专题2.1 函数及其表示(预测)-2014年高考数学(理)一轮复习精品资料(解析版)

合集下载

高考数学专题复习-2.1函数及其表示-高考真题练习(附答案)

高考数学专题复习-2.1函数及其表示-高考真题练习(附答案)

专题二函数的概念与基本初等函数2.1函数及其表示考点一函数的概念及表示1.(2015湖北文,7,5分)设x∈R,定义符号函数sgnx=1,>0,0,=0,-1,<0.则()A.|x|=x|sgnx|B.|x|=xsgn|x|C.|x|=|x|sgnxD.|x|=xsgnx答案D 由已知可知xsgnx=s >0,0,=0,-s <0,而|x|=s >0,0,=0,-s <0,所以|x|=xsgnx,故选D.2.(2014江西理,3,5分)已知函数f(x)=5|x|,g(x)=ax 2-x(a∈R).若f[g(1)]=1,则a=()A.1B.2C.3D.-1答案A 由已知条件可知:f[g(1)]=f(a-1)=5|a-1|=1,∴|a-1|=0,得a=1.故选A.评析本题主要考查函数的解析式,正确理解函数的定义是解题关键.3.(2015重庆文,3,5分)函数f(x)=log 2(x 2+2x-3)的定义域是()A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)答案D 由x 2+2x-3>0,解得x<-3或x>1,故选D.4.(2015湖北文,6,5分)函数f(x)=4−|U +lg 2-5x+6t3的定义域为()A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6]答案C 要使函数f(x)有意义,0,0,>0,解之得2<x<3或3<x≤4,故选C.5.(2014山东理,3,5分)函数()A. B.(2,+∞)C. D.答案C 要使函数f(x)有意义,需使(log 2x)2-1>0,即(log 2x)2>1,∴log 2x>1或log 2x<-1.解之得x>2或0<x<12.故f(x)的定义域为0,6.(2016课标Ⅱ文,10,5分)下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()A.y=xB.y=lgxC.y=2x答案D函数y=10lgx的定义域、值域均为(0,+∞),而y=x,y=2x的定义域均为R,排除A,C;y=lgx的值域为R,排除B,故选D.易错警示利用对数恒等式将函数y=10lgx变为y=x,将其值域认为是R是失分的主要原因.评析本题考查函数的定义域和值域,熟练掌握基本初等函数的图象和性质是解题的关键.7.(2022北京,4,4分)已知函数f(x)=11+2,则对任意实数x,有()A.f(-x)+f(x)=0B.f(-x)-f(x)=0C.f(-x)+f(x)=1D.f(-x)-f(x)=13答案C∵f(x)=11+2,∴f(-x)=11+2−=22+1,∴f(x)+f(-x)=11+2+22+1=1.故选C.一题多解:若对任意实数x,使得选项中式子成立,则可任取x值,代入验证,进行排除.当x=0时,f(0)+f(0)=12+12=1,f(0)-f(0)=0,故A,D选项错误.当x=1时,f(-1)-f(1)=11+2−1−11+21≠0,故B选项错误.根据排除法可知选C.8.(2022北京,11,5分)函数f(x)=1+1−的定义域是.答案(-∞,0)∪(0,1]解析由题意得≠0,1−≥0,解得x≤1且x≠0,所以函数f(x)的定义域为(-∞,0)∪(0,1].9.(2016江苏,5,5分)函数y=3−2t2的定义域是.答案[-3,1]解析若函数有意义,则3-2x-x2≥0,即x2+2x-3≤0,解得-3≤x≤1.考点二分段函数1.(2019天津理,8,5分)已知a∈R.设函数f(x)=2-2ax+2a,x≤1,tEns>1.若关于x的不等式f(x)≥0在R上恒成立,则a的取值范围为()A.[0,1]B.[0,2]C.[0,e]D.[1,e]答案C本题主要考查分段函数及不等式恒成立问题,考查学生推理论证能力及运算求解能力,将恒成立问题转化为求最值问题,考查了学生化归与转化思想及分类讨论思想.(1)当x≤1时,f(x)=x 2-2ax+2a=(x-a)2+2a-a 2,①若a>1,则f(x)在(-∞,1]上是减函数,所以f(x)≥f(1)=1>0恒成立;②若a≤1,则f(x)≥f(a)=2a-a 2,要使f(x)≥0在(-∞,1]上恒成立,只需2a-a 2≥0,得0≤a≤2,∴0≤a≤1,综合①②可知,a≥0时,f(x)≥0在(-∞,1]上恒成立.(2)当x>1时,lnx>0,f(x)=x-alnx≥0恒成立,即a≤ln 恒成立.令g(x)=ln ,g'(x)=lnt1(lnp 2,令g'(x)=0,得x=e,当x∈(1,e)时,g'(x)<0,g(x)为减函数,当x∈(e,+∞)时,g'(x)>0,g(x)为增函数,∴g(x)min =g(e)=e,∴a≤e.综合(1)(2)可知,a 的取值范围是0≤a≤e,故选C.解后反思求不等式恒成立时的参数取值范围的方法:一是分离参数法,不等式f(x)≥a 在R 上恒成立⇔f(x)min ≥a,f(x)≤a 在R 上恒成立⇔f(x)max ≤a;二是讨论分析法,根据参数取值情况进行分类讨论,从而确定参数的取值范围.2.(2019天津文,8,5分)已知函数≤x ≤1,x >1.若关于x 的方程f(x)=-14x+a(a∈R)恰有两个互异的实数解,则a 的取值范围为()答案D 本题以分段函数和方程的解的个数为背景,考查函数图象的画法及应用.画出函数y=f(x)的图象,如图.方程f(x)=-14x+a 的解的个数,即为函数y=f(x)的图象与直线l:y=-14x+a 的公共点的个数.当直线l 经过点A 时,有2=-14×1+a,a=94;当直线l 经过点B 时,有1=-14×1+a,a=54.由图可知,函数y=f(x)的图象与l 恰有两个交点.另外,当直线l 与曲线y=1,x>1相切时,恰有两个公共点,此时a>0.联立=1,=−14x +a,得1=-14x+a,即14x 2-ax+1=0,由Δ=a 2-4×14×1=0,得a=1(舍去负根).综上故选D.一题多解令g(x)=f(x)+14x=4(0≤x ≤1),>1),当0≤x≤1时,g(x)=2+4为增函数,其值域为0,当x>1时,g(x)=1+4,对g(x)求导得g'(x)=-12+14,令g'(x)=0,得x=2,当x∈(1,2)时,g'(x)<0,g(x)单调递减,当x∈(2,+∞)时,g'(x)>0,g(x)单调递增,∴当x=2时,g(x)min =g(2)=1,函数g(x)的简图如图所示:方程f(x)=-14x+a 恰有两个互异的实数解,即函数y=g(x)的图象与直线y=a 有两个不同的交点,由图可知54≤a≤94或a=1满足条件,故选D.易错警示本题入手时,容易分段研究方程2=-14x+a(0≤x≤1)与1=-14x+a(x>1)的解,陷入相对复杂的运算过程.利用数形结合时,容易在区间的端点处出现误判.3.(2015课标Ⅰ文,10,5分)已知函数f(x)=2t1-2,x ≤1,-log 2(x +1),x >1,且f(a)=-3,则f(6-a)=()A.-74 B.-54 C.-34 D.-14答案A 当a≤1时,f(a)=2a-1-2=-3,即2a-1=-1,不成立,舍去;当a>1时,f(a)=-log 2(a+1)=-3,即log 2(a+1)=3,得a+1=23=8,∴a=7,此时f(6-a)=f(-1)=2-2-2=-74.故选A.评析本题主要考查分段函数,指数与对数的运算,考查分类讨论的思想,属中等难度题.4.(2015陕西文,4,5分)设f(x)=1−sx ≥0,2,x <0,则f(f(-2))=()A.-1B.14C.12D.32答案C ∵f(-2)=2-2=14,∴f(f(-2))=f =12,选C.5.(2015山东文,10,5分)设函数f(x)=3ts x <1,2,x ≥1.若f 则b=()A.1B.78C.34D.12答案D=3×56-b=52-b,当52-b≥1,即b≤32时-b=252-b,即252-b=4=22,得到52-b=2,即b=12;当52-b<1,即b>32时-b=152-3b-b=152-4b,即152-4b=4,得到b=78<32,舍去.综上,b=12,故选D.6.(2014江西文,4,5分)已知函数f(x)=·2,x≥0,2-,x<0(a∈R),若f[f(-1)]=1,则a=() A.14 B.12 C.1 D.2答案A由f[f(-1)]=f(2)=4a=1,得a=14,故选A.7.(2014课标Ⅰ文,15,5分)设函数f(x)=e t1,x<1,13,x≥1,则使得f(x)≤2成立的x的取值范围是.答案(-∞,8]解析f(x)≤2⇒<1,e t1≤2或≥1,13≤2⇒<1,≤ln2+1或≥1,≤8⇒x<1或1≤x≤8⇒x≤8,故填(-∞,8].8.(2022浙江,14,6分)已知函数f(x)=−2+2,≤1,+1−1,>1,则f=;若当x∈[a,b]时,1≤f(x)≤3,则b-a的最大值是.答案3728;3+3解析∵+2=74,∴f==74+47−1=3728.f(x)的大致图象如图.∵当x∈[a,b]时,1≤f(x)≤3,∴由图可得b>1且b+1-1=3,∴b=2+3,∵f(a)=1,∴-a2+2=1,解得a=1或a=-1,∴(b-a)max=2+3-(-1)=3+3.一题多解:第二空:∵当x≤1时,y=-x2+2≤2,∴f(x)=3⇒x+1-1=3(x>1),故x=2+3,令-x2+2=1(x≤1),解得x=1或x=-1,令x+1-1=1(x>1),无解,∴a min=-1,b=2+3,∴(b-a)max=2+3-(-1)=3+3.。

2014届高考数学一轮复习 第二章《函数》精编配套试题(含解析)理 新人教A版

2014届高考数学一轮复习 第二章《函数》精编配套试题(含解析)理 新人教A版

2014届高考数学(理)一轮复习单元测试第二章函数一、选择题(本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求)1 .(2013某某理)函数y=x ln (1-x )的定义域为( )A .(0,1) B.[0,1) C.(0,1] D.[0,1]2、【市通州区2013届高三上学期期末理】设函数()22,0log ,0,x x f x x x ⎧≤=⎨>⎩则()1f f -=⎡⎤⎣⎦(A )2(B )(C )2-(D )1-3、【某某省六校联盟2013届高三第一次联考理】设0.53a =,3log 2b =,2cos =c ,则( ) A .c b a <<B .c a b <<C .a b c <<D .b c a << 4、(2013某某理)定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A .4B .3C .2D .5、(2013某某理)函数0.5()2|log |1x f x x =-的零点个数为(A) 1(B) 2(C) 3(D) 46、设()4x f x e x =+-,则函数()f x 的零点位于区间()A .(-1,0)B .(0,1)C .(1,2)D .(2,3)7、【某某省枣庄三中2013届高三上学期1月阶段测试理】已知1()x f x a =,2()a f x x =,3()log a f x x =,(0a >且1a ≠),在同一坐标系中画出其中两个函数在第Ⅰ象限的图象,正确的是A B C D 8、(2013某某理)已知函数f(x)为奇函数,且当x>0时, f(x) =x 2+1x,则f(-1)= ( ) (A )-2 (B )0 (C )1 (D )29、(2013新课标I 卷理))已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值X 围是A .(,0]-∞B .(,1]-∞C .[-2,1]D .[-2,0]10、设函数)(x f 是定义在R 上的奇函数,且对任意R ∈x 都有)4()(+=x f x f ,当)02(,-∈x 时,x x f 2)(=,则)2011()2012(f f -的值为( )A.21-B.21C. 2D.2-11.【某某省某某三中2013届高三高考适应性月考(三)理】定义域为R 的偶函数)(x f 满足对x R ∀∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f ,若函数)1|(|log )(+-=x x f y a 在),0(+∞上至少有三个零点,则a 的取值X 围是 ( )A .)22,0( B .)33,0( C .)55,0( D .)66,0( 12.【某某师大附中2013届高三高考适应性月考卷(四)理】已知定义在R 上的奇函数()f x ,满足(4)()f x f x -=-,且在区间[]0,2上是增函数,若方程()(0)f x m m =>,在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234x x x x +++=A .-12B .-8C .-4D .4二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13、(2013年高考(某某卷))已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为▲ .14、【某某省某某中学2013届高三第一次调研考试理】已知()f x 在R 上是奇函数,且)()2(x f x f -=+.2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则____ 15.(2013某某理)设a 为实常数,y =f (x )是定义在R 上的奇函数,当x <0时,2()9a f x x x=++7,若()1f x a ≥+,对一切x ≥0恒成立,则a 的取值X 围为___16.已知()(2)(3)f x m x m x m =-++,()22xg x =-.若同时满足条件:①,()0x R f x ∀∈<或()0g x <;②(,4)x ∃∈-∞- ,()()0f x g x <. 则m 的取值X 围是________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)(2013届长宁、嘉定区二模)设函数)10()1()(≠>--=-a a a k a x f xx且是定义域为R 的奇函数.(1)求k 的值;(2)(理)若23)1(=f ,且)(2)(22x f m a a xg x x ⋅-+=-在),1[∞+上的最小值为2-,求m 的值.18.(本小题满分12分)(2013届普陀区二模)已知0>a 且1≠a ,函数)1(log )(+=x x f a ,xx g a-=11log )(,记)()(2)(x g x f x F += (1)求函数)(x F 的定义域D 及其零点;(2)若关于x 的方程0)(=-m x F 在区间)1,0[内仅有一解,某某数m 的取值X 围.19.(本小题满分12分)(2013某某理)设函数22()(1)f x ax a x =-+,其中0a >,区间|()>0I x f x =(Ⅰ)求的长度(注:区间(,)αβ的长度定义为βα-); (Ⅱ)给定常数(0,1)k ∈,当时,求长度的最小值。

高考数学(理)一轮复习精品资料:专题04函数及其表示(押题专练)(含答案解析)

高考数学(理)一轮复习精品资料:专题04函数及其表示(押题专练)(含答案解析)

专题04 函数及其表示(押题专练)高考数学(理)一轮复习精品资料1.下列各组函数中,表示同一函数的是( )A .f (x )=x ,g (x )=(x )2B .f (x )=x 2,g (x )=(x +1)2C .f (x )=x 2,g (x )=|x |D .f (x )=0,g (x )=x -1+1-x答案 C解析 在A 中,定义域不同,在B 中,解析式不同,在D 中,定义域不同.2.已知函数f (x )=11-x 2的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∪(∁R N )等于( ) A .{x |x <1}B .{x |x ≥1}C .∅D .{x |-1≤x <1}答案 A解析 M =(-1,1),N =(-1,+∞),故M ∪(∁R N )={x |x <1},故选A.3.已知f (x )为偶函数,且当x ∈,则y =f (log 2x )的定义域是________. 答案 [2,4]8.已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.答案 0 22-3解析 ∵f (-3)=lg =lg10=1,∴f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0; 当x <1时,f (x )=lg(x 2+1)≥lg1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3.9.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,求函数f (x )的解析式.10.根据如图所示的函数y =f (x )的图象,写出函数的解析式.解 当-3≤x <-1时,函数y =f (x )的图象是一条线段(右端点除外),设f (x )=ax +b (a ≠0),将点(-3,1),(-1,-2)代入,可得f (x )=-32x -72; 当-1≤x <1时,同理可设f (x )=cx +d (c ≠0),将点(-1,-2),(1,1)代入,可得f (x )=32x -12; 当1≤x <2时,f (x )=1.所以f (x )=⎩⎪⎨⎪⎧ -32x -72,-3≤x <-1,32x -12,-1≤x <1,1,1≤x <2.11.若函数y =ax +1ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________. 答案 ,(a ,b ∈Z),值域是,则满足条件的整数数对(a ,b )共有________个.答案 5解析 由0≤4|x |+2-1≤1,即1≤4|x |+2≤2,得0≤|x |≤2,满足条件的整数数对有(-2,0),(-2,1),(-2,2),(0,2),(-1,2),共5个.14.具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧ x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.答案 ①③解析 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足; 对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足; 对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足. 综上可知,满足“倒负”变换的函数是①③.15.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么?(4)图1、图2、图3中的票价分别是多少元?解 (1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB上的点表示亏损,AB延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价.(3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.。

专题2.10 函数模型及其应用(教学案)-2014年高考数学(理)一轮复习精品资料(原卷版)

专题2.10 函数模型及其应用(教学案)-2014年高考数学(理)一轮复习精品资料(原卷版)

【重点知识梳理】一、利用函数刻画实际问题用函数图象刻画实际问题的解题思路将实际问题中两个变量间变化的规律(如增长的快慢、最大、最小等)与函数的性质(如单调性、最值等)、图象(增加、减少的缓急等)相吻合即可.【例1】如图所示,向高为H的容器A,B,C,D中同时以等速注水,注满为止:(1)若水深h与注水时间t的函数图象是下图中的(a),则容器的形状是______;(2)若水量v与水深h的函数图象是下图中的(b),则容器的形状是______;(3)若水深h与注水时间t的函数图象是下图中的(c),则容器的形状是______;(4)若注水时间t与水深h的函数图象是下图中的(d),则容器的形状是______.【特别提醒】用函数刻画实际问题的关键是分析所给实际问题中两个变量间的关系,从中发现其变化的规律,并与函数的图象、性质联系起来,从而使问题解决.二、利用已知函数模型解决实际问题利用已知函数模型解决实际问题的步骤若题目给出了含参数的函数模型,或可确定其函数模型的图象,求解时先用待定系数法求出函数解析式中相关参数的值,再用求得的函数解析式解决实际问题.三、自建函数模型解决实际问题 建立函数模型解决实际问题的步骤(1)审题:深刻理解题意,分清条件和结论,理顺其中的数量关系,把握其中的数学本质; (2)建模:由题设中的数量关系,建立相应的数学模型,将实际问题转化为数学问题; (3)解模:用数学知识和方法解决转化出的数学问题; (4)还原:回到题目本身,检验结果的实际意义,给出结论. 【高频考点突破】考点一、画函数图象的一般方法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出.(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.例1、作出下列函数的图象: (1)y =|x -x 2|; (2)y =x +2x -1.考点二 函数图象 例2、作出下列函数的图象:(1)y =2x +1-1; (2)y =sin|x |;(3)y =|log 2(x +1)|.图2-10-3【归纳总结】为了正确地作出函数的图象,必须做到以下两点:①熟练掌握几种基本函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、正弦函数、余弦函数以及形如y =x +1x的函数.②掌握常用的图象变换方法,如平移变换、伸缩变换、对称变换、翻折变换、周期变换等,利用这些方法来帮助我们简化作图过程.考点三 函数图象的变换例3、(1)已知函数y =1x ,将其图象向左平移a (a >0)个单位,再向下平移b (b >0)个单位后图象过坐标原点,则ab 的值为( )A .4B .3C .2D .1(2)已知定义在区间[0,2]上的函数y =f (x )的图象如图2-10-4所示,则 y =-f (2-x )的图象为( )图2-10-4图2-10-5【归纳总结】图象的变换主要有三种:①平移变换,作图象平移时,要注意不要弄错平移的方向,必要时,取特殊点进行验证;平移变换只改变图象的位置,不改变图象的形状.②伸缩变换,注意x →ax ,y →by 的变化中,系数对伸长还是缩短的影响;伸缩变换改变图象的形状.③对称变换,包括轴对称、中心对称和翻折,注意对称变换与表达式中x ,y 的符号有关.考点四 函数图象的识别与应用 )(的图象只可能是x⎝⎛⎭⎫b a =y 与指数函数bx +2ax =y 在下列图象中,二次函数(1)、4例图2-10-6(2)下列四个图象中,可以表示函数y =x ·cos x 的图象的是( )图2-10-7【点评】第(1)题通过二次函数的顶点和指数函数的单调性判断两函数图象的位置关系;第(2)题则是通过函数的奇偶性来判断正确的函数图象.【特别提醒】函数图象的识辨可从以下方面入手:①从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.②从函数的单调性,判断图象的变化趋势.③从函数的奇偶性,判断图象的对称性.④从函数的周期性,判断图象的循环往复.利用上述方法,排除、筛选错误与正确的选项.)(的图象大致为ex +e -xex -e -x=y 【变式探究】函数图2-10-8考点五 函数图象与函数性质的综合3|.+x 4-2x |=)x (f 、已知函数5例(1)求函数f (x )的单调区间,并指出其单调性;(2)若关于x 的方程f (x )-a =x 至少有三个不相等的实数根,求实数a 的取值范围.【点评】作出函数的图像,即可得出函数的单调区间,根据函数f (x )的图像与直线y =x +a 至少有三个公共点,确定直线y =x +a 的活动范围,即可确定a 的范围.【特别提醒】 ①从图象的左右分布,分析函数的定义域;从图象的上下分布,分析函数的值域;从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.②利用函数的图象可解决方程和不等式的求解问题,比如判断方程是否有解,有多少个解.数形结合是常用的思想方法.的取值a 都成立,则实数⎝⎛⎦⎤0,π4∈x 对于任意≠1)a 且>0a (x >sin2x a log 若不等式(1) 【变式探究】范围是________.(2)若函数y =f (x )(x ∈R)满足f (x +2)=f (x ),且x ∈[-1,1)时,f (x )=|x |.则函数y =f (x )的图象与函.________的图象的交点的个数为|x |4log =y 数 考点六 数形结合思想求参数的范围)(的取值范围是a ,则12)<x (f 时,均有1),1-(∈x ,当x a -2x =)x (f ,≠1a 且>0a 、已知6例 ∞) ,+[2∪⎝⎛⎦⎤0,12A. 4],(1∪⎣⎡⎭⎫14,1B. 2] ,(1∪⎣⎡⎭⎫12,1C. ∞),+[4∪⎝⎛⎦⎤0,14D. .________的取值范围是a 有四个交点,则a +|x |-2x =y 与曲线1=y 直线(1)【变式探究】 (2)已知f (x )是以2为周期的偶函数.当x ∈[0,1]时,f (x )=x ,那么在区间[-1,3]内,关于x 的方程f (x )=kx +k +1(k ∈R 且k ≠-1)有四个根,则k 的取值范围是________.考点七 一次、二次函数模型的应用例7、(1)若一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,则燃烧剩下的高度h (cm)与燃烧时间t (小时)的函数关系用图象表示为( ),<240x (0<2x 0.1-x 20+3 000=y 之间的函数关系式是)台(x 与产量)万元(y 某产品的总成本(2)x ∈N),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( )A .100台B .120台C .150台D .180台【特别提醒】①在实际问题中,有很多问题的两变量之间的关系是一次函数关系,其增长特点是直线上升(自变量的系数大于0)或直线下降(自变量的系数小于0),构建一次函数模型,利用一次函数的图象与单调性求解.②有些问题的两变量之间是二次函数关系,如面积问题、利润问题、产量问题等.构建二次函数模型,利用二次函数图象与单调性解决.③在解决有关二次函数的应用问题时,一定要注意定义域.考点八 指数、对数型函数模型的应用,kt 10e =y 倍,且知该细菌的繁殖规律为2培养,可繁殖为原来的60 min 某种细菌经(1) 、8例其中k 为常数,t 表示时间(单位:h),y 表示细菌个数,10个细菌经过7 h 培养能达到的个数为( )A .640B .1 280C .2 560D .5 120A 是测震仪记录的地震曲线的最大振幅,A ,其中0A lg -A lg =M 的计算公式为:M 里氏震级(2)是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.考点九 分段函数模型的应用例9、某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x )万元,通1 450.-10 000x+x 51=)x (C 千件时,80;当年产量不小于x 10+2x 13=)x (C 千件时,80当年产量不足过市场分析,若每件售价为500元时,该厂当年生产的该产品能全部销售完.(1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式;(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少? 【特别提醒】①分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别找出来,再将其合到一起,要注意各段自变量的范围,特别是端点值.②构造分段函数时,要力求准确、简洁,做到分段合理不重不漏.考点十 函数应用问题的规范解答件之间的关系如≤100)x 80≤,*N ∈x (x 与日产量p 、某工厂统计资料显示,一种产品次品率10例下表所示:日产量x 80 81 82 … x … 98 99 100 次品率p128127126…P (x )…1101918.)为给定常数k (元k3元,生产一件次品损失k .已知生产一件正品盈利)为常数a (1a -x=)x (P 其中 (1)求出a ,并将该厂的日盈利额y (元)表示为日生产量x (件)的函数;(2)为了获得最大盈利,该厂的日生产量应该定为多少件?【变式探究】济南市“两会”召开前,某政协委员针对自己提出的“环保提案”对某处的环境状况进行了实地调研.据测定,该处的污染指数与附近污染源的强度成正比,与到污染源的距离成反比,比例常数为k (k >0).现在已知相距36 km 的A ,B 两家化工厂(污染源)的污染强度分别为正数a ,b ,它们连线上任意一点C 处的污染指数y 等于两化工厂对该处的污染指数之和.设AC =x (km).(1)试将y 表示为x 的函数;(2)若a =1,y 在x =6时取得最小值,试求b 的值.【经典考题精析】(2013·湖北卷)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶,与以上事件吻合得最好的图像是( )图1-1(2013·陕西卷)设[x]表示不大于x 的最大整数,则对任意实数x ,有( ) A .[-x]=-[x] B.⎣⎡⎦⎤x +12=[x] C .[2x]=2[x] D .[x]+⎣⎡⎦⎤x +12=[2x].a +ax 2-3x 4=)x (f ,函数R ∈a 已知)浙江卷2012·( (1) 求f (x )的单调区间;(2)证明:当0≤x ≤1时,f (x )+|2-a |>0..bx +3x =)x (g ,>0)a 1(+2ax =)x (f 已知函数)北京卷2012·( (1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a =3,b =-9时,若函数f (x )+g (x )在区间[k,2]上的最大值为28,求k 的取值范围.(2012·课标全国卷)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20 频数10201616151310①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; ②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.(2012·福建卷)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x (元) 8 8.2 8.4 8.6 8.8 9 销量y (件)908483807568;x b -y =a ,20=-b ,其中a +bx =y ^求回归直线方程(1) (2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)【随堂巩固】1.设甲、乙两地的距离为a (a >0),小王骑自行车以匀速从甲地到乙地用了20min ,在乙地休息10min 后,他又以匀速从乙地返回到甲地用了30min ,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数图像为( )2.某汽车运输公司,购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N )为二次函数关系(如图所示),则每辆客车营运多少年,其营运的平均利润最大( )A.3 B.4C.5 D.63某教科书2013年的销量比2011的销量增长44%,若每年的平均增长率相同(设为x),则以下结论正确的是()A.x>22%B.x<22%C.x=22%D.x的大小由第一年的销量确定4.国家规定某行业收入税如下:年收入在280万元及以下的税率为p%,超过280万元的部分按(p+2)%征税,有一公司的实际缴税比例为(p+0.25)%,则该公司的年收入是() A.560万元B.420万元C.350万元D.320万元5.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为() A.45.606 B.45.6C.45.56 D.45.516.某市2010年新建住房100万m2,其中有25万m2经济适用房,有关部门计划以后每年新建住房面积比上一年增加5%,其经济适用房每年增加10万m2.按照此计划,当年建造的经济适用房面积首次超过该年新建住房面积一半的年份是(参考数据:1.052=1.10,1.053=1.16,1.054=1.22,1.055=1.28)()A.2012年B.2013年C.2014年D.2015年7.某种细胞在培养过程中正常情况下,时刻t(单位:min)与细胞数n(单位:个)的部分数据如下:t 02060140n 128128 根据表中数据,推测繁殖到1000个细胞时的时刻t最接近于()A.200 B.220C .240D .2608.对函数f (x )=3x 2+ax +b 作代换x =g (t ),则总不改变f (x )值域的代换是( )A .g (t )=log 12 tB .g (t )=(12)tC .g (t )=(t -1)2D .g (t )=cos t9.根据统计,一名工人组装第x 件某产品所用的时间(单位:min)为f (x )=⎩⎨⎧ c x,x<A ,c A ,x≥A (A ,c 为常数).已知工人组装第4件产品用时30min ,组装第A 件产品用时15min ,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16 10.如图,书的一页的面积为600cm 2,设计要求书面上方空出2cm 的边,下、左、右方都空出1cm 的边,为使中间文字部分的面积最大,这页书的长、宽应分别为________.是测震仪记录的地震曲线的最大振幅,A ,其中0A lg -A lg =M 的计算公式为:M .里氏震级11,此时标准地震的1 000是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是0A 振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.,则现13年计算机的价格降低5.由于电子技术的飞速发展,计算机的成本不断降低,若每隔12在价格为8 100元的计算机经过15年的价格应降为________元.13.某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元,万元.________的最大值是)Q (L ,则总利润2Q 120-Q 40=)Q (k 的函数,Q 是单位产品数k 又知总收入 14.某商人将进货单价为8元的某种商品按10元一个销售时,每天可卖出100个,现在他采用提高售价,减少进货量的办法增加利润,已知这种商品销售单价每涨1元,销售量就减少10个,问他将售价每个定为多少元时,才能使每天所赚的利润最大?并求出最大值.15.据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图像如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).(1)当t=4时,求s的值;(2)将s随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.16.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:km/h)是车流密度x(单位:辆/km)的函数.当桥上的车流密度达到200辆/km时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/km时,车流速度为60km/h.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/h)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/h)17.如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1km,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-120(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关,炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2km,试问它的横坐标a不超过多少时,炮弹可以击中它?说明理由.。

2014年高考数学一轮复习 第2章 函数、导数及其应用12精品训练 理(含解析)新人教B版

2014年高考数学一轮复习 第2章 函数、导数及其应用12精品训练 理(含解析)新人教B版

2014年高考数学一轮复习 第2章 函数、导数及其应用12精品训练理(含解析)新人教B 版[命题报告·教师用书独具]1.(2012年高考某某卷)函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞) D.(0,+∞)解析:根据函数的导数小于0的解集就是函数的单调减区间求解.由题意知,函数的定义域为(0,+∞),又由y ′=x -1x≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].答案:B2.(2012年高考某某卷)设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 解析:利用导数法求解.∵f (x )=2x +ln x (x >0),∴f ′(x )=-2x 2+1x.由f ′(x )=0解得x =2.当x ∈(0,2)时,f ′(x )<0,f (x )为减函数; 当x ∈(2,+∞)时,f ′(x )>0,f (x )为增函数. ∴x =2为f (x )的极小值点. 答案:D3.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )解析:依题意得,当x ∈(-∞,c )时,f ′(x )>0;当x ∈(c ,e )时,f ′(x )<0;当x ∈(e ,+∞)时,f ′(x )>0.因此,函数f (x )在(-∞,c )上是增函数,在(c ,e )上是减函数,在(e ,+∞)上是增函数,又a <b <c ,所以f (c )>f (b )>f (a ),选C.答案:C4.若f (x )=-12(x -2)2+b ln x 在(1,+∞)上是减函数,则b 的取值X 围是( )A .[-1,+∞) B.(-1,+∞) C .(-∞,-1] D .(-∞,-1)解析:由题意可知f ′(x )=-(x -2)+bx≤0在(1,+∞)上恒成立,即b ≤x (x -2)在x ∈(1,+∞)上恒成立,由于φ(x )=x (x -2)=x 2-2x (x ∈(1,+∞))的值域是(-1,+∞),故只要b ≤-1即可.正确选项为C.答案:C5.已知函数的图象如图所示,则其函数解析式可能是( )A .f (x )=x 2-2ln|x | B .f (x )=x 2-ln|x | C .f (x )=|x |-2ln|x | D .f (x )=|x |-ln|x |解析:经分析知,函数正的极小值点的横坐标应小于1,对四个选项求导可知选B 项. 答案:B二、填空题6.(2013年某某检测)若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值X 围是________.解析:f ′(x )=3x 2+2x +m ,由f ′(x )≥0,得m ≥-3x 2-2x ,令g (x )=-3x 2-2x ,则g (x )=-3⎝⎛⎭⎪⎫x +132+13≤13.∴m ≥13.答案:⎣⎢⎡⎭⎪⎫13,+∞ 7.(2013年某某模拟)若函数f (x )=x 3-6bx +3b 在(0,1)内有极小值,则实数b 的取值X 围是________.解析:f ′(x )=3x 2-6b .当b ≤0时,f ′(x )≥0恒成立,函数f (x )无极值. 当b >0时,令3x 2-6b =0得x =±2b .由函数f (x )在(0,1)内有极小值,可得0<2b <1, ∴0<b <12.答案:⎝ ⎛⎭⎪⎫0,12 8.函数f (x )=x ln x 的单调递增区间是________.解析:函数f (x )的定义域为(0,+∞),∵f ′(x )=ln x +1由f ′(x )>0,得x >1e,∴f (x )的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞. 答案:⎝ ⎛⎭⎪⎫1e ,+∞9.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值X 围是________.解析:由题意知f ′(x )=-x +4-3x =-x 2+4x -3x=-x -1x -3x,由f ′(x )=0得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或者t <3<t +1,得0<t <1或者2<t <3.答案:(0,1)∪(2,3) 三、解答题10.已知函数f (x )=x 3+ax 2+bx +c (x ∈[-1,2]),且函数f (x )在x =1和x =-23处都取得极值.(1)求a ,b 的值;(2)求函数f (x )的单调递增区间.解析:(1)∵f (x )=x 3+ax 2+bx +c ,∴f ′(x )=3x 2+2ax +b .由题易知,⎩⎪⎨⎪⎧f ′⎝ ⎛⎭⎪⎫-23=0,f ′1=0,解得⎩⎪⎨⎪⎧a =-12,b =-2.(2)由(1)知,f ′(x )=3x 2-x -2=(3x +2)(x -1), ∵当x ∈⎣⎢⎡⎭⎪⎫-1,-23时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫-23,1时,f ′(x )<0;当x ∈(1,2]时,f ′(x )>0.∴f (x )的单调递增区间为⎣⎢⎡⎭⎪⎫-1,-23和(1,2]. 11.(2013年某某调研)已知实数a >0,函数f (x )=ax (x -2)2(x ∈R )有极大值32. (1)求函数f (x )的单调区间; (2)某某数a 的值.解析:(1)f (x )=ax 3-4ax 2+4ax ,f ′(x )=3ax 2-8ax +4a .令f ′(x )=0,得3ax 2-8ax +4a =0. ∵a ≠0,∴3x 2-8x +4=0,∴x =23或x =2.∵a >0,∴当x ∈⎝ ⎛⎭⎪⎫-∞,23或x ∈(2,+∞)时,f ′(x )>0. ∴函数f (x )的单调递增区间为⎝⎛⎭⎪⎫-∞,23和(2,+∞);∵当x ∈⎝ ⎛⎭⎪⎫23,2时,f ′(x )<0,∴函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫23,2. (2)∵当x ∈⎝⎛⎭⎪⎫-∞,23时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫23,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,∴f (x )在x =23时取得极大值,即a ·23⎝ ⎛⎭⎪⎫23-22=32.∴a =27.12.(能力提升)已知函数f (x )=1x+a ln(x +1).(1)当a =2时,求f (x )的单调区间和极值;(2)若f (x )在[2,4]上为单调函数,某某数a 的取值X 围.解析:(1)由x ≠0且x +1>0得函数f (x )的定义域为(-1,0)∪(0,+∞),又f ′(x )=-1x 2+2x +1=2x 2-x -1x 2x +1=x -12x +1x 2x +1,由f ′(x )>0得-1<x <-12或x >1,由f ′(x )<0得-12<x <0或0<x <1,所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-1,-12和(1,+∞),单调递减区间为⎝ ⎛⎭⎪⎫-12,0和(0,1).f (x )和f ′(x )随x 的变化情况如下表: x ⎝⎛⎭⎪⎫-1,-12-12 ⎝ ⎛⎭⎪⎫-12,0 (0,1) 1 (1,+∞)f ′(x ) +--+f (x )极大值极小值由表知f (x )的极大值为f ⎝ ⎛⎭⎪⎫-12=-2-2ln 2,极小值为f (1)=1+2ln 2.(2)f ′(x )=ax 2-x -1x 2x +1,若f (x )在区间[2,4]上为增函数,则当x ∈[2,4]时,f ′(x )≥0恒成立,即ax 2-x -1x 2x +1≥0,则a ≥x +1x 2,当x ∈[2,4]时,x +1x 2=1x +1x 2≤34,所以a ≥34.若f (x )在区间[2,4]上为减函数,则当x ∈[2,4]时,f ′(x )≤0恒成立,即ax 2-x -1x 2x +1≤0,则a ≤x +1x 2, 当x ∈[2,4]时,x +1x 2=1x +1x 2≥516,所以a ≤516. 综上得a ≥34或a ≤516.[因材施教·学生备选练习]1.(2013年某某模拟)已知函数f (x )=13x 3+12ax 2+bx +c 在x 1处取得极大值,在x 2处取得极小值,且满足x 1∈(-1,1),x 2∈(2,4),则a +2b 的取值X 围是( )A .(-11,-3)B .(-6,-4)C .(-11,3)D .(-16,-8)解析:依题意得,f ′(x )=x 2+ax +b ,x 1,x 2是方程f ′(x )=0的两个根,于是有⎩⎪⎨⎪⎧f ′-1=-12+a -1+b =1-a +b >0,f ′1=12+a +b =1+a +b <0,f ′2=22+2a +b =4+2a +b <0,f ′4=42+4a +b =16+4a +b >0,如图,在坐标平面内画出该不等式组表示的平面区域,阴影部分表示的四边形的四个顶点的坐标分别为(-3,-4),(-1,-2),(-3,2),(-5,4),经验证得:当a =-5,b =4时,z =a +2b 取得最大值3;当a =-3,b =-4时,z =a +2b 取得最小值-11.于是z =a +2b 的取值X 围是(-11,3),故选C.答案:C2.(2013年某某模拟)已知函数f (x )=ln(2ax +1)+x 33-x 2-2ax (a ∈R ).(1)若x =2为f (x )的极值点,某某数a 的值;(2)若y =f (x )在[3,+∞)上为增函数,某某数a 的取值X 围; (3)当a =-12时,方程f (1-x )=1-x33+b x有实根,某某数b 的最大值.解析:(1)f ′(x )=2a 2ax +1+x 2-2x -2a =x [2ax 2+1-4a x -4a 2+2]2ax +1.因为x =2为f (x )的极值点,所以f ′(2)=0, 即2a4a +1-2a =0,解得a =0. (2)因为函数f (x )在区间[3,+∞)上为增函数,所以f ′(x )=x [2ax 2+1-4a x -4a 2+2]2ax +1≥0在区间[3,+∞)上恒成立.①当a =0时,f ′(x )=x (x -2)≥0在[3,+∞)上恒成立,所以f (x )在[3,+∞)上为增函数,故a =0符合题意.②当a ≠0时,由函数f (x )的定义域可知,必须有2ax +1>0对x ≥3恒成立,故只能a >0, 所以2ax 2+(1-4a )x -(4a 2+2)≥0在[3,+∞)上恒成立.令函数g (x )=2ax 2+(1-4a )x -(4a 2+2),其对称轴为x =1-14a,因为a >0,所以1-14a<1,要使g (x )≥0在[3,+∞)上恒成立,只要g (3)≥0即可,即g (3)=-4a 2+6a +1≥0,所以3-134≤a ≤3+134.因为a >0,所以0<a ≤3+134.综上所述,a 的取值X 围为⎣⎢⎡⎦⎥⎤0,3+134.(3)当a =-12时,方程f (1-x )=1-x33+bx可化为ln x -(1-x )2+(1-x )=b x.问题转化为b =x ln x -x (1-x )2+x (1-x )=x ln x +x 2-x 3在(0,+∞)上有解,即求函数g (x )=x ln x +x 2-x 3的值域.因为函数g (x )=x (ln x +x -x 2),令函数h (x )=ln x +x -x 2(x >0), 则h ′(x )=1x +1-2x =2x +11-xx,所以当0<x <1时,h ′(x )>0,从而函数h (x )在(0,1)上为增函数,当x >1时,h ′(x )<0,从而函数h (x )在(1,+∞)上为减函数,因此h (x )≤h (1)=0.而x >0,所以b =x ·h (x )≤0, 因此当x =1时,b 取得最大值0.。

2014年高考数学(理)一轮复习学案:第二篇第1讲 函数及三要素

2014年高考数学(理)一轮复习学案:第二篇第1讲 函数及三要素

第二篇第1讲: 函数及三要素【知识梳理】1、函数的概念:设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.2、映射的定义--------对应、映射、像和原像注:(1)函数是一种特殊的映射(2)函数的三要素:定义域、值域和对应法则.(3)只有定义域相同,且对应法则也相同的两个函数才是同一函数.3、求函数的定义域时,一般遵循以下原则:(主要的)①()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合;② 对数函数的真数大于零,对数或指数函数的底数中含变量时,底数须大于零且不等于1;③ tan y x =中,()2x k k Z ππ≠+∈;④ 零(负)指数幂的底数不能为零;⑤对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.4、求函数的值域或最值常用方法:(观察法、配方法、判别式法、不等式法、换元法、反函数法、数形结合法⑧函数的单调性法)5、解析式的求法:(代入法、待定系数法、拼凑发、换元法、方程组法、图像法)【双基自测】 1、给出下列四个命题,正确的有( )①函数是定义域到值域的对应关系;②函数f (x )=x -4+1-x ;③f (x )=5,因这个函数的值不随x 的变化而变化,所以f (t 2+1)也等于5;④y =2x (x ∈N )的图象是一条直线.A .1个B .2个C .3个D .4个2、若)12(log 1)(21+=x x f ,则)(x f 定义域为( )A. )0,21(-B.]0,21(-C. ),21(+∞-D.),0(+∞3、下列各对函数中,表示同一函数的是( ).A .f (x )=lg x 2,g (x )=2lg xB .f (x )=lg x +1x -1,g (x )=lg(x +1)-lg(x -1)C .f (u )= 1+u 1-u ,g (v )= 1+v 1-vD .f (x )=(x )2,g (x )=x 2 4、某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( ).A .y =⎣⎡⎦⎤x 10B .y =⎣⎡⎦⎤x +310C .y =⎣⎡⎦⎤x +410D .y =⎣⎡⎦⎤x +510 5.函数y =f (x )的图象如图所示.那么,f (x )的定义域是________;值域是________;其中只与x 的一个值对应的y 值的范围是________.【考点剖析】考向一:函数概念例1:(1)A R =,{|0}B y y =>,:||f x y x →=;(2)*{|2,}A x x x N =≥∈,{}|0,B y y y N =≥∈,2:22f x y x x →=-+;(3){|0}A x x =>,{|}B y y R =∈,:f x y x →=±.上述三个对应 是A 到B 的函数.训练1:设集合{1,0,1}M =-,{2,1,0,1,2}N =--,如果从M 到N 的映射f 满足条件:对M 中的每个元素x 与它在N 中的象()f x 的和都为奇数,则映射f 的个数是 ( )()A 8个 ()B 12个 ()C 16个 ()D 18个考点二:求函数定义域例2:求函数f (x )=|x -2|-1log 2(x -1)的定义域:训练2:若函数f(x+1)的定义域为【-2,3】,求函数f(2x-1)与函数)(log2x f 的定义域.考点三:函数求值与值域 例3:(1)已知函数11)11(22+-=+-x x x x f ,求f(3)的值;(2)求下列函数的值域 ①13432)(-+-=x x x f ;② 2211)(x xx f +-=;③ 18)(2+=x x f x ;④ 31)(---=x x x f ; ⑤1686)(22+++=x x x x f ;训练3:(1)、已知函数x x x f 221)(+=,则)991()99(...)31()3()21()2()1(f f f f f f f +++++++=(2)、求下列函数的值域(1)x x x f 212)(-+=;(2))1(221)(2>-+-=x x x x f x ; (3)]4,1()1,2[,112---∈+-= x x x y ;(4)考点四:求函数解析式例4:(1)已知f(x)是一次函数,且19)]([+=x x f f ,求f(x);(2)已知)12(+x f =lg x ,求f (x );(3)已知)1(+x f x x 2+=,求f(x);(4)设f(x)为R 上的函数,且满足f(0)=1,并且对任意实数x,y 有)12()()(+--=-y x y x f y x f ,求f(x)的表达式.训练4:(1)(1)已知)1(x x f +=x 3+1x 3,求f (x );(2)已知函数f(x)满足1)1(2)(3+=+x x f x f ,求f(x).考点五:分段函数例5:已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1, x <0,求满足不等式f (1-x 2)>f (2x )的x 的取值范围.训练5:已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.【课后练习】1、已知函数f (x )的定义域为[-1,5],在同一坐标系下,函数y =f (x )的图象与直线x =1的交点为( )A .0个B .1个C .2个D .0个或1个均有可能2、为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文明文(解密),已知加密规则为:明文a,b,c,d 对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,73、若函数y=f(x)的值域是]3,21[,则函数)(1)()(x f x f x F +=的值域是( ) A 、]3,21[ B 、]310,2[ C 、]310,25[ D 、]310,3[ 4、已知函数⎪⎩⎪⎨⎧<≥=-2,,2,2)()1(3x x x x f x 若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是__________.5、已知函数f (x )满足x x xx f 2log )2(=+,求f (x );。

2014届高三数学一轮复习精讲精练:2.1函数的概念

2014届高三数学一轮复习精讲精练:2.1函数的概念2019高中数学精讲精练 第二章 函数【知识导读】 【方法点拨】函数是中学数学中最重要,最基础的内容之一,是学习高等数学的基础.高中函数以具体的幂函数,指数函数,对数函数和三角函数的概念,性质和图像为主要研究对象,适当研究分段函数,含绝对值的函数和抽象函数;同时要对初中所学二次函数作深入理解.1.活用“定义法”解题.定义是一切法则与性质的基础,是解题的基本出发点.利用定义,可直接判断所给的对应是否满足函数的条件,证明或判断函数的单调性和奇偶性等. 2.重视“数形结合思想”渗透.“数缺形时少直观,形缺数时难入微”.当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议:画个图像!利用图形的直观性,可迅速地破解问题,乃至最终解决问题.3.强化“分类讨论思想”应用.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为映特函具一概图表 示定义域 单调性 基本幂函指数对数二次指对互函数应用lg10x y =.其中表示同一个函数的有___②④⑤___.2.设集合{02}M x x =≤≤,{02}N y y =≤≤,从M 到N 有四种对应如图所示:其中能表示为M 到N 的函数关系的有_____②③____. 3.写出下列函数定义域: (1) ()13f x x =-的定义域为______________; (2)21()1f x x =-的定义域为______________;(3) 1()1f x x x=+的定义域为______________; (4)0(1)()x f x x x+-_________________.4.已知三个函数:(1)()()P x y Q x =; (2)2()ny P x =(*)n N ∈;(3)()log()Q x y P x =.写出使各函数式有意义时,()P x ,()Q x 的约束条件:(1)______________________; (2)______________________;(3)______________________________. 5.写出下列函数值域:1 2 2 x y O ①y 1 2 2 x O ② 1 22 x O ③y1 2 2 xO ④yR {1}x x ≠±[1,0)(0,)-⋃+∞ (,1)(1,0)-∞-⋃- ()0Q x ≠ ()0P x ≥ ()0Q x >且()0P x >且()1Q x ≠(1) 2()f x x x=+,{1,2,3}x ∈;值域是{2,6,12}. (2) 2()22f x xx =-+; 值域是[1,)+∞.(3) ()1f x x =+,(1,2]x ∈. 值域是(2,3]. 【范例解析】例 1.设有函数组:①21()1x f x x -=-,()1g x x =+;②()11f x x x =+-,2()1g x x =-③2()21f x x x =-+()1g x x =-;④()21f x x =-,()21g t t =-.其中表示同一个函数的有③④.分析:判断两个函数是否为同一函数,关键看函数的三要素是否相同.解:在①中,()f x 的定义域为{1}x x ≠,()g x 的定义域为R ,故不是同一函数;在②中,()f x 的定义域为[1,)+∞,()g x 的定义域为(,1][1,)-∞-⋃+∞,故不是同一函数;③④是同一函数.点评:两个函数当它们的三要素完全相同时,才能表示同一函数.而当一个函数定义域和对应法则确定时,它的值域也就确定,故判断两个函数是否为同一函数,只需判断它的定义域和对应法则是否相同即可.例 2.求下列函数的定义域:① 2112y x x=+--; ②12()log (2)xf x x =-解:(1)① 由题意得:220,10,x x ⎧-≠⎪⎨-≥⎪⎩解得1x ≤-且2x ≠-或1x ≥且2x ≠,故定义域为(,2)(2,1][1,2)(2,)-∞-⋃--⋃⋃+∞.② 由题意得:12log (2)0x ->,解得12x <<,故定义域为(1,2).例3.求下列函数的值域: (1)242y x x =-+-,[0,3)x ∈; (2)221x y x =+()x R ∈;(3)21y x x =-+分析:运用配方法,逆求法,换元法等方法求函数值域.(1) 解:2242(2)2y x x x =-+-=--+,[0,3)x ∈,∴函数的值域为[2,2]-;(2) 解法一:由2221111x y x x ==-++,21011x <≤+,则21101x -≤-<+,01y ∴≤<,故函数值域为[0,1).解法二:由221x y x =+,则21y xy=-,20x ≥,∴01yy≥-,01y ∴≤<,故函数值域为[0,1).(3)解:1x t +=(0)t ≥,则21x t =-,2221(1)2y t t t ∴=--=--,当0t ≥时,2y ≥-,故函数值域为[2,)-+∞. 点评:二次函数或二次函数型的函数求值域可用配方法;逆求法利用函数有界性求函数的值域;用换元法求函数的值域应注意新元的取值范围. 【反馈演练】1.函数f (x )=x21-的定义域是___________.2.函数)34(log 1)(22-+-=x x x f 的定义域为(,0]-∞(1,2)(2,3)⋃_________________. 3. 函数21()1y x R x=∈+的值域为________________.4. 函数23134y x x =-+-的值域为_____________. 5.函数)34(log 25.0x x y -=的定义域为_____________________.6.记函数f (x )=132++-x x 的定义域为A ,g (x )=lg [(x-a -1)(2a -x )](a <1) 的定义域为B . (1) 求A ;(2) 若B ⊆A ,求实数a 的取值范围.解:(1)由2-13++x x ≥0,得11+-x x ≥0,x <-1或x ≥1, 即A =(-∞,-1)∪[1,+ ∞) .(2) 由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0.∵a <1,∴a +1>2a ,∴B=(2a ,a +1) .∵B ⊆A , ∴2a ≥1或a +1≤-1,即a ≥21或a ≤-2,而a <1,∴21≤a <1或a ≤-2,故当B ⊆A 时, 实数a 的取值范围是(-∞,-2]∪[21,1). (,4]-∞13[,0)(,1]44-⋃。

配套K12高考数学总复习(讲+练+测): 专题2.1 函数及其表示(讲)

第01节 函数及其表示【考纲解读】【知识清单】1. 函数与映射的概念对点练习:设集合{}=,,A a b c ,{}=0,1B ,试问:从A 到B 的映射共有几个? 【答案】2.函数的定义域、值域(1)在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. 对点练习:若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是()【答案】B【解析】 A 中函数定义域不是[-2,2],C 中图象不表示函数,D 中函数值域不是[0,2]. 3.函数的表示法表示函数的常用方法有解析法、图象法和列表法. 对点练习: 若函数满足关系式,则的值为( )A. 1B. -1C.D.【答案】A【解析】试题分析:因为函数满足关系式,所以,用代换,可得,联立方程组可得,故选A . 4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. 对点练习:【2017届湖南郴州监测】已知211,0()2(1),0x x f x x x ⎧+≤⎪=⎨⎪-->⎩,则使()1f a =-成立的值是____________.【答案】42-或【考点深度剖析】函数的概念,经常与函数的图象和性质结合考查,有时以小题的面目出现,有时渗透于解答题之中.分段函数表示一个函数,不是几个函数,从近几年高考命题看,考查力度有加大趋势,与之相关的题目,往往有一定的难度,关键是与基本初等函数结合,要求不但要理解分段函数的概念,更要掌握基本初等函数的图象和性质.【重点难点突破】考点1 映射与函数的概念【1-1】给出四个命题:①函数是其定义域到值域的映射;②()f x =③函数2(N)y x x ∈=的图象是一条直线;④2()x f x x=与()g x x =是同一个函数.其中正确的有( )A .1个B .2个C .3个D .4个 【答案】A【解析】(1)由函数的定义知①正确.②中满足()f x =的不存在,所以②不正确.③中2(N)y x x ∈=的图象是一条直线上的一群孤立的点,所以③不正确.④中2()x f x x=与()g x x =的定义域不同,∴④也不正确.故选A .【1-2】设集合,则下列对应中不能构成到的映射的是( ) A. B. C. D.【答案】B【解析】试题分析:当时,集合中任意元素,在中都有唯一的元素与之对应,所以对应到的映射;当时,集合中没有元素与之对应,所以对应不是到的映射;当时,集合中任意元素,在中都有唯一的元素与之对应,所以对应到的映射;当时,集合中任意元素,在中都有唯一的元素与之对应,所以对应到的映射,故选B .【1-3】下列两个对应中是集合 到集合 的函数的有________________.(写出符合要求的选项序号)(1)设 ,,对应法则 ;(2)设 ,,对应法则;(3)设 ,对应法则除以 所得的余数;(4),对应法则.【答案】(1) (3)【领悟技法】1.判断一个对应是否为映射,关键看是否满足“集合A 中元素的任意性,集合B 中元素的唯一性”.2. 判断一个对应f :A →B 是否为函数,一看是否为映射;二看A ,B 是否为非空数集.若是函数,则A 是定义域,而值域是B 的子集.3. 函数的三要素中,若定义域和对应关系相同,则值域一定相同.因此判断两个函数是否相同,只需判断定义域、对应关系是否分别相同. 【触类旁通】【变式一】下列函数中,与函数y =的定义域相同的函数为( ) A .1sin y x = B .ln x y x= C .y =x e xD .y =sin x x【答案】D【解析】函数y =的定义域是0(()0)∞∞-,,+,而1sin y x =的定义域为{x |x ≠k π,k ∈Z },ln x y x=的定义域为(0,+∞),y =x e x的定义域为R ,y =sin x x 的定义域为(-∞,0)∪(0,+∞).故选D.【变式二】在下列图形中,表示y 是x 的函数关系的是________.【答案】①②【解析】由函数定义可知,自变量x 对应唯一的y 值,所以③④错误,①②正确. 【变式三】已知函数()23,f x x x A =-∈的值域为{1,1,3}-,则定义域A 为 . 【答案】{1,2,3}考点2 求函数的解析式【2-1】已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________. 【答案】()27f x x =+ 【解析】设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. 【2-2】已知2(1)21f x x x -=-+,求()f x 【答案】2()232f x x x =-+【解析】(换元法)设1t x =-,则1x t =-, ∴22()2(1)(1)1232f t t t t t =---+=-+, ∴ 2()232f x x x =-+.【2-3】定义在(1,1)-内的函数()f x 满足2()()lg(1)f x f x x --=+,求()f x 【答案】21()lg(1)lg(1)33f x x x =++-,x ∈(1,1)-【领悟技法】1.已知函数类型,用待定系数法求解析式.2.已知函数图象,用待定系数法求解析式,如果图象是分段的,要用分段函数表示.3.已知()f x 求[()]f g x ,或已知[()]f g x 求()f x ,用代入法、换元法或配凑法.4.若()f x 与1()f x或()f x -满足某个等式,可构造另一个等式,通过解方程组求解. 5.应用题求解析式可用待定系数法求解.6.求函数解析式一定要注意函数的定义域,否则极易出错. 【触类旁通】【变式一】某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =⎣⎢⎡⎦⎥⎤x 10B .y =⎣⎢⎡⎦⎥⎤x +310C .y =⎣⎢⎡⎦⎥⎤x +410 D .y =⎣⎢⎡⎦⎥⎤x +510 【答案】B【变式二】已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,则f (x )=________.【答案】()22(][22)f x x x ∈∞∞=-,-,-,+【解析】(配凑法) (1)f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2,又x +1x∈(-∞,-2]∪[2,+∞),∴()22(][22)f x x x ∈∞∞=-,-,-,+ 考点3 分段函数及其应用【3-1】【2017东营模拟】设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))等于( )A.15 B .3 C.23 D .139【答案】D【解析】由题意知f (3)=23≤1,f ⎝ ⎛⎭⎪⎫23=⎝ ⎛⎭⎪⎫232+1=139,∴f (f (3))=f ⎝ ⎛⎭⎪⎫23=139.【3-2】已知函数lg ,0()3,0f x x x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值为( )A .-3B .-3或1C .1D .-1或3【答案】B【解析】∵()1 10f lg ==,∴()0f a =,当a >0时,lg a =0,a =1.当a ≤0时,a +3=0,a =-3.所以a =-3或1.【3-3】【2014浙江高考理第15题】设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______【答案】a ≤解得,0a <或a ≤≤,故a ≤【领悟技法】1.因为分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值时,一定要注意自变量的值所在子集,再代入相应的解析式求值.2.“分段求解”是处理分段函数问题解的基本原则. 【触类旁通】【变式一】【2017江西师范附属3月模拟】已知函数()()22log 3,2,{21,2x x x f x x ---<=-≥,若()21f a -=,则()f a =( )A. 2-B. 1-C. 1D. 2 【答案】A【解析】当22a -≥即0a ≤时, 22211a ---=,解得1a =-, 则()()()21log 312f a f ⎡⎤=-=---=-⎣⎦;当22a -<即0a >时, ()2log 321a ⎡⎤---=⎣⎦,解得12a =-,舍去. ∴()2f a =-. 【变式二】【2017广州调研】定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2-x ,x ≤0f x -,x >0,则f (3)的值为( )A .-4B .2C .log 213D .4【答案】D【解析】()()()()422(321016)02 4.f f f f log log ====-==【易错试题常警惕】易错典例:已知函数x x x f 2)(2+=12(≤≤-x且x Z ∈),则()f x 的值域是( )A .[]0,3B .[]1,3- C .{}0,1,3 D .{}1,0,3- 易错分析:本题易忽视定义域的重要作用,误选B . 正确解析:由已知得函数()22fx x x =+的定义域为{}2,1,0,1--,则()20f -=,()11f -=-,()00f =,()13f =,所以函数的值域为{}1,0,3-.故正确答案为D .温馨提醒:函数三要素是指定义域、值域、对应法则.当函数的定义域、对应法则确定后,其值域也随之确定.【数学素养提升之思想方法篇】分段函数求值妙招——分类讨论思想分类讨论思想就是当问题所给的对象不能进行统一研究时,需要把研究对象按某个标准分类,然后对每一类分别研究得出结论,最后综合各类结果得到整个问题的解答.实质上,分类讨论是“化整为零,各个击破,再积零为整”的解题策略.分段函数体现了数学的分类讨论思想,求解分段函数求值问题时应注意以下三点: (1)明确分段函数的分段区间.(2)依据自变量的取值范围,选好讨论的切入点,并建立等量或不等量关系. (3)在通过上述方法求得结果后,应注意检验所求值(范围)是否落在相应分段区间内. 【典例】已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________. 【答案】34-符合题意.故34a =-.。

【金牌精品】高考数学(理)一轮复习:2-1函数及其表示

课后课时作业[A 组·基础达标练]1.已知f :x →-sin x 是集合A (A ⊆[0,2π])到集合B =⎩⎨⎧⎭⎬⎫0,12的一个映射,则集合A 中的元素个数最多有( )A .4个B .5个C .6个D .7个答案 B解析 当-sin x =0时sin x =0,x 可取0,π,2π; 当-sin x =12时,sin x =-12,x 可取7π6,11π6, 故集合A 中的元素最多有5个, 故选B.2.如果函数f (x )=ln (-2x +a )的定义域为(-∞,1),则实数a 的值为( )A .-2B .-1C .1D .2 答案 D解析 ∵-2x +a >0,∴x <a 2,∴a2=1,∴a =2.3.若函数y =f (x )的定义域是[0,2014],则函数g (x )=f (x +1)x -1的定义域是( )A .[-1,2013]B .[-1,1)∪(1,2013]C .[0,2014]D .[-1,1)∪(1,2014] 答案 B解析 令t =x +1,则由已知函数y =f (x )的定义域为[0,2014],可知f (t )中0≤t ≤2014,故要使函数f (x +1)有意义,则0≤x +1≤2014,解得-1≤x ≤2013,故函数f (x +1)的定义域为[-1,2013].所以函数g (x )有意义的条件是⎩⎨⎧-1≤x ≤2013,x -1≠0,解得-1≤x <1或1<x ≤2013.故函数g (x )的定义域为[-1,1)∪(1,2013].4.定义a ⊕b =⎩⎨⎧a ×b ,a ×b ≥0,ab ,a ×b <0.设函数f (x )=ln x ⊕x ,则f (2)+f ⎝ ⎛⎭⎪⎫12=( ) A .4ln 2 B .-4ln 2 C .2 D .0答案 D解析 由题意可得f (x )=⎩⎪⎨⎪⎧x ln x ,x ≥1,ln xx ,0<x <1,所以f (2)+f ⎝ ⎛⎭⎪⎫12=2ln 2+2ln 12=0.5.[2016·武汉质检]已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <0,x 2-2x ,x ≥0.若f (-a )+f (a )≤0,则a 的取值范围是( )A .[-1,1]B .[-2,0]C .[0,2]D .[-2,2]答案 D解析 依题意可得⎩⎨⎧a ≥0,a 2-2a +(-a )2+2(-a )≤0或⎩⎨⎧a <0,(-a )2-2(-a )+a 2+2a ≤0,解得a ∈[-2,2],故选D.6.[2015·石家庄一模]已知f (x )为偶函数,且当x ∈[0,2)时,f (x )=2sin x ,当x ∈[2,+∞)时,f (x )=log 2x ,则f ⎝ ⎛⎭⎪⎫-π3+f (4)=( )A .-3+2B .1C .3 D.3+2答案 D解析 因为f ⎝⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=2sin π3=3,f (4)=log 24=2,所以f ⎝⎛⎭⎪⎫-π3+f (4)=3+2,故选D.7.设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x , x ≥0,,则当x >0时,f [f (x )]表达式的展开式中常数项为( )A .-20B .20C .-15D .15答案 A解析 x >0时,f (x )=-x <0,故f [f (x )]=⎝ ⎛⎭⎪⎫-x +1x 6,其展开式的通项公式为T r +1=C r 6·(-x )6-r·⎝ ⎛⎭⎪⎫1x r=(-1)6-r ·C r 6·(x )6-2r ,由6-2r =0得r =3,故常数项为(-1)3·C 36=-20.8.[2015·浙江高考]存在函数f (x )满足:对于任意x ∈R 都有( ) A .f (sin2x )=sin x B .f (sin2x )=x 2+x C .f (x 2+1)=|x +1| D .f (x 2+2x )=|x +1|答案 D解析 对于A ,令x =0,得f (0)=0;令x =π2,得f (0)=1,这与函数的定义不符,故A 错.在B 中,令x =0,得f (0)=0;令x =π2,得f (0)=π24+π2,与函数的定义不符,故B 错.在C 中,令x =1,得f (2)=2;令x =-1,得f (2)=0,与函数的定义不符,故C 错.在D 中,变形为f (|x +1|2-1)=|x +1|,令|x +1|2-1=t ,得t ≥-1,|x +1|=t +1,从而有f (t )=t +1,显然这个函数关系在定义域(-1,+∞)上是成立的,选D.9.[2013·福建高考]已知函数f (x )=⎩⎨⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.答案 -2解析 ∵π4∈⎣⎢⎡⎭⎪⎫0,π2,∴f ⎝ ⎛⎭⎪⎫π4=-tan π4=-1, ∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. 10.设f (x )是R 上的函数,且满足f (0)=1,并且对任意的实数x ,y 都有f (x -y )=f (x )-y (2x -y +1),则f (x )=________.答案 x 2+x +1解析 由f (0)=1,f (x -y )=f (x )-y (2x -y +1),令y =x ,得f (0)=f (x )-x (2x -x +1),∴f (x )=x 2+x +1.11.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义; (2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解 (1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元. 12.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1. (1)求函数f (x )的解析式; (2)求函数y =f (x 2-2)的值域. 解 (1)设f (x )=ax 2+bx +c (a ≠0), 由题意可知⎩⎨⎧c =0,a (x +1)2+b (x +1)+c =ax 2+bx +c +x +1,整理得⎩⎪⎨⎪⎧ 2a +b =b +1,a ≠0,a +b =1,c =0,解⎩⎪⎨⎪⎧a =12,b =12,c =0.∴f (x )=12x 2+12x .(2)由(1)知y =f (x 2-2)=12(x 2-2)2+12(x 2-2)=12(x 4-3x 2+2)=12⎝⎛⎭⎪⎫x 2-322-18,当x 2=32时,y 取最小值-18,故函数值域为⎣⎢⎡⎭⎪⎫-18,+∞.[B 组·能力提升练]1.[2015·湖北高考]已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.f (x )是R 上的增函数,g (x )=f (x )-f (ax )(a >1),则( )A .sgn[g (x )]=sgn xB .sgn[g (x )]=-sgn xC .sgn[g (x )]=sgn[f (x )]D .sgn[g (x )]=-sgn[f (x )] 答案 B解析 ∵f (x )是R 上的增函数,a >1, ∴当x >0时,x <ax ,有f (x )<f (ax ),则g (x )<0; 当x =0时,g (x )=0;当x <0时,x >ax ,有f (x )>f (ax ),则g (x )>0.∴sgn[g (x )]=⎩⎪⎨⎪⎧1,x <0,0,x =0,-1,x >0,∴sgn[g (x )]=-sgn x ,故选B.2.[2016·西安八校联考]设[x ]表示不超过实数x 的最大整数,如[2.6]=2,[-2.6]=-3.设g (x )=a xa x +1(a >0且a ≠1),那么函数f (x )=⎣⎢⎡⎦⎥⎤g (x )-12+⎣⎢⎡⎦⎥⎤g (-x )-12的值域为( ) A .{-1,0,1} B .{0,1} C .{1,-1} D .{-1,0}答案 D解析 ∵g (x )=a x a x +1,∴g (-x )=1a x +1,∴0<g (x )<1,0<g (-x )<1,g (x )+g (-x )=1. 当12<g (x )<1时,0<g (-x )<12,∴f (x )=-1; 当0<g (x )<12时,12<g (-x )<1,∴f (x )=-1; 当g (x )=12时,g (-x )=12,∴f (x )=0. 综上,f (x )的值域为{-1,0},故选D. 3.[2015·浙江高考]已知函数f (x )=⎩⎨⎧x +2x-3, x ≥1,lg (x 2+1), x <1,则f (f (-3))=________,f (x )的最小值是________.答案 0 22-3解析 ∵-3<1,∴f (-3)=lg [(-3)2+1]=lg 10=1,∴f (f (-3))=f (1)=1+21-3=0.当x ≥1时,f (x )=x +2x -3≥22-3(当且仅当x =2时,取“=”);当x <1时,x 2+1≥1,∴f (x )=lg (x 2+1)≥0.又∵22-3<0,∴f (x )min =22-3.4.如果对∀x ,y ∈R 都有f (x +y )=f (x )·f (y ),且f (1)=2. (1)求f (2),f (3),f (4)的值;(2)求f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2010)f (2009)+f (2012)f (2011)+f (2014)f (2013)的值.解 (1)∵∀x ,y ∈R ,f (x +y )=f (x )·f (y ),且f (1)=2, ∴f (2)=f (1+1)=f (1)·f (1)=22=4, f (3)=f (1+2)=f (1)·f (2)=23=8, f (4)=f (1+3)=f (1)·f (3)=24=16.(2)由(1)知f (2)f (1)=2,f (4)f (3)=2,f (6)f (5)=2,…,f (2014)f (2013)=2,故原式=2×1007=2014.另解:(2)对∀x 、y ∈R 都有f (x +y )=f (x )·f (y )且f (1)=2,令x =n ,y =1,则f (n +1)=f (n )·f (1),即f (n +1)f (n )=f (1)=2,故f (2)f (1)=f (4)f (3)=…=f (2014)f (2013)=2,故原式=2×1007=2014.。

高考数学(理)一轮复习精品资料 专题04 函数及其表示(押题专练) Word版含解析

专题04函数及其表示(押题专练)高考数学(理)一轮复习精品资料1.下列各组函数中,表示同一函数的是()A .f (x )=x ,g (x )=(x )2B .f (x )=x 2,g (x )=(x +1)2C .f (x )=x 2,g (x )=|x |D .f (x )=0,g (x )=x -1+1-x答案C解析在A 中,定义域不同,在B 中,解析式不同,在D 中,定义域不同.2.已知函数f (x )=11-x 2的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∪(∁R N )等于() A .{x |x <1}B .{x |x ≥1}C .∅D .{x |-1≤x <1}答案A解析M =(-1,1),N =(-1,+∞),故M ∪(∁R N )={x |x <1},故选A.3.已知f (x )为偶函数,且当x ∈,则y =f (log 2x )的定义域是________.答案[2,4]8.已知函数f (x )=⎩⎪⎨⎪⎧ x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.答案022-3解析∵f (-3)=lg =lg10=1,∴f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0;当x <1时,f (x )=lg(x 2+1)≥lg1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3.9.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,求函数f (x )的解析式.10.根据如图所示的函数y =f (x )的图象,写出函数的解析式.解当-3≤x <-1时,函数y =f (x )的图象是一条线段(右端点除外),设f (x )=ax +b (a ≠0),将点(-3,1),(-1,-2)代入,可得f (x )=-32x -72; 当-1≤x <1时,同理可设f (x )=cx +d (c ≠0),将点(-1,-2),(1,1)代入,可得f (x )=32x -12; 当1≤x <2时,f (x )=1.所以f (x )=⎩⎪⎨⎪⎧ -32x -72,-3≤x <-1,32x -12,-1≤x <1,1,1≤x <2.11.若函数y =ax +1ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________. 答案,(a ,b ∈Z ),值域是,则满足条件的整数数对(a ,b )共有________个.答案5解析由0≤4|x |+2-1≤1,即1≤4|x |+2≤2,得0≤|x |≤2,满足条件的整数数对有(-2,0),(-2,1),(-2,2),(0,2),(-1,2),共5个.14.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧ x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.答案①③解析对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足; 对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足; 对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1, 即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1, 故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.15.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么?(4)图1、图2、图3中的票价分别是多少元?解(1)点A表示无人乘车时收支差额为-20元,点B表示有10人乘车时收支差额为0元,线段AB上的点表示亏损,AB延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价.(3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名师预测
1.已知a、b为实数,集合M={ba,1},N={a,0},f:x→x表示把M中的元素x映射到集合
N中仍为x,则a+b等于( )
A.-1 B.0
C.1 D.±1
2.已知函数f(x)对任意的x、y∈R都有f(x+y)=f(x)+f(y),且f(2)=4,则f(1)=( )
A.-2 B.1
C.0.5 D.2

3.已知f:x→-sin x是集合A(A⊆[0,2π])到集合B={0,12}的一个映射,则集合A中的元素个
数最多有( )
A.4个 B.5个
C.6个 D.7个
4.定义x⊗y=x3-y,则h⊗(h⊗h)=( )
A.-h B.0
C.h D.h3

5.已知函数ƒ(x)= 2x,x>0,x+1,x≤0.
若ƒ(a)+ƒ(1)=0,则实数a的值等于( )
A.-3 B.-1
C.1 D.3
6.若f(x)对于任意实数x恒有2f(x)-f(-x)=3x+1,则f(x)=( )
A.x-1 B.x+1
C.2x+1 D.3x+3
7.现向一个半径为R的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器
的液面高度h随时间t变化的函数关系的是( )

8.若f(x)对于任意实数x恒有2f(x)-f(-x)=3x+1,则f(x)=( )
A.x-1 B.x+1
C.2x+1 D.3x+3
9.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)= cx,xc为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值
分别是( )
A.75,25 B.75,16
C.60,25 D.60,16

10.具有性质:f1x=-f(x)的函数,我们称为满足“倒负”变换的函数,下列函数:

①y=x-1x;②y=x+1x;③y= x,01.其中满足“倒负”变换的函数是( )
A.①② B.①③
C.②③ D.①
11.已知f(x)=x2+px+q满足f(1)=f(2)=0,则f(-1)=________.

12.已知函数f(x)= x2+2ax,x≥2,2x+1,x<2,若f(f(1))>3a2,则a的取值范围是________.
13.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示集合M到集合N
的函数关系的是________.

14.已知f(x-1x)=x2+1x2,则函数f(3)=________.
15.设f(x)= lgx,x>0,10x,x≤0,则f(f(-2))=________.
16.设函数ƒ(x)=x3cos x+1.若ƒ(a)=11,则ƒ(-a)=____.
17.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)解不等式f(x)>2x+5.
18.函数f(x)对一切实数x、y均有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0,
(1)求f(0)的值;
(2)试确定函数f(x)的解析式.

19.我国是水资源相对匮乏的国家,为鼓励节约用水,某市打算制定一项水费措施,规定每季
度每人用水不超过5吨时,每吨水费的价格(基本消费价)为1.3元,若超过5吨而不超过6吨时,超
过部分的水费加收200%,若超过6吨而不超过7吨时,超过部分的水费加收400%,如果某人本季
度实际用水量为x(x≤7)吨,试计算本季度他应缴纳的水费.

20.若函数f(x)=xax+b(a≠0),f(2)=1,又方程f(x)=x有唯一解,求f(x)的解析式.
21.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2
km,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y(km)与时间x(min)
的关系.试写出y=f(x)的函数解析式.

22.如图1是某公共汽车线路收支差额y元与乘客量x的图象.
(1)试说明图1上点A、点B以及射线AB上的点的实际意义;
(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能
根据图象,说明这两种建议的意义吗?
(3)此问题中直线斜率的实际意义是什么?
(4)图1、图2、图3中的票价分别是多少元?
23.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)解不等式f(x)>2x+5.

6.解析:在2f(x)-f(-x)=3x+1①
将①中x换为-x,则有2f(-x)-f(x)=-3x+1②
①×2+②得3f(x)=3x+3,
∴f(x)=x+1.
答案:B
11.解析:由f(1)=f(2)=0,
得 12+p+q=0,22+2p+q=0,所以 p=-3,q=2.
故f(x)=x2-3x+2.
所以f(-1)=(-1)2+3+2=6.
答案:6
12.解析:由题知,f(1)=2+1=3,f(f(1))=f(3)=32+6a,若f(f(1))>3a2,则9+6a>3a2,即a
2

-2a-3<0,解得-1答案:(-1,3)
18.解:(1)令x=1,y=0,得
f(1)-f(0)=2.
又∵f(1)=0,
∴f(0)=-2.
(2)令y=0,则
f(x)-f(0)=x(x+1),
由(1)知,f(1)=x(x+1)+f(0)
=x(x+1)-2
=x2+x-2.

21.解:当x∈[0,30]时,设y=k1x+b1,
由已知得 b1=0,30k1+b1=2,解得 k1=115,b1=0.
即y=115x.

相关文档
最新文档