教案-六年级上册第4章解一元一次方程第2课时
公开课《解一元一次方程——去括号》说课稿[修改版]
![公开课《解一元一次方程——去括号》说课稿[修改版]](https://img.taocdn.com/s3/m/79f177de7375a417876f8fbe.png)
第一篇:公开课《解一元一次方程——去括号》说课稿解一元一次方程——去括号的说课稿我说课的内容是人教版九年义务教育七年级教科书数学第一册第三章第三节“解一元一次方程——去括号”的第一课时内容。
本次讲课从四大方面讲解:一、教材分析地位与作用:本节内容在全书及章节的地位:《解一元一次方程——去括号》是初中七年级数学人教版上册第三章第三节。
前面几节我们学习了《解一元一次方程——移项及合并同类项》,这节是解一元一次方程的延伸及应用。
通过这节我们对解一元一次方程有了更新的步骤。
它在教材中起着承前启后的作用,一方面加深对一元一次方程的解法认识,另一方面为接下来讲解去分母做了铺垫。
所以说这节课内容非常重要。
二、教学目标根据上述教材结构内容简析,考虑到学生的认识结构心理特征,教学目标确定如下:①知识与能力:形成并掌握解一元一次方程的规范步骤,理解去括号的法则,并通过对比加深对带系数的去括号方法。
②过程与方法:逐步培养学生观察、归纳、类比、联想等发现规律的一般方法③情感态度与价值观:通过分析解有括号的一元一次方程的过程,让学生体会整洁的内涵,发展有条理地清晰的思维能力,提高人的一般素质。
三、教学重难点确定弄清列方程解应用题的思想方法;用去括号解一元一次方程是这节课的重点。
弄清题意,寻找等量关系是这节课的难点四、学情分析(1)知识掌握上,七年级学生刚刚学习一元一次方程,解一元一次方程的步骤和实际问题的找等量关系掌握不一定很深刻,尤其是应用题的等量关系的寻找不容易,所以应全面系统的去讲述。
(2)学生学习本节课的知识障碍。
学生在知识的结合上不是很顺手,所以教学中教师应予以简单明白、深入浅出的分析。
(3)由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
3.2 合并同类项与移项教案

教案反思一元一次方程的解法是在学生已经具备了代数初步知识、系统学习了整式加减的基础上安排的,是对整式运算的进一步深化和认识。
本节课是在教授了一元一次方程解法第一课时因此尤为重要。
同时着力培养学生积极思维的优良品格,逐步形成具体问题具体分析的哲学思想,养成正确思考,善于思考的良好习惯,从而提高分析问题,解决问题的能力。
教学过程方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。
移项法则:把等式一边的某项变号后移到另一边,叫做移项.新课例1.某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:设前年这个学校购买了x 台计算机,已知去年购买数量是前年的2倍,那么去年购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;题目中的相等关系为:三年共购买计算机140台,即前年购买量+去年购买量+今年购买量=140列方程:_____________如何解这个方程呢?根据分配律,x+2x+4x=(______)x=7x ;这样就可以把含x 的项合并为一项,合并时要注意x 的系数是1,不是0;下面的框图表示了解这个方程的具体过程:x+2x+4x=140↓合并同类项7x=140↓系数化为1x=20由上可知,前年这个学校购买了20台计算机.上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b 的形式,其中a 、b 是常数.练习:1.合并:x+3x-6x,z+0.5z-1.8z,5y+4y-y2.解方程:5x-2x=9 -3x+0.5x=10例2.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.思路:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60•人分成___份,甲组人数占___份,乙组人数占___份,丙组人数占___份,如果知道每一份是多少,•那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.关键:本题中相等关系是什么?_____________________________________.解:设每一份为x人,则甲组人数为__人,乙组人数为___人,丙组为___人,•列方程:_______________合并,得________系数化为1,得x=___所以2x=____,3x=_____,5x=______答:甲组_____人,乙组___人,丙组______人.请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,•且这三组人数之和是否等于60;【要点归纳】:列一元一次方程解决实际问题的一般步骤中,找等量关系是关键也是难点,本节课的两个问题的相等关系都是:“各部分量的和=总量”;这是一个基本的相等关系;合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0;例3.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?解:设每份为_____个,则黑色皮块有_____个,白色皮块有_______个列方程_________合并,得_________系数化为1,得x=_____黑色皮块为___×___=____(个),白色皮块有____×___=____(个)例4. 某学生读一本书,第一天读了全书的三分之一多2页,第二天读了全书的二分之一少1页,还剩23页没读,问全书共有多少页?解:设全书共有____页,那么第一天读了()页,第二天读了()页.本问题的相等关系是:_____________+_______________+_____________=全书页数;列方程:_______________________。
七年级数学上册第4章一元一次方程4-2解一元一次方程第1课时教案新版苏科版

4.2 解一元一次方程第1课时教学目标1.了解方程的解,解方程的概念;2.掌握运用等式的基本性质解简单的一元一次方程; 3.经历体会解方程中的转化思想. 教学重难点 【教学重点】运用等式的基本性质解简单的一元一次方程. 【教学难点】运用等式的基本性质解简单的一元一次方程. 课前准备 无教学过程教学过程(教师) 学生活动 情境引入: 怎样求一元一次方程2x +1=5,2x +(12-x )=20, 13 x -4=14 x -1,8+6(n -1)=140,5+x =14 (32+x )中未知数的值呢? 思考! 一、方程的解和解方程做一做:填表:x 1 2 3 4 5 2x +1当x =_____时,方程2x +1=5两边相等.试一试:分别把0、1、2、3、4代入下列方程,哪一个值能使方程两边相等? (1)2x -1=5;(2)3x -2=4x -3.能使方程两边相等的未知数的值叫做方程的解.求方程的解的过程叫做解方程. 练一练: (1)在1、3、-2、0中,方程2x -1=-5的解为 .(2)在1、3、-2、0中,方程x -12=1的解为 . 填表,根据表格找出使得方程2x +1=5两边相等的未知数的值.(1)使2x -1=5两边相等的未知数的值为3; (2)使3x -2=4x -3两边相等的未知数的值为1.(1)方程2x -1=-5的解为-2. (2)方程x -12=1的解为3.二、等式的基本性质方程2x +1=5可以变形如下: 方程3x =3+2x 可以变形如下: 从以上的变形中,你发现等式具有怎样的性质? 结合天平,观察方程的变形,概括出等式的性质:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.等式两边都乘(或除以)同一个不等于0的数,所得结果仍是等式.。
苏科版七年级上册数学第4章 一元一次方程第2节《解一元一次方程(4)》参考课件1

3、想一想
• 解一元一次的步骤是什么?
• 1、去分母;
• 2、去括号; • 3、移项; • 4、合并同类项;
问:以上步骤是 不是一定要顺序 进行,缺一不可?
分子是多项式,要加括号,视多项式为一 整体。
• (2)解方程:
1 (2x 5) 1 (x 3) 1
3
4
12
解:去分母,得 4(2x-5)=3(x-3)-1
去括号,得
8x-20=3x-9-1
移项,得
8x-3x=-9-1+20
合并同类项,得 5x=10
系数化为1,得
x=2
• 1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” • 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 • 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 • 4、好的教师是让学生发现真理,而不只是传授知识。 • 5、数学教学要“淡化形式,注重实质.
4.2 解一元一次方程(4)
教材分析
• 1.学习目标: • 知识与技能:知道解一元一次方程的一般步骤,
能灵活运用去分母、去括号、移项、合并同类项、 系数化为1等五大步骤解一元一次方程. • 过程与方法:巩固方程解法,经历求解过程,能 体会到解法应根据具体方程本身特点而定. • 情感、态度与价值观:体会化归思想——把复杂 变简单,将未知变已知的作用,体会数学的应用 价值. • 2.重、难点:利用“去分母”将方程作变形处理.
• 5、未知数的系数化为1;
• 6、检验。
4、练一练
• 1、解下列方程:
一元一次方程及其解法教案教学设计

4.2一元一次方程及其解法教案设计第4章一元一次方程七年级上册苏科版(2024)【教材分析和学情分析】教材分析:第四章“一元一次方程”是初中数学的基础内容,主要介绍了方程的基本概念、方程的解、等式的性质以及如何解一元一次方程。
这一章的学习,旨在通过实际问题的解决,让学生理解并掌握一元一次方程的模型,培养他们的逻辑思维能力和问题解决能力。
教材中通过丰富的实例和习题,帮助学生从实际问题中抽象出数学问题,再通过解决数学问题,反哺解决实际问题,形成数学思维。
学情分析:1. 学生基础:七年级的学生已经学习了基本的算术运算,对数的概念有一定的理解,但可能对如何用数学模型解决实际问题还比较陌生。
此外,他们的抽象思维能力和逻辑推理能力还在发展阶段。
2. 学习兴趣:初中的学生对新鲜事物充满好奇,如果能将一元一次方程与生活实际相结合,设计一些趣味性的教学活动,可以激发他们的学习兴趣。
3. 学习习惯:部分学生可能还习惯于被动接受知识,缺乏主动探究和自我解决问题的习惯,需要教师引导他们主动参与到学习过程中。
4. 学习困难:一些学生可能在理解等式的性质和运用这些性质解方程时遇到困难,需要教师耐心引导,通过实例演示和反复练习帮助他们掌握。
【教学目标】1. 知识与技能:学生应能理解一元一次方程的定义,掌握其标准形式,并能识别和列出实际问题的一元一次方程。
2. 过程与方法:通过实例,让学生经历从实际问题抽象出一元一次方程的过程,掌握解一元一次方程的基本步骤,培养他们的抽象思维和问题解决能力。
3. 情感态度与价值观:培养学生对数学的兴趣,体验数学与生活的紧密联系,提高他们的学习积极性和自信心。
【教学重难点】1. 重点:理解一元一次方程的定义,能正确列出和解一元一次方程。
2. 难点:将实际问题转化为一元一次方程,理解解方程的过程。
【教学过程】1. 导入新课:通过生活中的实例,如“小明有10元钱,他买了一本书花了5元,他还剩下多少钱?”引入方程的概念,让学生初步感知方程是用来表示等量关系的数学工具。
七年级数学上册第4章一元一次方程一元一次第2课时合并同类项解一元一次方程课件苏科版

4.2合并同类项解一元一次方程
课题引入
上节课我们学习了较简情势的一元一次方程的求解,哪位同学能 够说一下解方程的基本思想?
课题引入
复习旧知:
方程的解的定义: 1. 能使方程左右两边相等的未知数的值叫做方程的解.求方程的解的
过程叫做解方程. 2. 等式的两边同时加上或减去同一个数或同一个整式,所得结果仍是
(4)18-5x=7x+12 解:18-12=7x+5x x=0.5
课后作业
1.方程3x+6=2x-8移项后,正确的是( C )
A 3x+2x=6-8
B 3x-2x=-8+6
C 3x-2x=-6-8
D 3x-2x=8-6
2.如果代数式 与 的值互为相反数,则 的值等于( D )
A9 2
C
2 9
B -92
解:方程得x= 1a2,已经a是整数,且0<a<10,要使x是偶数,则a可以等于 1,2,3,4,6,得出的x分别为12、6、4、3、2所以可以找出5个.
【移项的概念】根据等式
解:4x-16=0 4x=16 x=4
解:3x-4=x 3x-x=4 2x=4 x=2
的基本性质方程中的某些 项改变符号后,可以从方 程的一边移到另一边,这 样的变形叫做移项.
大家看一下有什么规律可寻?(请相互讨论)
知识梳理
知识点1:移项
【例】解方程:5x-2=7x+8:
【讲授】此题应先对方程进行移项,然后合并同类项,最后方程两
A.从5+x=12得x=12+5 B.从5x+8=4x得5x-4x=8 C.从10x-2=4-2x得10x+2x=4+2 D.从2x=3x-5得2x-3x=5
5.2一元一次方程的解法(第2课时移项法解一元一次方程)(课件)-七年级数学上册(北师大版2024)
5 x – 2 = 8.
5x = 8 + 2
概念归纳
把原方程中的某一项改变符号后,从方程的一边移
到另一边,这种变形称为移项.
因此,解方程的过程可以可以化简为:
移项,得
5x = 8 + 2
化简,得
5x = 10
方程两边都除以 5,得
x=2
课本例题
例3 解方程
(1)2x + 6 = 1;
解:(1)移项,得
解方程7 x +4 m =8 x +2得 x =4 m -2.
因为方程的解相同,
所以2-4 m =4 m -2.
所以 m = .
将 m = 代入 x =2-4 m ,得 x =0.
知识点3
移项法解一元一次方程的实际应用
7. 【新考向数学文化2024西安铁一中月考】《九章算术》中
“盈不足术”有这样的问题:“今有共买羊,人出六,不
整式 my3+ ny +1的值.
解:(3)把 y = a =7代入 my3+ ny +1=5,
得73 m +7 n +1=5,则73 m +7 n =4.
当 y =- a =-7时,
my3+ ny +1=(-7)3 m +(-7) n +1
=-(73 m +7 n )+1
=-4+1
=-3.
分层练习-拓展
- x=16
方程两边都除以- 得
x=-32
1- =3x+
(4)移项得
- -3x= -1
合并同类项得
- x=
七年级数学上册第4章一元一次方程4.2解一元一次方程教案(新版)苏科版
4.2 解一元一次方程【教学目标】知识与技能:(1)了解与一元一次方程有关的概念.(2)理解等式的基本性质,并能用等式性质来解一元一次方程.(3)会解含有括号的一元一次方程,并能判别解的合理性.(4)掌握含有分母的一元一次方程的解法.过程与方法:通过观察、操作、归纳等数学活动,感受数学思考过程的条理性和数学结论的严密性. 情感态度与价值观:体会一元一次方程的应用价值,感受数学文化.【重难点】重点:掌握解一元一次方程的方法.难点:(1)解含括号的方程,符号的变化.(2)解含分母的方程,求各分母的最小公倍数,以及去分母时,有时要添括号.【教学过程】活动一:创设情境,导入新课教师请一位同学阅读“丢番图”的故事.丢番图(Diophantus )是古希腊数学家.人们对他的生平事迹知道得很少,但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图,多么令人惊讶,它忠实地记录了其所经历的人生旅途. 上帝赐予他的童年占六分之一,又过十二分之一他两颊长出了胡须,再过七分之一,点燃了新婚的蜡烛. 五年之后喜得贵子,可怜迟到的宁馨儿,享年仅及其父之半便入黄泉. 悲伤只有用数学研究去弥补,又过四年,他也走完了人生的旅途.——出自《希腊诗文选》(The Greek Anthology )第126题你能用方程求出丢番图去世时的年龄吗?大家讨论一下.(引入新课)活动二:实践探究,交流新知【探究一】利用小学所学的知识可以设他的年龄为x 岁,列出的方程为61x +121x +71x +5+21x +4=x . 教师进一步提出问题:结合算术法,你能试着解出这个方程吗?得到的结果对所列的方程来说具有什么特点?学生可能利用逆运算求解,得出所求的结果使方程左右两边的值相等的特点,教师加以肯定,教师归纳总结有关方程的概念:方程的解:能使方程两边的值相等的未知数的值叫做方程的解.解方程:求方程的解的过程叫做解方程.例1 检验下列各数是不是方程4x-3=2x+3的解.(1)x=3;(2)x=8.处理方式:教师讲解题(1),学生代表上台板演题(2),教师点评.解:(1)把x=3分别代入方程等号的左边和右边,得左边= 4339⨯-=,右边= 2339⨯+=.左边=右边.所以x=3是方程4x-3=2x+3的解.(2)把x=8分别代入方程等号的左边和右边,得左边=48329⨯-=,右边=28319⨯+=.左边≠右边.所以x=8不是方程4x-3=2x+3的解.【探究二】等式的性质1.实验演示.教师先提出实验的要求:请同学们仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律,然后按如图的方法演示实验.(课件展示课本第81页图3.1-1)教师可以进行两次不同物体的实验,学生独立思考,小组内交流,代表发言.2.集体归纳.在学生叙述发现的规律后,教师进一步引导:等式就像平衡的天平,它具有与上面的事实同样的性质.比如“8=8”,我们在两边都加上6,就有“8+6=8+6”;两边都减去11,就有“8-11=8-11”.提出问题1:你能用文字来叙述等式的这个性质吗?学生思考,师生共同归纳:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.提出问题2:等式一般可以用a =b 来表示,等式的性质1怎样用式子的形式来表示?学生思考,师生共同归纳:如果a =b ,那么a±c=b±c.(字母a ,b ,c 可以表示具体的数,也可以表示一个式子.)3.演示归纳.观察下列实验,你又能发现什么规律?你能用实验加以验证吗?(课件展示课本第81页图3.1-2)在学生观察上图时,必须注意图上两个方向的箭头所表示的含义. 观察后再请一名学生用实验验证.然后让学生用两种语言表示等式的性质2.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.如果a=b,那么ac=bc;如果a=b(c≠0),那么a b c c.【探究三】利用等式的性质解一元一次方程例2利用等式的性质解方程:(1)0.6-x=2.4;(2)-13x-5=4.处理方式:教师讲解题(1),学生自主解答题(2),教师点评.解:(1)两边减0.6,得0.6-x-0.6=2.4-0.6.化简,得-x=1.8.两边同乘-1,得x=-1.8.(2)两边加5,得-13x-5+5=4+5.化简,得-13x=9.两边同乘-3,得x=-27.小结:(1)方程的解答中两次运用了等式的性质;(2)解方程的目标是把方程最终化为x=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化.【探究四】移项利用等式的基本性质,我们对两个方程进行了如下的变换,观察并回答:(1)与原方程相比,哪些项的位置发生了改变?哪些没变?(2)改变位置的项的符号是否发生了变化?没改变位置的项的符号是否发生了变化?归纳:像这样把原方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫作移项.移项要注意:(1)移项的根据是等式的基本性质1.(2)移项要变号,没有移动的项不改变符号.(3)通常把含有未知数的项移到方程的左边,把常数项移动方程的右边.例4解下列方程:(1)2x+6=1;(2)3x+3=2x+7.解:(1)2x+6=1移项得2x=1-6.化简,得2x=-5.方程两边同时除以2,得x=-25.(2)3x +3=2x +7移项得3x -2x=7-3.合并同类项,得x =4.【探究五】解方程——去括号教师:4(x +0.5)+x=10-3与4x +4×0.5+x=10-3有什么关系呢?学生:去掉了括号.教师:是的,对于一些含有括号的方程,我们求解未知数时,要先去掉括号,再解方程.带括号的一元一次方程的解法:(1)去括号;(2)移项;(3)合并同类项;(4)系数化为1.例5 解下列方程:(1)4x+3(2x-3)=12-(x+4); ( 2 ) 6(12x-4)+2x=7-(13x-1).处理方式:学生代表上台板演,师生共同评析.解:(1)去括号,得4x+6x-9=12-x-4.移项,得 4x+6x+x=12-4+9 .合并,得 11x=17 .系数化为1,得 x=1711.(2)去括号,得3x-24+2x=7-13x+1. 移项,得3x+2x+13x=7+1+24. 合并,得 513x=32. 系数化为1,得 x=6.【探究六】解方程——去分母 教师:解方程:71(x +14)=41(x +20). 解:(解法1)去括号,得71x +2=41x +5. 移项、合并同类项,得-283x =3. 方程两边同时除以-283,得x=-28. (解法2)去分母,得4(x +14)=7(x +20).去括号,得4x +56=7x +140.移项、合并同类项,得-3x =84.方程两边同时除以-3,得x=-28.学生解完方程后,回答:(1)两种解法有什么不同?(2)解法2中如何把方程中的分母化去的?依据是什么?(3)你认为哪种解法比较好?解:(1)解法1是按去括号、移项、合并同类项、系数化为1的步骤来解的;解法2是按去分母、去括号、移项、合并同类项、系数化为1的步骤来解的.(2)解法2方程的左、右两边同时乘各分母的最小公倍数,依据是等式的基本性质2:等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式.(3)解法2好,去分母后,不再涉及分数的计算,不易出错.解一元一次方程的步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.注意:解一元一次方程时,不一定都要严格按照这样的步骤.例6 解方程:(1)305.012.02=+--x x ;(2)53[32(21x -1)]=1. 解:(1)去分母,得4(x -2)-(x +1)=60.去括号,得4x -8-x -1=60.移项、合并同类项,得3x =69.方程两边同时除以3,得x =23.(2)去括号,得51x -52=1. 去分母,得x -2=5.移项,得x =7.例7 整理一批图书,由一个人做要40小时完成,现在计算由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作,假设这些人的工作效率相同,应先安排多少人工作?处理方式:学生代表上台板演,师生共同评析.解:设应先安排x 人工作,根据题意列方程440x +8(2)40x +=1. 去分母,得4x+8(x+2)=40去括号,得4x+8x+16=40移项,合并,得 12x=24解得 x=2答:应先安排2人工作4小时.【当堂反馈】1.解下列方程:(1)2x +6=1;(2)3x +3=2x +7;(3)12223x x x -+-=-; (4) 121)3(41)52(31--=-x x . 【课后小结】解方程的一般步骤:。
复习教案 一元一次方程及应用
第九课时 一元一次方程及应用一、复习目标:1、理解等式的基本性质、方程、方程的解、一元一次方程的概念;2、能利用等式的基本性质进行方程的变形,能熟练地解一元一次方程;3、能用一元一次方程来解决简单的实际问题.二、复习重点难点:(一)复习重点:解一元一次方程和二元一次方程组的一般步骤与方法.(二)复习难点:能用一元一次方程来解决简单的实际问题.三、复习过程:(一)知识梳理:1、等式性质:(1)如果a=b,那么c b c a ±=±; (2)如果a=b,那么)0(,≠==c cb c a bc ac ; 2、方程的有关概念:(1)方程:含有未知数的的等式叫方程。
(2)方程的解:使方程左右两边相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
(3)解方程:求方程的解或判断方程无解的过程叫做解方程。
3、一元一次方程:(1)一元一次方程的一般形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0);(2)一元一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0);(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
4、列方程解应用题的一般步骤:(1)审题:(2)设未知数;(3)找出相等关系,列方程;(4)解方程(组);(5)检验,作答;5、列方程(组)解应用题常见类型题及其等量关系;(1)工程问题①基本工作量的关系:工作量=工作效率×工作时间②常见的等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量③注意:工程问题常把总工程看作“1”,水池注水问题属于工程问题(2)行程问题①基本量之间的关系:路程=速度×时间②常见等量关系:相遇问题:甲走的路程+乙走的路程=全路程追及问题(设甲速度快):同时不同地:甲的时间=乙的时间;甲走的路程–乙走的路程=原来甲、乙相距路程 同地不同时:甲的时间=乙的时间–时间差;甲的路程=乙的路程(3)水中航行问题:顺流速度=船在静水中的速度+水流速度;逆流速度=船在静水中的速度–水流速度(二)典例精析:例1、(1)已知x =-2是关于x 的方程()x m x m -=-284的解,则m 的值= ;.(2)若关于x 的方程03)1(22=+-x x a 式一元一次方程,则a= ;【方法总结】:1、第1题是已知方程的解,要求方程中待确定的字母系数,可以像解数字系数的方程一样,先求出方程的解,再进行比较;也可以根据方程的解的定义:能使方程两边代数式的值相等的未知数的取值叫做方程的解,将2x =-代入原方程,转化为关于m 的方程求解.2、在运用一元一次方程定义时,要注意两点:一是未知数的次数为1,二是未知数系数不能为0;例2、解方程:12733)1(2-=-++x x x ; 【方法总结】:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1,需要注意去分母时不要漏乘不含分母的项,去括号时,括号前是负号要注意括号内各项均要改变符号,移项要变号,系数化为1要注意方程两边要未知数的系数;例3、某会议厅主席台上方有一个长12.8m 的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?【方法总结】:1、有比时,应根据比值设未知数;2、应找好等量关系:横标两边的边空+18个字的字宽+18个字之间的字距=12.8cm ;然后根据所设未知数和等量关系就可列出方程;例4、剃须刀由刀片和刀架组成,某时期,甲乙两厂家分别生成老式剃须刀(刀片不可更换)和新式剃须刀(刀片可更换),有关销售策略与售价等信息如下表所示:某段时间内,甲厂家销售了8400把剃须刀,乙厂家销售的刀片数量是刀架数量的50倍,乙厂家获利的利润是甲厂家的两倍,问这段时间内乙厂家销售了多少刀架和刀片?【方法总结】:等量关系是:1、刀架数×50=刀片数;2 、甲厂家利润×2=乙厂家的利润例5、某省公布的居民用电阶梯电价听证方案如下:例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?分析:(1)分别计算出用电量为210度,350度时需要交纳的电费,然后可得出小华家5月份的电量在哪一档上,从而列示计算即可;(2)根据(1)求得的结果,讨论a的值,得出不同的结论.解:(1)用电量为210度时,需要交纳210×0.52=109.2元,用电量为350度时,需要交纳210×0.52+(350﹣210)×(0.52+0.05)=189元,故得小华家5月份的用电量在第二档;设小华家5月份的用电量为x,则210×0.52+(x﹣210)×(0.52+0.05)=138.84解得:x=262,即小华家5月份的用电量为262度.(2)由(1)得,当a≤109.2时,小华家的用电量在第一档;当109.2<a≤189时,小华家的用电量在第二档;当a>189时,华家的用电量在第三档;【方法总结】:解答此类题目要先计算出分界点处需要交的电费,这样有助我我们判断。
3.1.1一元一次方程(第1课时)教学设计
一元一次方程(第一课时)教学过程教师活动学生活动设计意图及资源准备创设情境新课引入(约5分钟)针对买门票的问题设计了一个习题,让学生用算术的方法解答,遇到一定的难度。
例:。
若国庆期间,有16人一起来看灯展,已知票价如下表所示,他们看灯展共花去610元钱,那么这些人中外地人和本地人各有多少人?)再次欣赏玉溪2013大型灯会跟随老师一起思考灯会上买门票的实例。
用算术方法解题遇到一定的困难。
引导学生欣赏美好的事物,陶冶情操。
同时,也利用实际的问题,培养学生从生活中发现数学和应用数学解决实际问题的能力。
准备:搜集中秋灯会的照片、制作flash动画相册和编写习题。
复习旧知引出概念(约4分钟)在小学的时候我们已经见过下面这样的简单方程:(1)2x=50;(2)3x+1=4;(3)5x-7=8通过对上面三个方程的理解,进一步巩固方程的概念。
练习一:1.判断下列式子是不是方程,是的打”√”,不是的打”X”:(1)1+2=3 ( )(2)1+2x=4 ( )(3) x+1-3 ( )(4) 22=4 ( )(5) x+y=2 ( )(6) x2-1=0 ( )理解:含有未知数的等式叫做方程。
判断6个式子是否是方程。
使学生知道方程,为列方程做好准备。
学列方程做好铺垫(约4分钟)2. 根据下列条件,列出关于x的方程:(1) 15与x的和等于x的6倍。
(2) x的2倍比x的一半大3。
(3) x的2倍与15的差等于x与5的和。
自主与小组合作根据条件列出方程。
为进一步根据具体的问题列方程做好铺垫。
探索发现归纳概念(约9分钟)通过上面几道习题的讲解,引导学生观察以下方程的特点⑴ 4x=24;⑵ 1700+150x=2450;⑶ 0.52x-(1-0.52)x=80。
从而归纳出一元一次方程的概念:只含有一个未知数,未知数的次数是1,等号两边都是整式,这样的方程叫做一元一次方程。
进而判断下列6个式子是否是一元一次方程:⑴ 2x+2=3 ( )⑵ 1+2x2=4 ( )⑶ x+y=2 ( )⑷ x+1+3 ( )⑸03x1=- ( )⑹ 2b =4 ( )在教师的引导下,找出各式运算的相同点,归纳一元一次方程的概念,并完成练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六 年级 上 册 第 4 章第 4 课时
主备:徐国磊. 审核: .授课: 案序:
【课 题】: 解一元一次方程2
【学习目标】:
1、在解含有括号的一元一次方程中,能够正确的去括号;
2、综合运用去括号、移项、系数化成1等知识解较复杂的一元一次方程;
3、初步体会转化的数学思想。
【重点难点】:1、正确的去(括号外面含有负因数的)括号;
2、选择适当的方法解方程。
【教学过程】:【第一环节:前置任务导学】
1、解方程2x+6=1
2、自主学习课本P128最上边的图案内容,从中你能得出哪些等量关系?
买果奶的钱+ = 20-3(1)
若设一听果奶x元,则一听可乐 元;
买果奶的钱是 元,买可乐的钱是 元;
可得:
还有别的方法吗?试着写一下
3、比较哪种列方程的方法最简单?
4、此方程与上节课所学的形式相同吗?你会解需所列的方程吗?
【第二环节:互助合作课堂】【学生展示】【师生讨论】【归纳总结】
1.学生小组内交流前置任务。与同伴交流(2分钟)
2. 解方程:4 (x+0.5)+x=17
解:去括号,得
移项,得
合并同类项,得
方程两边同除以 ,得
【教师点拨】
【归纳总结】
由此你能总结出解含有括号的一元一次方程的一般步骤吗?
解方程:-2(x-1)=4
你能发现此方程有几种解法吗?
解法一:
解法二:(温馨提示-------将“x-1”看成一个整体,运用“整体”的数学思
想方法)
【巩固新知】
1.解下列方程:
1、5(x-1)=1 2、11x+1=5(2x+1)
3、4x-3(20-x)=3 4、6-3(x+ 32)= 32
2.请选择适当的方法解下列方程:
1、12(2-3x)=4x+4 2、3(2x+1)=12
3、2(200-15x)=70+25x
【随堂测试】
1、判断下列解方程 是否正确?若有错误请改正。
(1)解方程:4-(3-2x)=3
解:去括号,得 4-3-2x=3
合并同类项,得 -2x=2
【教后反思】
两边同除以-2,得 x=-1 ( )
(2)解方程:3(x-1)=5
解:去括号,得 3x-1=5
合并同类项,得 3x=6
两边同除以3,得 x=2
( )
2、用两种方法解方程:
-4(1-x)=12
解:法一 : 法二:
【第三环节:拓展延伸】
1、 若x=1是方程m(x-1)-3(x+m)=0的解,求m的值
2.学以致用:一个两位数,十位数字是个位数字的2倍,将两个数字对调后得
到的两位数比原来的数小36,求这个两位数。
3.作业:
【作业记录】