高考数学 常见难题大盘点 数列

高考数学 常见难题大盘点 数列
高考数学 常见难题大盘点 数列

2013高考数学常见难题大盘点:数列

1. 已知函数2()1f x x x =+-,

,αβ是方程f (x )=0的两个根()αβ>,'()f x 是f (x )的导数;设11a =,1()

'()

n n n n f a a a f a +=-

(n =1,2,……) (1)求,αβ的值;

(2)证明:对任意的正整数n ,都有n a >a ;

解析:(1)∵2()1f x x x =+-,,αβ是方程f (x )=0的两个根()αβ>,

∴αβ; (2)'()21f x x =+,21

115

(21)(21)12442121

n n n n

n n n n n n a a a a a a a a a a ++++-

+-=-=-++ =5114

(21)4

212n n a a ++

-

+,∵11a =,

∴有基本不等式可知20a >(

当且仅当1a 时取等号)

,∴20a >

同,样3a

,……,n a α= (n =1,2,……), 2. 已知数列{}n a 的首项121a a =+(a 是常数,且1a ≠-),2

4221+-+=-n n a a n n (2n ≥),数列{}n b 的首项1b a =,2n a b n n +=(2n ≥)。

(1)证明:{}n b 从第2项起是以2为公比的等比数列; (2)设n S 为数列{}n b 的前n 项和,且{}n S 是等比数列,求实数a 的值;

(3)当a>0时,求数列{}n a 的最小项。

分析:第(1)问用定义证明,进一步第(2)问也可以求出,第(3)问由a 的不同而要分类讨论。 解:(1)∵2n a b n n +=

∴22211)1(2)1(4)1(2)1(++++-++=++=++n n n a n a b n n n n n b n a 2222=+=(n ≥2)

由121a a =+得24a a =,22444b a a =+=+, ∵1a ≠-,∴ 20b ≠,

即{}n b 从第2项起是以2为公比的等比数列。

(2)1(44)(21)

34(22)221n n n a S a a a -+-=+

=--++- 当n ≥2时,111(22)23434

2(22)234(1)234

n n n n n S a a a S a a a a ---+--+==+

+--+-- ∵}{n S 是等比数列, ∴1

-n n S S (n ≥2)是常数,

∴3a+4=0,即4

3

a =-

。 (3)由(1)知当2n ≥时,2(44)2(1)2n n n b a a -=+=+,

所以2

21(1)

(1)2(2)

n n a n a a n n +=?=?+-≥?, 所以数列{}n a 为2a+1,4a ,8a-1,16a ,32a+7,……

显然最小项是前三项中的一项。 当1(0,)4

a ∈时,最小项为8a-1;

当1

4a =

时,最小项为4a 或8a-1; 当11

(,)42a ∈时,最小项为4a ;

当1

2a =时,最小项为4a 或2a+1;

当1

(,)2

a ∈+∞时,最小项为2a+1。

点评:本题考查了用定义证明等比数列,分类讨论的数学思想,有一定的综合性。 考点二:求数列的通项与求和 3. 已知数列{}n a 中各项为:

12、1122、111222、……、111n ??????个

222n ??????个

……

(1)证明这个数列中的每一项都是两个相邻整数的积. (2)求这个数列前n 项之和S n .

分析:先要通过观察,找出所给的一列数的特征,求出数列的通项,进一步再求和。 解:(1)12

(101)10(101)99

n n n n a =

-?+?- 1(101)(102)9n n

=-?+101101(

)(1)33n n --=?+ 记:A =101

3n - , 则A=333n

??????为整数

∴ n

a

= A (A+1) , 得证

(2)

21121010999

n n n a =

+- 2422112(101010)(101010)999

n n n S n =

++??????++++??????- 2211

(101110198210)891

n n n ++=

+?-- 点评:本题难点在于求出数列的通项,再将这个通项“分成” 两个相邻正数的积,解决此题需要一定的观察能力和逻辑推理能力。

4. 已知数列{}n a 满足41

1=

a ,()),2(2

111N n n a a a n n

n n ∈≥--=--. (Ⅰ)求数列{}n a 的通项公式n a ; (Ⅱ)设2

1n

n a b =

,求数列{}n b 的前n 项和n S ;

(Ⅲ)设2

)12(sin

π

-=n a c n n ,数列{}n c 的前n 项和为n T .求证:对任意的*∈N n ,7

4<

n T .

分析:本题所给的递推关系式是要分别“取倒”再转化成等比型的数列,对数列中不等式的证明通常是放缩通项以利于求和。 解:(Ⅰ)12)1(1---=n n n a a ,])1(1

)[2()1(111

---+-=-+∴n n n n a a ,

又3)1(11=-+a

,∴数列()?

??

???-+n n a 11是首项为3,公比为2-的等比数列. 1

)2(3)1(1--=-+n n n a , 即1

23)1(11+?-=--n n n a . (Ⅱ)12649)123(1121+?+?=+?=---n n n n b .

9264321)21(1641)41(19-+?+?=+--??+--??=n n S n n n n n .

(Ⅲ)1)1(2)12(sin

--=-n n π

, 1

231

)1()2(3)1(1

11+?=----=∴---n n n n n c . 当3≥n 时,则1

231123112311311

2+?+++?++?++=-n n T <1221121

1321])(1[28112312312317141--+

=?+?+?++--n n 7

484488447612811])21(1[6128112=<=+<-+=-n . 321T T T << , ∴对任意的*∈N n ,7

4

点评:本题利用转化思想将递推关系式转化成我们熟悉的结构求得数列{}n a 的通项

n a ,第三问不等式的证明要用到放缩的办法,这将到下一考点要重点讲到。

考点三:数列与不等式的联系 5. 已知α为锐角,且12tan -=

α,

函数)4

2sin(2tan )(2

π

αα+

?+=x x x f ,数列{a n }的首项)(,2

1

11n n a f a a ==

+. ⑴ 求函数)(x f 的表达式;

⑵ 求证:n n a a >+1;

分析:本题是借助函数给出递推关系,第(2)问的不等式利用了函数的性质,第(3)问是转化成可以裂项的形式,这是证明数列中的不等式的另一种出路。 解:⑴1)

12(1)

12(2tan 1tan 22tan 2

2=---=-=

ααα 又∵α为锐角 ∴4

α=

∴1)4

2sin(=+

π

α x x x f +=2)(

⑵ n n n a a a +=+2

1 ∵2

1

1=

a ∴n a a a ,,32都大于0 ∴02

>n a ∴n n a a >+1

点评:把复杂的问题转化成清晰的问题是数学中的重要思想,本题中的第(3)问不等式的证明更具有一般性。

6. 已知数列{}n a 满足()

111,21n n a a a n N *

+==+∈

(Ⅰ)求数列{}n a 的通项公式;

(Ⅱ)若数列{}n b 满足n n b n b b b b a )1(44441111321+=---- ,证明:{}n b 是等差数列; (Ⅲ)证明: ()

2

311112

3n n N a a a *++++<∈

分析:本例(1)通过把递推关系式转化成等比型的数列;第(2)关键在于找出连续三项间的关系;第(3)问关键在如何放缩。 解:(1)121+=+n n a a ,)1(211+=+∴+n n a a 故数列}1{+n a 是首项为2,公比为2的等比数列。

n n a 21=+∴,12-=n n a

(2)n n b n b b b b a )1(44

4411

11321+=---- ,n n

nb

n b b b 24)(2

1=∴-+++ n n nb n b b b =-+++2)(221 ①

1121)1()1(2)(2+++=+-++++n n n b n n b b b b ②

②—①得n n n nb b n b -+=-++11)1(22,即1)1(2+-=-n n b n nb ③ 212)1(++=-+∴n n nb b n ④

④—③得112-++=n n n nb nb nb ,即112-++=n n n b b b 所以数列}{n b 是等差数列

(3)1111

212211211-++=

-<-=n n n n a a 设132111++++=n a a a S ,则)111(211322n a a a a S ++++< )1

(2111

2+-+=n a S a

3

213212112<-=-<++n n a a a S

点评:数列中的不等式要用放缩来解决难度就较大了,而且不容易把握,对于这样的题要多探索,多角度的思考问题。

7. 已知函数()()ln 1f x x x =-+,数列{}n a 满足101a <<,

()1n n a f a +=; 数列{}n b 满足1111,(1)22

n n b b n b +=≥+, *n N ∈.求证:

(Ⅰ)101;n n a a +<<<

(Ⅱ)2

1;2n n a a +<

(Ⅲ)若1a =则当n ≥2时,!n n b a n >?.

分析:第(1)问是和自然数有关的命题,可考虑用数学归纳法证明;第(2)问可利用函数的单调性;第(3)问进行放缩。

解:(Ⅰ)先用数学归纳法证明01n a <<,*n N ∈. (1)当n=1时,由已知得结论成立;

(2)假设当n=k 时,结论成立,即01k a <<.则当n=k+1时,

因为0

x f x x x '=-

=>++,所以f(x)在(0,1)上是增函数. 又f(x)在[]0,1上连续,所以f(0)

故当n=k+1时,结论也成立. 即01n a <<对于一切正整数都成立.

又由01n a <<, 得()1ln 1ln(1)0n n n n n n a a a a a a +-=-+-=-+<,从而1n n a a +<. 综上可知10 1.n n a a +<<<

(Ⅱ)构造函数g(x)=22x -f(x)=

2

ln(1)2

x x x ++-, 0

()01x g x x

'=>+,知g(x)在(0,1)上增函数.

又g(x)在[]0,1上连续,所以g(x)>g(0)=0.

因为01n a <<,所以()0n g a >,即()22n n a f a ->0,从而2

1.2

n n a a +< (Ⅲ) 因为 1111,(1)22n n b b n b +=≥+,所以0n b >,1n n

b

b +12n +≥ ,

所以1211211

!2

n n n n n n b b b b b n b b b ---=??≥? ————① ,

由(Ⅱ)21,2n n a a +<知:12n n n a a a +<, 所以1n a a =31

212

12

122

2

n n n a

a a a a a

a a a --?< ,

因为12

a =

, n≥2, 10 1.n n a a +<<< 所以 n a 1

121222n a a a a -<

?<112n n a -<2122

n a ?=12n ————② . 由①② 两式可知: !n n b a n >?.

点评:本题是数列、超越函数、导数的学归纳法的知识交汇题,属于难题,复习时应引起注意。

考点四:数列与函数、向量等的联系

8. 已知函数f(x)=

52168x

x

+-,设正项数列{}n a 满足1a =l ,()1n n a f a +=.

(1)写出2a 、3a 的值; (2)试比较n a 与

5

4

的大小,并说明理由; (3)设数列{}n b 满足n b =54-n a ,记S n =1

n

i i b =∑.证明:当n ≥2时,S n <14(2n

-1).

分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。

解:(1)152168n n n a a a ++=-,因为11,a =所以2373

,.84a a ==

(2)因为10,0,n n a a +>>所以1680,0 2.n n a a -><<

155

48()52553444168432(2)22n n n n n n n

a a a a a a a +--

+-=-=

=?---, 因为20,n a ->所以154n a +-与5

4

n a -同号,

因为151044a -=-<,250,4a -<350,4a -<…,50,4n a -<即5

.4

n a <

(3)当2n ≥时,1111

531531

()422422n n n n n n b a a b a a ----=-=?

?-=??-- 113125224

n n b b --

所以2131212222n n n n n b b b b ----

所以3121(12)

11114(21)422124n n n n n S b b b --??

=+++<++???+==- ?-??

点评:本题是函数、不等式的综合题,是高考的难点热点。

9. 在平面直角坐标系中,已知三个点列{A n },{B n },{C n },其中),(),,(n n n n b n B a n A )0,1(-n C n ,满足向量1+n n A A 与向量n n C B 共线,且点(B ,n )在方向向量为(1,6)

线上.,11a b a a -==

(1)试用a 与n 表示)2(≥n a n ;

(2)若a 6与a 7两项中至少有一项是a n 的最小值,试求a 的取值范围。

分析:第(1)问实际上是求数列的通项;第(2)问利用二次函数中求最小值的方式来解决。 解:(1)

,),,1(),,1(1111n a a C B A A b C B a a A A n n n n n n n n n n n n n =-∴--=-=++++共线,与

又∵{B n }在方向向量为(1,6)的直线上,6,6111

=-=-+-∴++n n n

n b b n

n b b 即 1

21123121...)(...)()()

1(6--++++=-++-+-+=-+-=∴n n n n n b b b a a a a a a a a a n a b

)2(26)9(3)2)(1(3)1(6

2

)

2)(1()1)((2≥+++-=--+--=?--+

--+=n a n a n n n n a a n n n a a (2)∵二次函数a x a x x f 26)9(3)(2+++-=是开口向上,对称轴为6

9

+=a x 的抛物线

又因为在a 6与a 7两项中至少有一项是数列{a n }的最小项, ∴对称轴3624,2

15

69211]215,211[69≤≤∴≤+≤+=

a a a x 内,即应该在 点评:本题是向量、二次函数、不等式知识和交汇题,要解决好这类题是要有一定的数

学素养的。

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五) 对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题。同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。对重难点要了如指掌,能做到有的放矢。同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度。人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。 必修五主要包括三大部分内容:解三角形、数列、不等式。高考具体要考查那些内容呢?这是我们师生共同研究的问题。虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。下面具体对必修五常考的型作一分解: 解三角形 解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。 知识点:正弦定理、余弦定理和三角形的面积的公式。 正弦定理: R C c B b A a 2sin sin sin ===(R 为AB C ?的外接圆半径) 余弦定理:C ab c b a cos 22 2 2 =-+,B ac b c a cos 22 2 2 =-+,A bc a c b cos 22 2 2 =-+ (变形后) C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cb a b c cos 22 22=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 2 1 sin 21sin 21===?。 知识点分解: (1)两边一角,求另外两角一边,可以用正弦定理,也可以用余弦定理,特别注意两种三角形的情况。 (2)两角一边,求另外一角和两边,肯定是正弦定理。 (3)等式两边都有边或通过转化等式两边都有边,用正弦定理。 (4)知道三边的关系用余弦定理。

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. ; 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. … 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 。

~ 4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. % 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式. {

、 ~

、 1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -=. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, ' 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9 分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b

高考数学题型全归纳

2010-2016高考理科数学题型全归纳题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系 题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围 题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系

题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质 题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间 题型34、利用函数的零点确定参数的取值范围 题型35、方程根的个数与函数零点的存在性问题 题型36、函数与数列的综合 题型37、函数与不等式的综合 题型38、函数中的创新题 题型39、导数的定义 题型40、求函数的导数 题型41、导数的几何意义 题型42、利用原函数与导函数的关系判断图像

高考数学最常考的几类题型

高考数学最常考的几类题型 要想提高高考数学成绩必须要花一定的时间来研究历 年来高考常考题型,精准把握高考最新动态,综合分析往年高考的常规题型,我们发现这七个题型是非常常考的: 第一,函数与导数 主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。 第二,平面向量与三角函数、三角变换及其应用 这一部分是高考的重点但不是难点,主要出一些基础题或中档题。 第三,数列及其应用 这部分是高考的重点而且是难点,主要出一些综合题。 第四,不等式 主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。 第五,概率和统计 这部分和我们的生活联系比较大,属应用题。 第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。 主要考察对定理的熟悉程度、运用程度。 第七,解析几何 高考的难点,运算量大,一般含参数。

单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话 空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。 高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。 要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。 针对数学高考强调对基础知识与基本技能的考查我们一定 要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。 “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事

高三数学知识点重难点梳理最新5篇

高三数学知识点重难点梳理最新5篇 与高一高二不同之处在于,高三复习知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。 高三数学知识点总结1 1.等差数列的定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示. 2.等差数列的通项公式 若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d. 3.等差中项 如果A=(a+b)/2,那么A叫做a与b的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:an=am+(n-m)d(n,m∈N_. (2)若{an}为等差数列,且m+n=p+q, 则am+an=ap+aq(m,n,p,q∈N_. (3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_是公差为md的等差数列. (4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.

(5)S2n-1=(2n-1)an. (6)若n为偶数,则S偶-S奇=nd/2; 若n为奇数,则S奇-S偶=a中(中间项). 注意: 一个推导 利用倒序相加法推导等差数列的前n项和公式: Sn=a1+a2+a3+…+an,① Sn=an+an-1+…+a1,② ①+②得:Sn=n(a1+an)/2 两个技巧 已知三个或四个数组成等差数列的一类问题,要善于设元. (1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…. (2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元. 四种方法 等差数列的判断方法 (1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数; (2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_都成立; (3)通项公式法:验证an=pn+q; (4)前n项和公式法:验证Sn=An2+Bn. 注:后两种方法只能用来判断是否为等差数列,而不能用来证明

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

高考数学题型全归纳:数学家高斯的故事(含答案)

数学家高斯的故事 高斯(Gauss,1777—1855)、著名的德国数学家。1777年4月30日出生在德国的布伦兹维克。父亲是一个砌砖工人,没有什么文化。 还在少年时代、高斯就显示出了他的数学才能。据说、一天晚上,父亲在计算工薪账目、高斯在旁边指出了其中的错误、令父亲大吃一惊。10岁那年、有一次老师让学生将1、2、3、…连续相加、一直加到100、即1+2+3+…+100。高斯没有像其他同学那样急着相加、而是仔细观察、思考、结果发现: 1+100=101、2+99=101、3+98=101、…、50+51=101一共有50个101、于是立刻得到: 1+2+3+…+98+99+100=50×101=5050 老师看着小高斯的答卷、惊讶得说不出话。其他学生过了很长时间才交卷、而且没有一个是算对的。从此、小高斯“神童”的美名不胫而走。村里一位伯爵知道后、慷慨出钱资助高斯、将他送入附近的最好的学校进行培养。 中学毕业后、高斯进入了德国的哥廷根大学学习。刚进入大学时、还没立志专攻数学。后来听了数学教授卡斯特纳的讲课之后、决定研究数学。卡斯特纳本人并没有多少数学业绩、但他培养高斯的成功、足以说明一名好教师的重要作用。 从哥廷根大学毕业后、高斯一直坚持研究数学。1807年成为该校的数学教授和天文台台长、并保留这个职位一直到他逝世。 高斯18岁时就发明了最小二乘法、19岁时发现了正17边形的尺规作图法、并给出可用尺规作出正多边形的条件、解决了这个欧几里得以来一直悬而未决的问题。为了这个发现、在他逝世后、哥廷根大学为他建立了一个底座为17边形棱柱的纪念像。

对代数学、高斯是严格证明代数基本定理的第一人。他的《算术研究》奠定了近代数论的基础、该书不仅在数论上是划时代之作、就是在数学史上也是不可多得的经典著作之一。高斯还研究了复数、提出所有复数都可以用平面上的点来表示、所以后人将“复平面”称为高斯平面、高斯还利用平面向量与复数之间的一一对应关系、阐述了复数的几何加法与乘法、为向量代数学奠定了基础。1828年高斯出版《关于曲面的一般研究》、全面系统地阐述了空间曲面的微分几何学。并提出了内蕴曲面理论。高斯的数学研究几乎遍及当时的所有数学领域、而且在不少方面的研究走在了时代的前列。他在数学历史上的影响可以和阿基米德、牛顿、欧拉并列。 高斯一生共有155篇论文。他治学严谨、把直观的概念作为入门的向导、然后试图在完整的逻辑体系上建立其数学的理论。他为人谨慎、他的许多数学思想与结果从不轻易发表、而且、他的论文很少详细写明思路。所以有的人说:“这个人、像狐狸似的、把沙土上留下的足迹、用尾巴全部扫掉。”

上海高考数学知识点重点详解

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 高考前数学知识点总结 1. 对于集合,一定要抓住集合的元素一般属性,及元素的“确定性、互异性、无序性”。 中元素各表示什么? 2.数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或文氏图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决; 3.已知集合A 、B ,当A B ?=?时,你是否注意到“极端”情况:A =?或B =?; 4. 注意下列性质:(1) 对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为n 2,n 21-, n 21-, n 2 2.- ()若,;2A B A B A A B B ??== (3):空集是任何集合的子集,任何非空集合的真子集。 5. 学会用补集思想解决问题吗?(排除法、间接法) 6.可以判断真假的语句叫做命题。 若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 7. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 8.注意四种条件,判断清楚谁是条件,谁是结论; 9. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域) 10. 求函数的定义域有哪些常见类型? 11. 如何求复合函数的定义域? 12. 求一个函数的解析式或一个函数的反函数时,需注明函数的定义域。 13. 反函数存在的条件是什么?(一一对应函数) 求反函数的步骤掌握了吗?(①反解x ,注意正负的取舍;②互换x 、y ;③反函数的定义域是原函数的值域) 14. 反函数的性质有哪些? ①互为反函数的图象关于直线y =x 对称;②保存了原来函数的单调性、奇函数性;

高考数学数列大题训练答案版

高考数学数列大题训练 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 解析: (1)设该等差数列为{}n c ,则25a c =,33a c =,42a c =Q 533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=- ∴12(1)q q q -=-,Q 1q ≠, ∴121, 2q q ==,∴1164()2n a -=g (2)121log [64()]6(1)72n n b n n -==--=-g ,{}n b 的前n 项和(13)2n n n S -= ∴当17n ≤≤时,0n b ≥,∴(13)2 n n n n T S -== (8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----L L 789777()()2n n n S b b b S S S S S =-+++=--=-L (13)422 n n -=- ∴(13)(17,)2(13)42(8,)2 n n n n n T n n n n -?≤≤∈??=?-?-≥∈??**N N 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 解:(1)由151241=+=-a a a n n 及知,1234+=a a 解得:,73=a 同理得.1,312==a a (2)由121+=-n n a a 知2211+=+-n n a a

高考数学常见题型汇总(经典资料)

一、函数 1、求定义域(使函数有意义) 分母 ≠0 偶次根号≥0 对数log a x x>0,a>0且a ≠1 三角形中 060,最小角<60 2、求值域 判别式法 V ≥0 不等式法 222321111 33y x x x x x x x x =+ =++≥??= 导数法 特殊函数法 换元法 题型: 题型一: 1y x x =+ 法一: 111 (,222同号)或y x x x x x x y y =+ =+≥∴≥≤- 法二:图像法(对(0) b y ax ab x =+>有效 2 -2 -1 1

题型二: ()1 (1,9) y x x x =-∈ ()/ 2(1)(9)110 1 80,,0,9导数法:函数单调递增 即y x y x x y f f y =+>∴=-?? ∴∈∈ ? ?? 题型三: 2sin 1 1sin 1sin ,1, 2112化简变形又sin 解不等式,求出,就是要求的答案y y y y y y θθ θθ-= ++=≤-+∴ ≤- 题型四: 22 2 2sin 11cos 2sin 1(1cos ),2sin cos 114sin()1,sin()41sin()11 4化简变形得即又由知解不等式,求出,就是要求的答案 y y y y y y x y x y y x y y θθ θθθθθθθ-= +-=+-=++++=++= +++≤≤+ 题型五

222233 3(3),(3)30(3)430化简变形得由判别式解出x x y x x x y x x y x y y y y += -+=-+-+==--?≥V 反函数 1、反函数的定义域是原函数的值域 2、反函数的值域是原函数的定义域 3、原函数的图像与原函数关于直线y=x 对称 题型 1 ()(2)32,2322,2已知求解:直接令,解出就是答案 x x f f x x x x --=+-=+ 周期性 ()()()(2)()()(2)0 0(2,函数 -)式相减) 是一个周期是2t 的周期函数 x x t x t x t x x x t f f f f f f f +++++=+== 对称

全国百强名校 ”2020-2021学年高三数学重难点训练 (91)

第一讲 等差数列、等比数列 [高考导航] 1.对等差、等比数列基本量的考查,常以客观题的形式出现,考查利用通项公式、前n 项和公式建立方程组求解. 2.对等差、等比数列性质的考查主要以客观题出现,具有“新、巧、活”的特点,考查利用性质解决有关计算问题. 3.对等差、等比数列的判断与证明,主要出现在解答题的第一问,是为求数列的通项公式而准备的,因此是解决问题的关键环节. 考点一 等差、等比数列的基本运算 1.等差数列的通项公式及前n 项和公式 a n =a 1+(n -1)d ; S n =n (a 1+a n )2 =na 1+n (n -1)2d . 2.等比数列的通项公式及前n 项和公式 a n =a 1q n -1(q ≠0); S n =????? na 1(q =1),a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1).

1.(2019·大连模拟)记S n 为等差数列{a n }的前n 项和.若a 4+a 5 =24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4 D .8 [解析] 由已知条件和等差数列的通项公式与前n 项和公式可列 方程组,得????? 2a 1+7d =24, 6a 1+6×5 2d =48, 即?? ? 2a 1+7d =24,2a 1+5d =16, 解得?? ? a 1=-2,d =4, 故选C . [答案] C 2.(2019·济南一中1月检测)在各项为正数的等比数列{a n }中,S 2=9,S 3=21,则a 5+a 6=( ) A .144 B .121 C .169 D .148 [解析] 由题意可知, ?? ? a 1+a 2=9,a 1+a 2+a 3=21,即?? ? a 1(1+q )=9,a 1(1+q +q 2)=21, 解得?? ? q =2,a 1=3 或????? q =-23, a 1=27 (舍). ∴a 5+a 6=a 1q 4(1+q )=144.故选A . [答案] A 3.(2019·广东珠海3月联考)等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 9=15,则S 8-S 3=( ) A .30 B .25

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

2017年高考数学题型归纳完整版

第一章集合与常用逻辑用语 第一节集合 题型1-1 集合的基本概念 题型1-2 集合间的基本关系 题型1-3 集合的运算 第二节命题及其关系、充分条件与必要条件题型1-4 四种命题及关系 题型1-5 充分条件、必要条件、充要条件的判断与证明 题型1-6 求解充分条件、必要条件、充要条件中的参数取值范围 第三节简单的逻辑联结词、全称量词与存在量词 题型1-7 判断命题的真假 题型1-8 含有一个量词的命题的否定 题型1-9 结合命题真假求参数的取值范围 第二章函数 第一节映射与函数 题型2-1 映射与函数的概念 题型2-2 同一函数的判断 题型2-3 函数解析式的求法 第二节函数的定义域与值域(最值) 题型2-4 函数定义域的求解 题型2-5 函数定义域的应用 题型2-6 函数值域的求解 第三节函数的性质——奇偶性、单调性、周期性 题型2-7 函数奇偶性的判断 题型2-8 函数单调性(区间)的判断 题型2-9 函数周期性的判断 题型2-10 函数性质的综合应用 第四节二次函数 题型2-11 二次函数、一元二次方程、二次不等式的关系 题型2-12 二次方程的实根分布及条件 题型2-13 二次函数“动轴定区间” “定轴动区间”问题 第五节指数与指数函数 题型2-14 指数运算及指数方程、指数不等式题型2-15 指数函数的图象及性质 题型2-16 指数函数中恒成立问题 第六节对数与对数函数 题型2-17 对数运算及对数方程、对数不等式 题型2-18 对数函数的图象与性质 题型2-19 对数函数中恒成立问题 第七节幂函数 题型2-20 求幂函数的定义域 题型2-21 幂函数性质的综合应用 第八节函数的图象 题型2-22 判断函数的图象 题型2-23 函数图象的应用 第九节函数与方程 题型2-24 求函数的零点或零点所在区间 题型2-25 利用函数的零点确定参数的取值范 围 题型2-26 方程根的个数与函数零点的存在性 问题 第十节函数综合 题型2-27 函数与数列的综合 题型2-28 函数与不等式的综合 题型2-29 函数中的信息题 第三章导数与定积分 第一节导数的概念与运算 题型3-1 导数的定义 题型3-2 求函数的导数 第二节导数的应用 题型3-3 利用原函数与导函数的关系判断图像 题型3-4 利用导数求函数的单调性和单调区间 题型3-5 函数的极值与最值的求解 题型3-6 已知函数在区间上单调或不单调,求 参数的取值范围 题型3-7 讨论含参函数的单调区间 题型3-8 利用导数研究函数图象的交点和函数 零点个数问题 题型3-9 不等式恒成立与存在性问题 题型3-10 利用导数证明不等式 题型3-11 导数在实际问题中的应用 第三节定积分和微积分基本定理 题型3-12 定积分的计算 题型3-13 求曲边梯形的面积 第四章三角函数 第一节三角函数概念、同角三角函数关系式和 诱导公式 题型4-1 终边相同角的集合的表示与识别 题型4-2 α 2 是第几象限角 题型4-3 弧长与扇形面积公式的计算 题型4-4 三角函数定义 题型4-5 三角函数线及其应用 题型4-6 象限符号与坐标轴角的三角函数值 题型4-7 同角求值——条件中出现的角和结论 中出现的角是相同的 题型4-8 诱导求值与变形 第二节三角函数的图象与性质 题型4-9 已知解析式确定函数性质 题型4-10 根据条件确定解析式 题型4-11 三角函数图象变换 第三节三角恒等变换 题型4-12 两角和与差公式的证明 题型4-13 化简求值 第四节解三角形 题型4-14 正弦定理的应用 题型4-15 余弦定理的应用 题型4-16 判断三角形的形状 题型4-17 正余弦定理与向量的综合 题型4-18 解三角形的实际应用 第五章平面向量 第一节向量的线性运算 题型5-1 平面向量的基本概念 题型5-2 共线向量基本定理及应用 题型5-3 平面向量的线性运算 题型5-4 平面向量基本定理及应用 题型5-5 向量与三角形的四心 题型5-6 利用向量法解平面几何问题 第二节向量的坐标运算与数量积 题型5-7 向量的坐标运算 题型5-8 向量平行(共线)、垂直充要条件的坐 标表示 题型5-9 平面向量的数量积 题型5-10 平面向量的应用 第六章数列 第一节等差数列与等比数列 题型6-1 等差、等比数列的通项及基本量的求 解 题型6-2 等差、等比数列的求和 题型6-3 等差、等比数列的性质应用 题型6-4 判断和证明数列是等差、等比数列 题型6-5 等差数列与等比数列的综合 第二节数列的通项公式与求和 题型6-6 数列的通项公式的求解 题型6-7 数列的求和 第三节数列的综合 题型6-8 数列与函数的综合 题型6-9 数列与不等式综合 第七章不等式 第一节不等式的概念和性质 题型7-1 不等式的性质 题型7-2 比较数(式)的大小与比较法证明不 等式 第二节均值不等式和不等式的应用 题型7-3 均值不等式及其应用 题型7-4 利用均值不等式求函数最值 题型7-5 利用均值不等式证明不等式 题型7-6 不等式的证明 第三节不等式的解法 题型7-7 有理不等式的解法 题型7-8 绝对值不等式的解法 第四节二元一次不等式(组)与简单的线性规 划问题 题型7-9 二元一次不等式组表示的平面区域 题型7-10 平面区域的面积 题型7-11 求解目标函数中参数的取值范围 题型7-12 简单线性规划问题的实际运用 第五节不等式综合 题型7-13 不等式恒成立问题中求参数的取值 范围

高考数学常见题型汇总

2015年高考数学常见题型汇总(精华资料) 不等式 题型一: 2 (0) 11332 2 x =x (应用公式a+b+c 者的乘积变成常数)x x x x +>++≥=≥ 题型二: 3 3 ( )13 ()32x (3-2x)(00,a>0且a ≠1 三角形中 060,最小角<60 2、求值域 判别式法 V ≥0

不等式法 222113y x x x x x =+ =++≥= 导数法 特殊函数法 换元法 题型: 题型一: 1 y x x =+ 法一: 111 (,2 22同号)或y x x x x x x y y =+=+≥∴≥≤- 法二:图像法(对(0) b y ax ab x =+>有效 题型二: ()1 (1,9) y x x x =-∈ ()/ 2(1)(9)110 1 80,,0,9导数法:函数单调递增 即y x y x x y f f y =+>∴=-?? ∴∈∈ ? ?? 题型三:

2sin 11sin 1sin ,1, 2112化简变形又sin 解不等式,求出,就是要求的答案y y y y y y θθ θθ-= ++=≤-+∴ ≤- 题型四: 2sin 11cos 2sin 1(1cos ),2sin cos 1)1,sin()sin()11 化简变形得即又由解不等式,求出,就是要求的答案 y y y y x y x x y θθ θθθθθθθ-= +-=+-=++=++= +≤ 题型五 222233 3(3),(3)30(3)430化简变形得由判别式解出x x y x x x y x x y x y y y y += -+=-+-+==--?≥V 反函数 1、反函数的定义域是原函数的值域

(完整版)高考数学高考必备知识点总结精华版

高考前重点知识回顾 第一章-集合 (一)、集合:集合元素的特征:确定性、互异性、无序性. 1、集合的性质:①任何一个集合是它本身的子集,记为A A ?; ②空集是任何集合的子集,记为A ?φ; ③空集是任何非空集合的真子集; ①n 个元素的子集有2n 个. n 个元素的真子集有2n -1个. n 个元素的非空真子集有2n -2个. [注]①一个命题的否命题为真,它的逆命题一定为真.否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. 2、集合运算:交、并、补.{|,} {|}{,} A B x x A x B A B x x A x B A x U x A ?∈∈?∈∈?∈?I U U 交:且并:或补:且C (三)简易逻辑 构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。 1、“或”、 “且”、 “非”的真假判断 4、四种命题的形式及相互关系: 原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。 ①、原命题为真,它的逆命题不一定为真。 ②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。 6、如果已知p ?q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。 若p ?q 且q ?p,则称p 是q 的充要条件,记为p ?q. 第二章-函数 一、函数的性质 (1)定义域: (2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:①偶函数:)()(x f x f =-,②奇函数:)()(x f x f -=- ②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求)(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。 (4)函数的单调性 定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1f(x 2),则说f(x) 在这个区间上是减函数. 二、指数函数与对数函数 指数函数)10(≠>=a a a y x 且的图象和性质

高考数学题型全归纳

题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系 题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系 题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件 题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质

题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间 题型34、利用函数的零点确定参数的取值范围 题型35、方程根的个数与函数零点的存在性问题 题型36、函数与数列的综合 题型37、函数与不等式的综合 题型38、函数中的创新题 题型39、导数的定义 题型40、求函数的导数 题型41、导数的几何意义 题型42、利用原函数与导函数的关系判断图像 题型43、利用导数求函数的单调区间 题型44、含参函数的单调性(区间) 题型45、已知含参函数在区间上单调或不单调或存在单调区间,求参数范围题型46、函数的极值与最值的求解 题型47、方程解(函数零点)的个数问题 题型48、不等式恒成立与存在性问题

高考数学排列组合常见题型

选修2-3:排列组合常见题型 可重复的排列(求幂法) 重复排列问题要区分两类元素:一类可以重复,另一类不能重复。 在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数。 【例1】 (1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)4 3(2)34 (3)3 4 相邻问题(捆绑法) 相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,,A B C D E 五人站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 练习:(2012辽宁)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为 (A)3×3! (B) 3×(3!)3 (C)(3!)4 (D) 9! 【解析】:C 相离问题(插空法 ) 元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是 52563600A A = 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法 【解析】: 111789A A A =504 【例3】.马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种? 【解析】:把此问题当作一个排队模型,在6盏亮灯的5个空隙中插入3盏不亮的灯3 5C = 10 种方法。

高中数学重难点总结(强烈推荐)

高中数学必修+选修知识点归纳 前言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系的扩充与复数 选修2—3:计数原理、随机变量及其分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。

高考理科数学试题汇编(含答案)数列大题

(重庆)22.(本小题满分12分,(1)小问4分,(2)小问8分) 在数列{}n a 中,()2 1113,0n n n n a a a a a n N λμ+++=++=∈ (1)若0,2,λμ==-求数列{}n a 的通项公式; (2)若()0 001,2,1,k N k k λμ+= ∈≥=-证明:01 0011 223121 k a k k ++<<+++ 【答案】(1)132n n a -=?;(2)证明见解析. 试题分析:(1)由02λμ==-,,有212,(n N )n n n a a a ++=∈

若存在某个0n N +∈,使得0n 0a =,则由上述递推公式易得0n 10a +=,重复上述过程可得 10a =,此与13a =矛盾,所以对任意N n +∈,0n a ≠. 从而12n n a a +=()N n +∈,即{}n a 是一个公比q 2=的等比数列. 故11132n n n a a q --==?. (2)由0 1 1k λμ= =-,,数列{}n a 的递推关系式变为 21101 0,n n n n a a a a k +++ -=变形为2101n n n a a a k +??+= ?? ?()N n +∈. 由上式及13a =,归纳可得 12130n n a a a a +=>>>>>>L L 因为22220010000 11111 1 11n n n n n n n a a k k a a k k k a a a k k +-+= = =-+? ++ +,所以对01,2n k =L 求和得() () 00011211k k k a a a a a a ++=+-++-L 01000010200000011111 111111112231313131 k a k k k k a k a k a k k k k k ??=-?+?+++ ? ?+++????>+?+++=+ ? ++++??L L 另一方面,由上已证的不等式知001212k k a a a a +>>>>>L 得 00110000102011111 111k k a a k k k k a k a k a +??=-?+?+++ ? ?+++?? L 0000011111 2221212121 k k k k k ??<+ ?+++=+ ?++++??L 综上:01001 12231 21 k a k k ++ <<+ ++ 考点:等比数列的通项公式,数列的递推公式,不等式的证明,放缩法.

相关文档
最新文档