=R
方向垂直于半径,大小与到转轴的距离成正比 an at
10
加速度(大小) :
at Rα
方向垂直于半径
2
an R
方向沿半径指向圆心
加速度(大小) :
方向垂直于半径 方向沿半径指向圆心
at Rα
an R 2
全加速度: a
大小: a
an
a at
at an ;
问题:动系O1 x y z 绕 z轴转动,角速度为
,基矢量为(i , j , k)。求
di ωi dt dj ω j dt dk ωk dt
di ? dt
dj dk ? ? dt dt
泊松公式
14
例:垂直起降机的转动方程= 4t 9.5t 2 ,鼓轮半径R=20cm,求:当 t=4s时重物的速度、加速度,鼓轮的角速度、角加速度。 解: 10t 19t
O1 φ l A O
(+)
O2
解: 荡木作平移
l
vA
M
vM
vM v A
B
aM aA
vA l
其中 则

π π 0 cos t 4 4 π π v A l 0 cos t 4 4
16
方向垂直O1A
π π v A l 0 cos t 4 4
O1 φ O2
1 aB aA 5m / s2 2
aB
60
12
速度与加速度的三维矢量表示法 z
三维定轴 转动刚体
考察三维定轴转动刚体


研究M点速度、加速度 M点速度
O' R

刚体的进动与平面平行运动课件

刚体的进动与平面平行运动课件
置。
03
刚体的进动和平行运动 的关系
进动与平面平行运动的联系
进动和平行运动都是刚体在旋 转运动中的表现形式。
进动和平行运动都涉及到刚体 的旋转轴和旋转角度的变化。
进动和平行运动在某些情况下 可以相互转化,例如在陀螺的 旋转运动中。
进动与平面平行运动的区别
进动是刚体绕自身旋转轴的旋转运动,而平面平行运动是刚体绕一个固定点的旋转 运动。
为$x - x_0$和$y - y_0$。
平面平行运动的速度计算
总结词
速度是描述刚体在平面平行运动中位置 变化的快慢程度,可以通过位移量和时 间的变化计算得出。
VS
详细描述
在平面平行运动中,速度可以通过位移量 和时间的变化计算得出。假设刚体在$t$ 时刻的位移量为$(x, y)$,经过的时间为 $Delta t$,则速度$v_x$和$v_y$分别为 $frac{Delta x}{Delta t}$和$frac{Delta y}{Delta t}$。
04
刚体进动的计算方法
进动角速度的计算
总结词
进动角速度是描述刚体绕自身轴线旋 转的角速度。
详细描述
进动角速度的计算公式为ω=IωIomega = IomegaIω=Iω,其中IWIW是刚体的 转动惯量,ωomegaω是刚体的旋转角 速度。通过已知的转动惯量和旋转角速 度,可以计算出进动角速度。
进动周期的计算
刚体进动的条件
刚体的质量分布相对 于转轴是不均匀的, 即存在质量偏心。
刚体的自转轴线在惯 性空间中是进动的旋 转轴。
刚体受到一个与自转 轴线不重合的外力矩 作用。
刚体进动的特点
进动的角速度矢量与外力矩矢量 成正比,即M=k×w,其中M为 外力矩,w为角速度,k为转动

刚体的基本运动1

刚体的基本运动1

1、填空题(1)如图所示平行四边形O 1 ABO 2 机构。

若杆O 1A 以匀角速度ω绕O 1轴做定轴转动运动。

则: D 点的速度大小为 |2D A B D v r ω= ;D 点的加速度大小为 2|2D A B Da r ω= 。

(2)如图所示平面机构中,刚性板 AMB 与O 1 A 杆、O 2 B 铰链连接,且 O 1 A =O 2 B ,O 1 O 2 =AB 。

若的角速度 为ω 、角加速度为α 。

则M 点的速度大小为 1|M A M Bv O A ω-----= ;M 点的加速度大小为 211|;|M n A M BM A M Ba O A a O A τωα----------== 。

(3)如图所示齿轮齿条传动机构。

齿轮半 径为r ,绕O 轴做定轴转动运动,并带 动齿条AB 水平方向移动。

已知某瞬时齿 轮的角速度为ω ,角加速度为α 。

接触 点齿轮上为C 点;齿条上为点C '。

则 C 点的加速度大小为 2;C n C a r a r τωα== ;C '点的加速度大小为 C a r τα'= 。

(4)如图所示半径R = 0.5 m 的鼓轮,其悬挂物块A 。

若物块的运动方程为2:m 5;():s x x t t =则鼓轮的角速度: 1020rad /tt s Rω== ; 鼓轮的角加速度: 21020rad /s Rα== 。

(5)如图所示圆轮绕O 轴做定轴转动运动。

已知OA = 0.5 m ,某瞬时速度矢量v A 、加速度矢量a A 如图所示。

若a A = 20 m / s 2 ,则该瞬时 圆轮的角速度: 25r a d /s ω= ; 圆轮的角加速度: 2203r a d /s α= 。

B A2r rrD O 1O 2BA MO 1O 2ωαO r C CABωαOR xxv AA2、选择题 (1)如图所示三种情况下的OA 杆绕固定轴O 做定轴转动运动。

图中给出了某瞬时杆端A 点的加速度矢量a 。

工程力学-刚体的基本运动

工程力学-刚体的基本运动

d f (t) 角加速度 dt
刚体定轴转动的角加速度等于角速度对时间t的一 阶导数,转角对时间的二阶导数。 若α 与ω 符号相同,则ω 的绝对值随时间而增大, 刚体作加速转动;若相反,则刚体作减速转动。
洛 阳 职 业 技 术 学 院
四、刚体的匀速与匀变 速转动

1、刚体的匀速转动 角速度ω=常量,角加速度α=0
重物的速度及加速度为
vA方向铅锤向下, αA方向铅锤向上,即重物A在t=1s 时作减速运动
洛 阳 职 业 技 术 学 院
六、定轴转动刚体的传 动比
一对外啮合齿轮,已知两个齿轮的节圆半径r1、r2,主动轮Ⅰ的角
速度ω 1、角加速度α 1,从动轮Ⅱ的角速度ω 2,角加速度α 2。
设两轮无相对滑动,则它们的接触点 M1和M2的速度和切向加速度是相同的。
O1 M1 M2
O2
r2
r1

传动比i12的公式为
φ =φ0+ ωt
2、刚体的匀变速转动 角加速度α=常量
其他方程
例 飞轮以n=120r/min的速度转动,截断电流后,飞 轮作匀速转动,经250s停止。试求轴的角速度和停止 之前所转过的圈数
=4πrad/s
断电后飞轮的角加速度
停止前飞轮转过的角度
洛 阳 职 业 技 术 学 院
五、定轴转动刚体上各 点的速度与加速度
刚体作定轴转动时,转轴上的速度、 加速度为零,其他个点在垂直于转
R
轴的平面上作圆周运动。
M点到转轴的距离为R,其所走的的弧长s与转角φ 的关系是
β
S=Rφ
解:1)研究M点的速度、加速度
VM
αMτ M θ
αM
O R

1.3大学物理(上)刚体力学基础

1.3大学物理(上)刚体力学基础

dm ds dm dV
面密度和体密度。
线分布
面分布
体分布
注 意
只有对于几何形状规则、质量连续且均匀分布
的刚体,才能用积分计算出刚体的转动惯量。
[例3.1]: 求长为L、质量为m的均匀细棒对图中不同 轴的转动惯量。 [分析]:取如图坐标,dm=dx
A B
L
X
J A r dm
2
x dx mL / 3
T1 mg sin ma 1 2 T2 R T1 R J mR 2 mg T2 ma
a R
mg
[例3.4]: 转动着的飞轮的转动惯量为J,在t=0时角速度 为ω0。此后飞轮经历制动过程,阻力矩M的大小与角速度 ω的平方成正比,比例系数为k(k>0),当ω= ω0/3时,飞 轮的角速度及从开始制动到现在的时间分别是多少? [分析]: (1)已知 M k 2
练习:右图所示,刚体对经过
棒端且与棒垂直的轴的转动惯
mL
量如何计算?(棒长为L、球
半径为R)
mO
J L1
1 2 mL L 3
2 2 J o mo R 5
2 2
J L 2 J 0 m0 d J 0 m0 ( L R)
1 2 2 2 2 J mL L mo R mo ( L R) 3 5
dL d ( mv ) dr d (mv ) dr r mv F , v dt dt dt dt dt dL v mv 0, r F M r F v mv dt dL 角动量定理的微分形式 M dt
平均角速度
角速度
t

刚体的一般运动的运动学和与动力学动力学


加速度
刚体在一段时间内速度的 变化率,表示刚体速度变 化的快慢。
刚体的平动
平动
刚体在运动过程中,其上任意两 点都沿着同一直线作等距离的移 动。
平动特点
刚体上各点的速度和加速度都相 等,与参考系的选择无关。
刚体的转动
转动
刚体绕某一定点做圆周运动。
转动特点
刚体上各点的速度和加速度大小相等,方向不同。
阻尼振动
阻尼振动是指由于阻力作用而使振动系统受到损 耗的振动。
受迫振动
受迫振动是指在外力作用下产生的振动。
刚体的稳定性和平衡性
静态平衡
刚体在静止状态下,如果受到微小扰 动后能恢复到原来的平衡位置,则称 该平衡为静态平衡。
动态平衡
刚体在运动状态下,如果受到微小扰 动后能保持原来的运动状态不变,则 称该平衡为动态平衡。
感谢观看
THANKS
刚体的平衡
总结词
刚体的平衡是指刚体在运动或静止时,其上各点的加速度均为零的状态。
详细描述
刚体的平衡可以通过力的合成和分解来分析。当刚体处于平衡状态时,其上各点的加速度均为零,即合外力为零。 根据力的平移定理,可以将力的作用点平移至刚体的质心,从而将刚体平衡问题转化为质点平衡问题。同时,根 据力矩平衡条件,可以得出刚体平衡的条件为合外力矩为零。
力矩和角速度
总结词
力矩是力和力臂的乘积,它描述了力对刚体转动的效应;角速度是描述刚体转动快慢的 物理量。
详细描述
力矩是力和力臂的乘积,其方向垂直于力和力臂所在的平面。力矩可以改变刚体的转动 状态,包括转动方向和角速度大小。角速度是描述刚体绕固定点转动的快慢的物理量, 其方向与转动方向相同。公式表示为M=FL,其中M表示力矩,F表示力,L表示力臂。

刚体的定轴转动定律

物体2这边的张力为
T2、 T2’(T2’= T2)
T1
T2
T1
T2
am
a
1
a
m
m1
m1g 2
m2
m2g
因m2>m1,物体1向上运动,物体2向下运动,滑轮以
顺时针方向旋转,Mr的指向如图所示。可列出下列方

T1 G1 m1a
G2 T2 m2a
T2r T1r M J
式中是滑轮的角加速度,a是物体的加速度。滑轮
t 0
方向:
t dt
右手螺旋方向
z (t)
x
参考平面
参考轴
刚体定轴转动(一
维转动)的转动方向可
以用角速度的正负来表
示.
角加速度
d
dt
定轴转动的特点
z
>0
z
<0
1) 2)
每一质点均作圆周运动,圆面为转动平面;
任一质点运动
,
,
均相同,但
v,
a不同;
3) 运动描述仅需一个坐标 .
三、 匀变速转动公式
轴的力矩 Mzk
r
F
z
F
k
O rFz
F
M z rF sin
z
Байду номын сангаас
F
M
O
r P
d
五. 定轴转动刚体的转动定律:
Fit
Fi
fit

ri
fi
mi• fin
Fin
O

j
d
fij
fji
i
Fit ri (miri2 )
I miri2
i

刚体力学的基本性质与运动分析

刚体力学的基本性质与运动分析刚体力学是物理学中的一个重要分支,研究物体的运动和力学性质。

它假设物体是刚性的,即不会发生形变。

在刚体力学中,有一些基本性质和运动分析方法,本文将对这些内容进行探讨。

一、刚体的基本性质刚体是指在力的作用下不会发生形变的物体。

它的基本性质有三个:质点性、形状不变性和刚性。

质点性是指刚体可以看作一个质点,即物体的大小和形状对其运动没有影响。

这意味着刚体的运动可以通过描述质心的运动来表示。

形状不变性是指刚体在运动过程中,其形状保持不变。

无论刚体如何运动,其各个部分之间的距离和角度都保持不变。

刚性是指刚体内部各个点之间的相对位置保持不变。

这意味着刚体的任意两点之间的距离和角度在运动过程中保持不变。

二、刚体的运动分析方法在刚体力学中,有几种常用的运动分析方法,包括平动、转动和复合运动。

平动是指刚体的各个部分在同一时间内以相同的速度和方向运动。

在平动中,刚体的质心和各个部分的速度和加速度都相同。

转动是指刚体绕某个轴线旋转。

在转动中,刚体的各个部分围绕轴线旋转,但质心保持静止。

复合运动是指刚体同时进行平动和转动。

在复合运动中,刚体的质心同时进行平动,而各个部分围绕质心旋转。

为了描述刚体的运动,我们可以使用刚体的运动学方程和动力学方程。

运动学方程描述了刚体的位置、速度和加速度之间的关系,而动力学方程描述了刚体的受力和运动之间的关系。

在运动分析中,我们还可以使用刚体的转动惯量和角动量来描述刚体的运动特性。

转动惯量是刚体对转动的惯性度量,它与刚体的质量和形状有关。

角动量是刚体的旋转运动的物理量,它与刚体的转动惯量和角速度有关。

三、刚体力学的应用刚体力学在工程和科学研究中有广泛的应用。

在工程中,刚体力学可以用于分析建筑物和桥梁的结构强度和稳定性。

它还可以用于设计机械装置和运动控制系统。

在科学研究中,刚体力学可以用于研究天体运动和分析地震运动。

它还可以用于研究分子和原子的运动和相互作用。

总之,刚体力学是物理学中的一个重要分支,研究物体的运动和力学性质。

刚体的运动方程


(欧勒运动学方程)
若:已知 ω 1 , ω 2 , ω 3
& & & 则:计算 ϕ , ψ , θ
讨论:对于对称陀螺,两个主轴可在平面 x1 x 2 上任意 选取,则:取 ox1 沿oN方向 ⇒
& ψ =0& 于是有: ω Nhomakorabea = θ
& & & ω 2 = φ sin θ ω 3 = φ sin θ + ψ

rc
∑m r = ∑m
a a a
a a
=0
⇒ 则
∑m r
a
a a
=0
d & 0 + ∑ (ra × ma ra ) = ∑ ra × Fa 外 dt a a

d & ∑ (ra × mara ) = ∑ ra × Fa 外 dt a a

& L( o ) = ∑ ra × ma ra
a
M ( o ) = ∑ ra × Fae
ϕ :刚体绕固定轴oz转过的角度——进动角; & ϕ :进动角速度——沿oz方向
& ψ
ψ :刚体绕 ox3 转过的角度——自转角;
:自转角速度——沿 ox3 方向。
ox θ : 3 和oz间的夹角——章动角; θ& :章动角速度——沿oN方向。
1. & 在 x1 x 2平面, 在 θ 由图:
x1 , x 2 , x3 的分量 θ&1 , θ&2 , θ&3 。
dω d ' ω d 'ω = + ω×ω = [ ] dt dt dt

dv 0 & = w + a + 2ω × v + ω × r + ω × (ω × r ) dt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档