晶体生长第五章 成核(晶体生长热力学)

晶体生长第五章 成核(晶体生长热力学)
晶体生长第五章 成核(晶体生长热力学)

第五章 成核(晶体生长热力学)

系统处于平衡态——系统吉布斯自由能最小

单元复相系统平衡态——系统中诸相的克分子吉布斯自由能相

多元复相系统平衡态——任一组元在共存的诸相中化学势相等 亚稳态(亚稳相) ——新相能否出现,如何出现(相变动力

学要回答的第一问题)——新相成核

新相自发长大——系统吉布斯自由能降低,驱动力与生长速度

的关系(相变动力学回答的第二个问题)

亚稳相向新相转变:

1. 新、旧相结构差异微小,变化程度小、空间大,转变

在空间上连续,时间不连续。

2. 变化程度大、空间变化小,转变在空间不连续,时间

方面连续。

系统中出现新相机率相等——均匀成核 系统中某些区域优先出现新相——非均匀成核

§1. 相变驱动力

过饱和溶液、过冷熔体均属亚稳相。 驱动力所作之功: G X fA ?-=? V

G

f ??-

= 单位体积晶体引起系统吉布斯自由能的降低(负号表示降低)

单原子体积为Ωs ,吉布斯自由能降低Δg,则:

s g f Ω?-

= 有时Δg 也称相变驱动力

饱和比==0/p p α

饱和比==0/C C α 饱和度=-=1ασ

对汽相生长:

s s s kT kT p p kT f Ω≈Ω=Ω=//ln /)/ln(0000σα

溶液生长:

s s s kT

kT C C kT f Ω≈Ω=Ω=σαln )/ln(0

熔体生长: m

s T T

l f Ω?=

l=£0/N 0 单原子熔化潜热

§2. 亚稳态

系统吉布斯自由能存在几个最小值,最小的极小值为稳定态。其他较大的极小值为亚稳态。亚稳态在一定限度内是稳定的。

亚稳态总要过渡到稳定态 亚稳态→稳定态存在能量势垒 §3. 均匀成核

1. 晶核形成能和临界尺寸

sf s

r g r

r G γππ23434)(+??Ω=?

或sf

i A g i i G γ?+??=?)()

(

3/2)(i i A ?=η η形状因子

i 个原子,体积为V(i)=i Ωs

立方体,边长a , 则V=a 3, 面积为A=6a 2=6V 2/3

3/23

/26)(i i A s

?Ω=∴ s i i V Ω=)(

因此,立方体: 3

/26s

Ω=η; 球体:

3

/23

/1)36(s

Ω=πη

旋转椭球体:

3

/22

/1222

/1222/122223/13

/1)])

/1(1)/1(1ln()/1(2[)43(s

r y r y r y r y r y Ω---+?-+=πη普通表达式:

sf

r i g i i G ??+??=?3/2)(η

rr* 自发长大(核)

r(i)

Δ

对ΔG(i)求极值:

g

r r s sf ?Ω=

2* 或:

3

]

32[

*g

r i sf ?=η

对球形晶核:

3

3332*g

r i s

sf

?Ω?=

π

将r*或i*代入Δg 表示式,可得:

2

322

*3/163/*4g r r i G sf

s sf ?Ω=?=?ππ

2

333

/2*

27/43/*

g

r i r G sf

sf ?==?ηη

晶核形成能为界面能的1/3. 2. 界面结构对ΔG(i)的影响 粗糙界面生长: 连续生长

光滑界面生长:不连续生长,核长大i 增加ΔG(i)变化不连续 3. 复核起伏和成核率 单相起伏: 单纯密度起伏

复相起伏: 产生胚团的起伏(亚稳相、平衡相) 单位体积内胚团数为:

]/)(exp[)(kT r G n r n ?-≈ ]/)(exp[)(kT i G n i n ?-≈

]/exp[)(kT G n r n **?-≈

]/exp[)(kT G n i n *

*?-≈

成核率: 单位时间内能发展成为宏观晶体的晶核数(I)

]/exp[*

kT G Bn I ?-=

B:核晶捕获流体中原子或分子的机率

i

ΔG*= 0.7l sf

自由能与胚团原子数的关系

Δ

ΔG*= 0

r(i)

胚 团 分 布 规 律

n (r )或n (i )

对汽相生长:

2

*2

/14)

2(r

mkT P B ππ?=-

]]

/[ln 316exp[]/ln 2(4)

2(2

0333

2

2

02

/1p p T k r p p kT mkT nP I s s Ω-Ω?=∴-πγππ熔体生长: v 0为熔体原子的振动频率

]/exp[0kT q v B ?-=

])

(316exp[)exp(2

2

23

2

0T kTl T r kT q

nv I m

s ?Ω-??-=π §4. 非均匀成核 1. 平衬底上球冠成核

sf

sc

cf r r r Cos m -=

23

)1)(2(3

m m r V s -+=

π

)1(22m r A sf -=π )1(2

2m r A sc

-=π

)

()(cf sc sc sc sf sf s

s r A r A r A g V r G ?-?+?+??Ω=? 当)(sc sc sf sf cf sc r A r A r A ?+?≥?时,成核不必克服势垒,

可自发进行。 c

衬底上球冠核的形成

θ

θ

s f r

4

/)1)(2](434[)(2

23

m m r r g r r G sf s

-+?+??Ω=?ππ 对r 求导,令0)(=??r r G g r r s sf ?Ω?=2*

球冠晶核的形成能:

)(31612

32

*

m f g

r G sf s ??Ω=

其中,4/)1)(2()(2

1

m m m f -+=

1)(01≤≤m f ,衬底具有降低晶核形成能的通性;

0=θ , 0)(1=m f , 0*=?G C

180=θ ,1)(1=m f , 衬底无贡献。

成核率:

2

*2

/1)

2(r

mkT P B ππ?=-

)](]

/[ln 316exp[]/ln 2()2(12

0333

2

202/1m f p p T k r p p kT mkT nP I s s

?Ω-Ω?=∴-πγππ熔体生长:

)]()

(316exp[)exp(12

2

23

2

0m f T kTl T r kT g

nv I m

s ??Ω-??-=π

2. 凹陷成核

h r V f 2

2π=

2

2r rh A sc ππ+=222/)11(2m m r A sf --=π

)]

2

(/)11([22

22r h m m m r r r g h r G sf s +---??+??Ω=?ππ其形核能是h 的函数,当h 足够大,ΔG 可为负值; 当亚稳态时ΔG 为负值,Δg<0, 故h ↑, ΔG ↓,自发生长(籽晶生长) 当h ↑, ΔG ↓,

若Δg>0, 0

G

, 胚团稳定条件 022

<-?Ωsf s

rmr g r

ππ g m r r s sf ?Ω

表面凹陷的柱孔模型

当ξ=90°时,

g

r r sf s ?Ω=

2*

)(31622

32*

m f g

r G sf s ??Ω=

??---------+-+--=*2/12*)1(2/12**

1

*22

/12

2

122/12222}

])

([2)1()

1()1(2)21(2)1{(4/1)(r m mr dy y r m r Sin mr m m m m Sin m m m m m m m f ππ4. 悬浮粒子成核

),(31632

3

2*

X m f g

r G sf s ??Ω=

s

sf r g r r r X Ω??=

=2*

]

1[3])()(32[]1[1),(3

23333--+-+--+-+=g

m

X mX g m X g m X X g mX X m f 2

/12)

21(mX X g -+=

不匹配对成核的影响: 界面能变化γ

cs

弹性畸变能

γ

cs =γ

化学

结构

γ化学=)(21

s c cs Φ+Φ-Φξξ

1. 共格界面, 半共格界面, 非共格界面

2. 错合度引起的弹性畸变和错配位错

理想错合度: 0

00

s s

c i a a a -=δ

00

0s

s c i θθθδ-='

共格界面 半共格界面

由弹性畸变容纳,则:

00s

s

c i a a

a e -==δ

00s s

c

i e θθ

θδ-=

'='

此时单位体积的应变能为(弹性力学): 22

i e C Ce G δ

==?

2

2

i e

C e C G δ''=''='?

C,C ′晶体弹性模量,切变模量有关的常数.理想错合度δi

错配位错 (a)刃型 (b)螺型

(δI ′)部分由弹性畸变容纳.

实际错合度: 00s

s

c i a a a e -=-=δδ

0s

s c

i e θθθδδ-='-'

='

a s ,θ

s

为弹性畸变后原子间距和原子列夹角,然后实际错合度

由产生错配位错容纳. 产生刃位错: )/()(/0200s c

s s a a Sin a Sin a D -==θδθ 产生螺位错:

δθ'=/00c

s Sin a D 当δ=0.02时,则: 0

50s a D ≈ ;

δ=0.04时,则: 0

25s a D ≈ ;

δ=0.1时,则: 0

10s a D ≈

3. 错配位错对界面能的贡献

)ln()1(4)(020s s a R

v a B G -+=⊥πμ

B:单位长度位错核心能; R:位错应力场所及区域线度; μ: 切变模量; υ:泊松比

衬底与晶体均为立方体,晶格参数为0c a 和0s a ,在界面形成两组正交刃型错配位错.宽度为D,长度为2D,面积为D 2

.

δ

δγ?Λ=?=?=⊥

⊥022s

a G D G 结构

(单位面积上错配

位错对界面能的贡献)

)]ln()1(4)([20200s

s s a R

v a B a -+=Λπμ

4. 界面失配对成核行为的影响

界面失配: 晶体中引起的弹性应变为e, 界面实际错合度δ=δ-e, 衬底和胚团的界面能为:

δγγΛ+=化学cs

sf

cf m γδγγ)(Λ+-=化学 能 量

δi *

δi

能量与理想错合度的关系

能 量

理想错合度δi

能量与理想错合度的关系(精确计算结果)

)]([)(2cf cf sf sf s s

s

A A e C g V G γδγγ-Λ+-+Ω+?Ω=?化学

将V s , A sf , A cf 表达式代入,令:

0=??r

G

)()

(3162

232*

m f e C g r

G s sf

s ?Ω+?Ω=

对平衬底: f(m)=f 1(m)

或: f(m)=f 2(m) 或: f(m)=f 3(m,X) 讨论平衬底上球冠核的形成能:

22

23

2*)1)(2()

(34m m e C g r G s s

-+?Ω+?Ω=

在通常外延系统中, θ=0°,m ≈1, 2+m ≈3

2

2

23

2*

][)(4δγγγγγπsf

sf cf sf s sf

s e C g r

G Λ++-?Ω+?Ω=?化学增加了成核势垒.

晶体生长方法

晶体生长方法 一、提拉法 晶体提拉法的创始人是J. Czochralski,他的论文发表于1918年。提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC),能够顺利地生长某些易挥发的化合物(GaP等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。这种方法的主要优点是:(a)在生长过程中,可以方便地观察晶体的生长情况;(b)晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c)可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。 二、热交换法

热交换法是由D. Viechnicki和F. Schmid于1974年发明的一种长晶方法。其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有特定形状要求的晶体。由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如Φ30 mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长,He气体价格昂贵,所以长晶成本很高。 三、坩埚下降法 坩埚下降法又称为布里奇曼-斯托克巴格法,是从熔体中生长晶体的一种方法。通常坩埚在结晶炉中下降,通过温度梯度较大的区域时,熔体在坩埚中,自下而上结晶为整块晶体。这个过程也可用结晶炉沿着坩埚上升方式完成。与提拉法比较该方法可采用全封闭或半封闭的坩埚,成分容易控制;由于该法生长的晶体留在坩埚中,因而适于生长大块晶体,也可以一炉同时生长几块晶体。另外由于工艺条件

工程热力学课后作业答案(第十章)第五版

10-1蒸汽朗肯循环的初参数为16.5MPa 、550℃,试计算在不同背压p2=4、6、8、10及12kPa 时的热效率。 解:朗肯循环的热效率 3 121h h h h t --= η h1为主蒸汽参数由初参数16.5MPa 、550℃定 查表得:h1=3433kJ/kg s1=6.461kJ/(kg.K) h2由背压和s1定 查h-s 图得: p2=4、6、8、10、12kPa 时分别为 h2=1946、1989、2020、2045、2066 kJ/kg h3是背压对应的饱和水的焓 查表得。 p2=4、6、8、10、12kPa 时饱和水分别为 h3=121.41、151.5、173.87、191.84、205.29 kJ/kg 故热效率分别为: 44.9%、44%、43.35%、42.8%、42.35% 10-2某朗肯循环的蒸汽参数为:t1=500℃、p2=1kPa ,试计算当p1分别为4、9、14MPa 时;(1)初态焓值及循环加热量;(2)凝结水泵消耗功量及进出口水的温差;(3)汽轮机作功量及循环净功;(4)汽轮机的排汽干度;(5)循环热效率。 解:(1)当t1=500℃,p1分别为4、9、14MPa 时初焓值分别为: h1=3445、3386、3323 kJ/kg 熵为s1=7.09、6.658、6.39 kJ/(kg.K) p2=1kPa(s2=s1)对应的排汽焓h2:1986、1865、1790 kJ/kg 3点的温度对应于2点的饱和温度t3=6.98℃、焓为29.33 kJ/kg s3=0.106 kJ/(kg.K) 3`点压力等于p1,s3`=s3, t3`=6.9986、7.047、7.072℃ 则焓h3`分别为:33.33、38.4、43.2 kJ/kg 循环加热量分别为:q1=h1-h3`=3411、3347、3279.8 kJ/kg (2)凝结水泵消耗功量: h3`-h3 进出口水的温差t3`-t3 (3)汽轮机作功量h1-h2 循环净功=0w h1-h2-( h3`-h3) (4)汽轮机的排汽干度 s2=s1=7.09、6.658、6.39 kJ/(kg.K) p2=1kPa 对应的排汽干度0.79、0.74、0.71 (5)循环热效率1 0q w =η=

工程热力学第三版电子教案第5章

第5章热力学第二定律 5.1 本章基本要求 (45) 5.2 本章重点: (45) 5.3 本章难点 (45) 5.4 例题 (46) 5.5思考及练习题 (55) 5.6 自测题 (60)

5.1 本章基本要求 理解热力学第二定律的实质,卡诺循环,卡诺定理,孤立系统熵增原理,深刻理解熵的定义式及其物理意义。 熟练应用熵方程,计算任意过程熵的变化,以及作功能力损失的计算,了解火用、火无的概念。 5.2 本章重点: 学习本章应该掌握以下重点内容:, l.深入理解热力学第二定律的实质,它的必要性。它揭示的是什么样的规律;它的作用。 2.深入理解熵参数。为什么要引入熵。是在什么基础上引出的。怎样引出的。它有什么特点。 3.系统熵变的构成,熵产的意义,熟练地掌握熵变的计算方法。 4.深入理解熵增原理,并掌握其应用。 5.深入理解能量的可用性,掌握作功能力损失的计算方法 5.3 本章难点 l.过程不可逆性的理解,过程不可逆性的含义。不可逆性和过程的方向性与能量可用性的关系。 2.状态参数熵与过程不可逆的关系。 3.熵增原理的应用。 4.不可逆性的分析和火用分析.

5.4 例题 例1:空气从P1=0.1MPa ,t1=20℃,经绝热压缩至P2=0.42MPa ,t2=200℃。求:压缩过程工质熵变。(设比热为定值)。 解:定压比热: k kg kJ R C P ?=?== /005.1287.027 27 由理想气体熵的计算式: k kg kJ P P R T T C S P ?=-=-=?/069.01.042 .0ln 287.0293473ln 005.1ln ln 121212 例2:刚性容器中贮有空气2kg ,初态参数P1=0.1MPa ,T1=293K ,内装搅拌器,输入轴功率WS=0.2kW ,而通过容器壁向环境放热速率为kW Q 1.0. =。求:工作1小时后孤立系统熵增。 解:取刚性容器中空气为系统,由闭系能量方程:U Q W s ?+=. . 经1小时, () 12. .36003600T T mC Q W v s -+=()K mC Q W T T v 5447175.021.02.036002933600..12=?-+=? ?? ??-+ = 由定容过程: 1 2 12T T P P =, MPa T T P P 186.0293 5441.0121 2=?== 取以上系统及相关外界构成孤立系统: sur sys iso S S S ?+?=? K kJ T Q S sur /2287.1293 1 .036000=?== ? K kJ S iso /12.22287.18906.0=+=? 例3:压气机空气由P1=100kPa ,T1=400K ,定温压缩到终态P2=1000kPa ,过程中实际

(完整word版)化工热力学((下册))第二版夏清第5章干燥答案

第5章 干燥的习题解答 1.已知湿空气的总压强为50Pa,温度为60℃,相对湿度为40%,试求: (1)湿空气中水汽的分压; (2)湿度; (3)湿空气的密度。 解:(1)湿空气的水汽分压,V S p P ?= 由附录查得60C 时水的饱和蒸汽压19.92S p KPa = 0.419.927.97V p KPa =?= (2) 湿度 0.6220.6227.970.118/507.97V V P H kg kg p P ?= ==--绝干气 (1) 密度 55 3 273 1.0131027360 1.01310(0.772 1.244)(0.772 1.2440.118)2732735010H t v H P +?+?=+??=+??? ? 32.27m =湿空气/kg 绝干气 密度 3110.118 0.493/2.27 H H H kg m v ρ++= =湿空气 2.在总压101.33KPa 下,已知湿空气的某些参数,利用湿空气的H-I 图查出本题附表中空格内的数值,并给出序号4中各数值的求解过程示意图。 习题2附表

解: 上表中括号内的数据为已知,其余值由图H I -查得。 分题4的求解示意图如附图所示,其中A 为状态点。 3.干球温度为20℃、湿度为0.009kg 水/kg 绝干气的温空气通过预热器加热到50℃后,再送至常压干燥器中,离开干燥器时空气的相对温度为80%,若空气在干燥器中经历等焓干燥过程,试求: (1)1m 3原温空气在预热过程中始的变化; (2)1m 3原温空气在干燥器中获得的水分量。 解:(1)31m 原湿空气在预热器中焓的变化 当0020,0.009/t C H kg kg ==绝干气时,由H I -图查出043/I KJ kg =绝干气。 当01050,0.009/t C H H kg kg ===绝干气时,由H I -图查出

化工热力学第五章作业讲解

第五章 例题 一、填空题 1. 指出下列物系的自由度数目,(1)水的三相点 0 ,(2)液体水与水蒸汽处于汽液平衡 状态 1 ,(3)甲醇和水的二元汽液平衡状态 2 ,(4)戊醇和水的二元汽-液-液三相平衡状态 1 。 2. 说出下列汽液平衡关系适用的条件 (1) l i v i f f ??= ______无限制条件__________; (2)i l i i v i x y ?? ??= ______无限制条件____________; (3)i i s i i x P Py γ= _________低压条件下的非理想液相__________。 3. 丙酮(1)-甲醇(2)二元体系在98.66KPa 时,恒沸组成x 1=y 1=0.796,恒沸温度为327.6K ,已 知此温度下的06.65,39.9521==s s P P kPa 则 van Laar 方程常数是 A 12=______0.587_____,A 21=____0.717____ (已知van Laar 方程为 2 21112212112x A x A x x A A RT G E +=) 4. 在101.3kPa 下四氯化碳(1)-乙醇(2)体系的恒沸点是x 1=0.613和64.95℃,该温度下两组分 的饱和蒸汽压分别是73.45和59.84kPa ,恒沸体系中液相的活度系数 693.1,38.121==γγ。 1. 组成为x 1=0.2,x 2=0.8,温度为300K 的二元液体的泡点组成y 1的为(已知液相的 3733,1866),/(75212121==+=s s E t P P n n n n G Pa) ___0.334____________。 2. 若用EOS +γ法来处理300K 时的甲烷(1)-正戊烷(2)体系的汽液平衡时,主要困 难是MPa P s 4.251=饱和蒸气压太高,不易简化;( EOS+γ法对于高压体系需矫正)。 3. EOS 法则计算混合物的汽液平衡时,需要输入的主要物性数据是ij Ci Ci Ci k P T ,,,ω,通常如何得到相互作用参数的值?_从混合物的实验数据拟合得到。 4. 由Wilson 方程计算常数减压下的汽液平衡时,需要输入的数据是Antoine 常数A i ,B i ,C i ; Rackett 方程常数α,β;能量参数),2,1,)((N j i ii ij =-λλ,Wilson 方程的能量参数是如何得到的?能从混合物的有关数据(如相平衡)得到。

工程热力学思考题答案,第五章

第五章 热力学第二定律 热力学第二定律能否表达为:“机械能可以全部变为热能,而热能不可能全部变为机械能。”这种说法有什么不妥当 答:不能这样表述。表述不正确,对于可逆的定温过程,所吸收的热量可以全部转化为机械能,但是自身状态发生了变化。所以这种表述不正确。 理想气体进行定温膨胀时,可从单一恒温热源吸入的热量,将之全部转变功对外输出,是否与热力学第二定律的开尔文叙述矛盾提示:考虑气体本身是否有变化。 答:不矛盾,因为定温膨胀气体本身状态发生了改变。 自发过程是不可逆过程,非自发过程必为可逆过程,这一说法是否正确 答:不正确。自发过程是不可逆过程是正确的。非自发过程却不一定为可逆过程。 请归纳热力过程中有哪几类不可逆因素 答:。不可逆因素有:摩擦、不等温传热和不等压做功。 试证明热力学第二定律各种说法的等效性:若克劳修斯说法不成立,则开尔文说也不成立。 答:热力学第二定律的两种说法反映的是同一客观规律——自然过程的方向性 →是一致的,只要一种表述可能,则另一种也可能。 假设热量Q2 能够从温度T2 的低温热源自动传给温度为T1 的高温热源。现有一循环热机在两热源间工作,并且它放给低温热源的热量恰好等于Q2。整个系统在完成一个循环时,所产生的唯一效果是热机从单一热源(T1)取得热量Q1-Q2,并全部转变为对外输出的功W 。低温热源的自动传热Q2 给高温热源,又从热机处接受Q2,故并未受任何影响。这就成了第二类永动机。违反了克劳修斯说法,必须违反了开尔文说法。反之,承认了开尔文说法,克劳修斯说法也就必然成立。 下列说法是否有误: (1)循环净功Wnet 愈大则循环效率愈高;(×) (2)不可逆循环的热效率一定小于可逆循环的热效率;( ×) (3)可逆循环的热效率都相等,1 21T T t -=η(×)

化工热力学第五章 习题解答

第五章 习题解答 1. 在一定压力下,组成相同的混合物的露点温度和泡点温度不可能相同。(错,在共沸点 时相同) 2. 在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,则11x y >,22x y <。 (错,若系统存在共沸点,就可以出现相反的情况) 3. 纯物质的汽液平衡常数K 等于1。(对,因为111==y x ) 4. 在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,若温度一定, 则体系的压力,随着1x 的增大而增大。(错,若系统存在共沸点,就可以出现相反的情况) 5. 下列汽液平衡关系是错误的i i Solvent i v i i x H Py *,?γ?=。(错,若i 组分采用不对称归一化,该式为正确) 6. 对于理想体系,汽液平衡常数K i (=y i /x i ),只与T 、P 有关,而与组成无关。(对,可以从理想体系的汽液平衡关系证明) 7. 对于负偏差体系,液相的活度系数总是小于1。(对) 8. 能满足热力学一致性的汽液平衡数据就是高质量的数据。(错) 9. 逸度系数也有归一化问题。(错) 10. EOS +γ法既可以计算混合物的汽液平衡,也能计算纯物质的汽液平衡。(错) 二、选择题 1. 欲找到活度系数与组成的关系,已有下列二元体系的活度系数表达式,βα,为常数, 请决定每一组的可接受性 。(D ) A 2211;x x βγαγ== B 12211;1x x βγαγ+=+= C 1221ln ;ln x x βγαγ== D 2 1 2221ln ;ln x x βγαγ== 2. 二元气体混合物的摩尔分数y 1=0.3,在一定的T ,P 下,8812.0?,9381.0?21==? ?,则此时混合物的逸度系数为 。(C ) A 0.9097 B 0.89827 C 0.8979 D 0.9092 三、填空题 1. 说出下列汽液平衡关系适用的条件 (1) l i v i f f ??= ______无限制条件__________; (2)i l i i v i x y ?? ??= ______无限制条件____________; (3)i i s i i x P Py γ= _________低压条件下的非理想液相__________。

工程热力学第十章蒸汽动力装置循环教案.docx

第十章蒸汽动力循环 蒸汽动力装置:是实现热能→机械能的动力装置之一。 工质:水蒸汽。 用途:电力生产、化工厂原材料、船舶、机车等动力上的应用。 本章重点: 1、蒸汽动力装置的基本循环 匀速 朗肯循环回热循环 2、蒸汽动力装置循环热效率分析 y T 的计算公式 y T 的影响因素分析 y T 的提高途径 10-1水蒸气作为工质的卡诺循环 热力学第二定律通过卡诺定理证明了在相同的温度界限间,卡诺循环的热效率最高,但实际上存在种种困难和不利因素,使得实际循环(蒸汽动力循环)至今 不能采用卡诺循环但卡诺循环在理论上具有很大的意义。 二、为什么不能采用卡诺循环 若超过饱和区的范围而进入过热区则不易保证定温加热和定温放热,即不能 按卡诺循环进行。 p 51 C2 v 1-2绝热膨胀(汽轮机) 2-C定温放热(冷凝汽)可以实现 5-1定温加热(锅炉) C-5绝热压缩(压缩机)难以实现 原因: 2-C 过程压缩的工质处于低干度的湿汽状态 1 、水与汽的混合物压缩有困难,压缩机工作不稳定,而且 3 点的湿蒸汽比容比 水大的多 '2000'需比水泵大得多的压缩机使得输出的净功大大3232

减少,同时对压缩机不利。 2、循环仅限于饱和区,上限T1受临界温度的限制,即使是实现卡诺循环,其理 论效率也不高。 3、膨胀末期,湿蒸汽所含的水分太多不利于动机 为了改进上述的压缩过程人们将汽凝结成水,同时为了提高上 限温这就需要对卡诺循环进行改进,温度采用过热蒸汽使 T1高于临界温度,改进的结果 就是下面要讨论的另一种循环—朗肯循环。 10-2朗肯循环 过程: 从锅炉过热器与出来的过热蒸汽通过管道进入汽轮机T,蒸汽部分热能在T 中转换为机械带动发电机发电,作了功的低压乏汽排入C,对冷却水放出γ,凝结成水,凝结成的水由给水泵 P 送进省煤器 D′进行预热,然后在锅炉内吸热汽化,饱 和蒸汽进入 S 继续吸热成过热蒸汽,过程可理想化为两个定压过程,两个绝热 过程—朗诺循环。 1-2绝热膨胀过程,对外作功 2-3定温(定压)冷凝过程(放热过程) 3-4绝热压缩过程,消耗外界功 4-1定压吸热过程,(三个状态) 4-1 过程:水在锅炉和过热器中吸热由未饱和水变为过热蒸汽过程中工质与外界无技术功交换。 1-2 过程:过热蒸汽在汽抡机中绝热膨胀,对外作功,在汽轮机出口工质达到低压低温蒸汽状态称乏汽。 2-3 过程:在冷凝器中乏汽对冷却水放热凝结为饱和水。 3-4 过程:水泵将凝结水压力提高,再次送入锅炉,过程中消耗外功。

晶体生长方法(新)

晶体生长方法 1) 提拉法(Czochralski,Cz ) 晶体提拉法的创始人是J. Czochralski ,他的 论文发表于1918年。提拉法是熔体生长中最常 用的一种方法,许多重要的实用晶体就是用这 种方法制备的。近年来,这种方法又得到了几 项重大改进,如采用液封的方式(液封提拉法, LEC ),如图1,能够顺利地生长某些易挥发的化 合物(GaP 等);采用导模的方式(导模提拉法) 生长特定形状的晶体(如管状宝石和带状硅单 晶等)。 所谓提拉法,是指在合理的温场下,将装 在籽晶杆上的籽晶下端,下到熔体的原料中, 籽晶杆在旋转马达及提升机构的作用下,一边 旋转一边缓慢地向上提拉,经过缩颈、扩肩、 转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。这种方法的主要优点是:(a) 在生长过程中,可以方便地观察晶体的生长情况;(b) 晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c) 可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。 提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。 图1 提拉法晶体生长装置结构示意图

2)热交换法(Heat Exchange Method, HEM) 热交换法是由D. Viechnicki和 F. Schmid于1974年发明的一种长晶方法。 其原理是:定向凝固结晶法,晶体生长 驱动力来自固液界面上的温度梯度。特 点:(1) 热交换法晶体生长中,采用钼 坩埚,石墨加热体,氩气为保护气体, 熔体中的温度梯度和晶体中的温度梯 度分别由发热体和热交换器(靠He作 为热交换介质)来控制,因此可独立地 控制固体和熔体中的温度梯度;(2) 固 液界面浸没于熔体表面,整个晶体生长 过程中,坩埚、晶体、热交换器都处于 静止状态,处于稳定温度场中,而且熔 体中的温度梯度与重力场方向相反,熔 体既不产生自然对流也没有强迫对流; (3) HEM法最大优点是在晶体生长结束 后,通过调节氦气流量与炉子加热功率, 实现原位退火,避免了因冷却速度而产 生的热应力;(4) HEM可用于生长具有 图2HEM晶体生长装置结构示意图 特定形状要求的晶体。 由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如Φ30mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长,He气体价格昂贵,所以长晶成本很高。

工程热力学习题解答_5

第五章 气体的流动和压缩 思 考 题 1.既然 c 里呢? 答:对相同的压降(*P P -)来说,有摩擦时有一部分动能变成热能,又被工质吸收了,使h 增大,从而使焓降(*h h -)减少了,流速C 也降低了(动能损失)。对相同的焓降(*h h -)而言,有摩擦时,由于动能损失(变成热能),要达到相同的焓降或相同的流速C ,就需要进步膨胀降压,因此,最后的压力必然降低(压力损失)。 2.为什么渐放形管道也能使气流加速?渐放形管道也能使液流加速吗? 答:渐放形管道能使气流加速—是对于流速较高的超音速气流而言的,由 2(1) dA dV dC dC M A V C C ===-可知,当0dA >时,若0dC >,则必1M >,即气体必为超音速气流。超音速气流膨胀时由于dA dV dC A V C =-(V--A )而液体0dV V =,故有dA dC A C =- ,对于渐放形管有 0dA A >,则必0dC C <,这就是说,渐放形管道不能使液体加速。 3.在亚音速和超音速气流中,图5-15所示的三种形状的管道适宜作喷管还是适宜 作扩压管? 图 5-15 答:可用 2(1) dA dC M A C =-方程来分析判断 a) 0dA <时 当1M <时,必0dC >,适宜作喷管 当1M >时,必0dC <,适宜作扩压管 b) 0dA >时 当1M <时,必0dC <,适宜作扩压管 当1M >时,必0dC >,适宜作喷管 c) 当入口处1M <时,在0dA <段0dC >;在喉部达到音速,继而在0dA >段0dC <成为 超音速气流,故宜作喷管(拉伐尔喷管) 当入口处1M >时,在0dA <段,0dC <;在喉部降到音速,继而在0 dC <成为亚音速气流,故宜作扩压管(缩放形扩压管)。 (a) (b) (c)

晶体生长热力学

第一章 晶体生长热力学 晶体生长是一门古老的“艺术”,但最近几十年来,由于热力学、统计物理以及其它学科在晶体生长中的应用,对解决晶体生长问题发挥了很大的作用,使晶体生长获得了牢固的科学基础,逐步发展成为材料科学中的一个重要分支,对解决工业与科研所需的材料问题做出了重要的贡献。因此,要想了解核掌握晶体生长这门学科,首先必须掌握热力学的基本知识。 晶体生长是一个动态过程,不可能在平衡状态下进行,而热力学所处理的问题一般都是属于平衡状态的问题。在研究任何过程的动力学问题之前,对其中所包含的平衡问题有所了解,则可以预测过程中所遇到的问题(如偏离平衡态的程度),以及说明或提出解决问题的线索。因而在考虑实际晶体生长情况时,必须确定问题的实质究竟是与达到的平衡状态有关,还是与各种过程进行的速率有关。如果晶体生长的速率或晶体的形态取决于某一过程进行的速率(例如,在表面上的成核速率),那么就必须用适当的速率理论来分析,这时热力学就没有什么价值了。但如果过程进行程度非常接近于平衡态(准平衡态,这在高温时常常如此),那么热力学对于预测生长量以及成分随温度、压力和试验中其它变数而改变的情况,就有很大的价值。 可以认为晶体生长是控制物质在一定的热力学条件下进行的相变过程。通过这一过程使该物质达到符合所需要的状态和性质。一般的晶体生长多半是指物质从流动相转变为固相(成为单晶体)的过程。因此将牵涉到热力学中的相平衡和相变的问题。相图(平衡图)是将物质体系中各项可能存在的状态,随成分和温度(有时还有压力)改变的情况明确地表现出来的一种图示。也可以认为相图是将晶体生长(流体相变为固相以及固态中的相变)与热力学联系起来的媒介,可以看出整个晶体生长过程的大概趋势。 §1.1相平衡及相变 相:是指体系中均匀一致的部分,它与别的部分有明显的分界线。 1.1.1热平衡 在与环境无热量和物质交换的体系内,A 与B 两相间只有热量交换条件下,T A =T B 推导方法: 设将A 和B 两个相封闭在一个与环境隔绝的体系内,A 与B 两相间只有热量交换,即A ,B 两相见得隔板完全固定,只能导热,如图1.1所示。设此时从A 有微量的热传到B 内,则A ,B 两相的内能变化为 A A A A A B B B B B dU T dS P dV dU T dS P dV =-=- (1.1) 由于隔板固定,A,B 两相的体积也固定,0A B dV dV ==。这说明此时体系内能的变化只能表现为热的改变,即 A B Q dU dU δ=-= 这里假定由A 传至B 时,对B 相来说,Q δ为正,反方向为负。式(1.1)可写为 /A A Q T dS δ-=,/B B Q T dS δ-= (1.2) 两式相加,得

工程热力学(第五版)第5章练习题

第5章 热力学第二定律 5.1 本章基本要求 理解热力学第二定律的实质,卡诺循环,卡诺定理,孤立系统熵增原理,深刻理解熵的定义式及其物理意义。 熟练应用熵方程,计算任意过程熵的变化,以及作功能力损失的计算,了解火用、火无 的概念。 5.2 本章重点: 学习本章应该掌握以下重点内容:, l .深入理解热力学第二定律的实质,它的必要性。它揭示的是什么样的规律;它的作用。 2.深入理解熵参数。为什么要引入熵。是在什么基础上引出的。怎样引出的。它有什么特点。 3.系统熵变的构成,熵产的意义,熟练地掌握熵变的计算方法。 4.深入理解熵增原理,并掌握其应用。 5.深入理解能量的可用性,掌握作功能力损失的计算方法 5.3 本章难点 l .过程不可逆性的理解,过程不可逆性的含义。不可逆性和过程的方向性与能量可用性的关系。 2.状态参数熵与过程不可逆的关系。 3.熵增原理的应用。 4.不可逆性的分析和火用 分析. 5.4 例题 例1:空气从P 1=0.1MP a ,t 1=20℃,经绝热压缩至P 2=0.42MP a ,t 2=200℃。求:压缩过程工质熵变。(设比热为定值)。 解:定压比热: k kg kJ R C P ?=?==/005.1287.02 727

由理想气体熵的计算式: k kg kJ P P R T T C S P ?=-=-=?/069.01.042.0ln 287.0293473ln 005.1ln ln 1 21212 例2:刚性容器中贮有空气2kg ,初态参数P 1=0.1MP a ,T 1=293K ,内装搅拌器,输入轴功率W S =0.2kW ,而通过容器壁向环境放热速率为kW Q 1.0.=。求: 工作1小时后孤立系统熵增。 解:取刚性容器中空气为系统,由闭系能量方程:U Q W s ?+=. . 经1小时, ()12..36003600T T mC Q W v s -+=()K mC Q W T T v 5447175 .021.02.036002933600..12=?-+=??? ??-+= 由定容过程:1212T T P P =, MPa T T P P 186.0293 5441.01212=?== 取以上系统及相关外界构成孤立系统: sur sys iso S S S ?+?=? K kJ T Q S sur /2287.1293 1.036000=?==? K kJ S iso /1 2.22287.18906.0=+=? 例3:压气机空气由P 1=100kP a ,T 1=400K ,定温压缩到终态P 2=1000kP a ,过程中实际消耗功比可逆定温压缩消耗轴功多25%。设环境温度为T 0=300K 。 求:压缩每kg 气体的总熵变。 解:取压气机为控制体。按可逆定温压缩消耗轴功: kg kJ P P RT v v RT W SO /3.2641000 100ln 400287.0ln ln 2112-=?=== 实际消耗轴功: ()kg kJ W S /4.3303.26425.1-=-= 由开口系统能量方程,忽略动能、位能变化:21h q h W S +=+ 因为理想气体定温过程:h 1=h 2

晶体生长热力学

第一章晶体生长热力学 晶体生长是一门古老的“艺术”,但最近几十年来,由于热力学、统计物理以及其它学科在晶体生长中的应用,对解决晶体生长问题发挥了很大的作用,使晶体生长获得了牢固的科学基础,逐步发展成为材料科学中的一个重要分支,对解决工业与科研所需的材料问题做出了重要的贡献。因此,要想了解核掌握晶体生长这门学科,首先必须掌握热力学的基本知识。 晶体生长是一个动态过程,不可能在平衡状态下进行,而热力学所处理的问题一般都是属于平衡状态的问题。在研究任何过程的动力学问题之前,对其中所包含的平衡问题有所了解,则可以预测过程中所遇到的问题(如偏离平衡态的程度),以及说明或提出解决问题的线索。因而在考虑实际晶体生长情况时,必须确定问题的实质究竟是与达到的平衡状态有关,还是与各种过程进行的速率有关。如果晶体生长的速率或晶体的形态取决于某一过程进行的速率(例如,在表面上的成核速率),那么就必须用适当的速率理论来分析,这时热力学就没有什么价值了。但如果过程进行程度非常接近于平衡态(准平衡态,这在高温时常常如此),那么热力学对于预测生长量以及成分随温度、压力和试验中其它变数而改变的情况,就有很大的价值。 可以认为晶体生长是控制物质在一定的热力学条件下进行的相变过程。通过这一过程使该物质达到符合所需要的状态和性质。一般的晶体生长多半是指物质从流动相转变为固相(成为单晶体)的过程。因此将牵涉到热力学中的相平衡和相变的问题。相图(平衡图)是将物质体系中各项可能存在的状态,随成分和温度(有时还有压力)改变的情况明确地表现出来的一种图示。也可以认为相图是将晶体生长(流体相变为固相以及固态中的相变)与热力学联系起来的媒介,可以看出整个晶体生长过程的大概趋势。 §1.1相平衡及相变 相:是指体系中均匀一致的部分,它与别的部分有明显的分界线。

工程热力学第五版第五章习题答案_

第五章 习题解答 5-1 ⑴ 12,1873313 64.14%873 t c T T T η--== = ⑵ 0,10.641410064.14 kW t c W Q η==?= ⑶ ()()2,1110.641410035.86 kW t c Q Q η=-=-?= 5-2 12,1100040060%1000 t c T T T η--= == 0,10.61000600 kJ < 700 kJ t c W Q η==?= 该循环发动机不能实现 5-3 ()()121 1.011000300707 kJ/kg p q c T T =-=?-= 1 33323331221.4 1.41 ln ln ln 300 0.287300ln 362.8 kJ/kg 1000p p T q RT RT RT p p T κκ--??=== ??? ?? =??=- ? ?? 12707362.8344.2 kJ/kg w q q =+=-= 1344.248.68%707 w q η= == 5-4 12,11000300 70%1000 t c T T T η--= == ,10.7707495 kJ/kg t c w q η==?= 5-5 ⑴221126310000089765 kJ/h 293 T Q Q T = =?= ⑵12,12293 9.77293263c T T T ε= ==-- 1 2,100000 2.84 kW 9.773600 c Q P ε= = =? ⑶100000 100000 kJ/h 27.78 kW 3600 P == =

5-6 ⑴12,12293 14.65293273 c T T T ε= ==-- 1 2,201000 0.455 kW 9.773600 c Q P ε?= = =? 由()122 1212003600 T T T P T T -?=-2 20t =℃ 得1313 K 40T ==℃ 5-7 2,10.351000015000 kJ/h t c Q Q ηε==??= 5-8 ()()2111000010.37000 kJ/h t Q Q η=-=?-= 215000700022000 kJ/h Q Q Q =+=+=总 5-9 可逆绝热压缩终态温度2T 1 1.411.4 22110.3300410.60.1p T T p κκ --????==?= ? ? ?? ?? K 可逆过程0Q U W =?+=,不可逆过程0Q U W ''=?+= 且 1.1W W '=,则 1.1U U '?=? ()()21211.1v v mc T T mc T T '-=- ()()21211.1300 1.1410.6300421.7T T T T '=+-=+?-=K 2211421.70.3ln ln 0.1 1.01ln 0.287ln 3000.1p T p S m c R T p '??? ??=-=?- ? ???? ? =0.00286 kJ/kg.K 5-10 理论制冷系数:21,12258 7.37293258 c T T T ε= ==-- 制冷机理论功率:2 1,125700 4.74 kW 7.373600 c Q P ε= = =? 散热量:12125700 4.743600142756 kJ/h Q Q P =+=+?= 冷却水量:21H O 142756 4867.2 kg/h 4.197 Q m c t = ==??

化工热力学第3阶段练习题知识分享

化工热力学第3阶段 练习题

江南大学现代远程教育第三阶段练习题 考试科目:《化工热力学》第五章至第六章(总分100分) 学习中心(教学点)批次:层次: 专业:学号:身份证号: 姓名:得分: 一、单项选择题(本题共5小题,每小题2分,共10分) ,而与具体的1、稳态流动过程的理想功仅取决于体系的初态与终态及环境温度T 变化途径无关。() A.正确 B.错误 2、要对化工过程进行节能改进,就必须对理想功、损失功、热力学效率进行计算和热力学分析。() A.正确 B.错误 3、能量是由有效能和无效能两部分组成。() A.正确 B.错误 4、有一机械能大小为1000KJ,另有一恒温热源其热量大小为1000KJ,则恒温热源的热有效能()机械能的有效能。 A.大于 B.小于 C.等于 D.不能确定 5、乙醇-水在101.3KPa下共沸体系,其自由度为() A.0 B.1 C.2 D.3 二、判断题(本题共5小题,每小题2分,共10分) 1、系统熵增加的过程必为不可逆过程。() 2、绝热过程必是定熵过程。() 3、不可逆过程一定是自发的,自发过程一定是不可逆的。() 4、功可以全部转变成热,但热一定不能全部转化为功。() 5、无论流体的温度高于或低于环境温度,其有效能均为正() 三、简答题(本题共5小题,每小题6分,共30分) 1、写出稳定流动系统热力学第一定律的一般形式,并对流经换热器的系统进行适当的简化。 仅供学习与交流,如有侵权请联系网站删除谢谢2

仅供学习与交流,如有侵权请联系网站删除 谢谢3 2、写出封闭系统的热力学第一定律。 3、写出维里方程中维里系数B 、C 的物理意义。 4、请写出剩余性质及超额性质的定义及定义式。 5、汽相和液相均用逸度系数计算的困难是什么? 四、计算题(本题共1小题,共10分) 某厂有输送90℃的管道,由于保温不良,到使用单位时水温已降至65℃。试求水温降低过程的热损失与损耗功。大气温度为25℃。 五、计算题(本题共1小题,共20分) 乙醇(1)-甲苯(2)体系的有关的平衡数据如下 T =318K 、P =24.4kPa 、 x 1=0.300、y 1=0.634,已知318K 的两组饱和蒸汽压为 05.10,06.2321==s s P P kPa ,并测得液相的混合热是一个仅与温度有关的常数437.0=RT H ?,令气相是理想气体,求 (a)液相各组分的活度系数;(b)液相的G ?和G E 。 六、计算题(本题共1小题,共20分) 试比较如下几种水蒸汽,水和冰的有效能大小。设环境温度为298K 。 0.15MPa ,160℃,过热蒸汽; 0.3MPa , 160℃,过热蒸汽; 0.07MPa ,100℃,过冷蒸汽; 100℃,饱和蒸汽; 0.1MPa ,100℃,饱和水; 0.1MPa ,0℃,冰。 附:参考答案: 一、单项选择题:(本题共5小题,每小题2分,共10分) 1、A. 2、A. 3、A. 4、B. 5、A. 二、判断题:(本题共5小题,每小题2分,共10分) 1、× 2、× 3、× 4、× 5、√ 三、简答题:(本题共5小题,每小题6分,共30分)

晶体生长理论

晶体生长理论 晶体生长理论是用以阐明晶体生长这一物理-化学过程。形成晶体的母相可以是气相、液相或固相;母相可以是单一组元的纯材料,也可以是包含其他组元的溶液或化合物。生长过程可以在自然界中实现,如冰雪的结晶和矿石的形成;也可以在人工控制的条件下实现,如各种技术单晶体的培育和化学工业中的结晶。 基础 晶体生长的热力学理论[1]J.W.吉布斯于1878年发表的著名论文《论复相物质的平衡》奠定了热力学理论的基础。他分析了在流体中形成新相的条件,指出自然体自由能的减少有利新相的形成,但表面能却阻碍了它。只有通过热涨落来克服形成临界尺寸晶核所需的势垒,才能实现晶体的成核。到20世纪20年代M.福耳默等人发展了经典的成核理论,并指出了器壁或杂质颗粒对核的促进作用(非均匀成核)。一旦晶核已经形成(或预先制备了一块籽晶),接下去的就是晶体继续长大这一问题。吉布斯考虑到晶体的表面能系数是各向异性的,在平衡态自由能极小的条件就归结为表面能的极小,于是从表面能的极图即可导出晶体的平衡形态。晶体平衡形态理论曾被P.居里等人用来解释生长着的晶体所呈现的多面体外形。但是晶体生长是在偏离平衡条件下进行的,表面能对于晶体外形的控制作用限于微米尺寸以下的晶体。一旦晶体尺寸较大时,表面能直接控制外形的能力就丧失了,起决定性作用的是各晶面生长速率的各向异性。这样,晶面生长动力学的问题就被突出了。 动力学理论 晶体生长的动力学理论晶面生长的动力学指的是偏离平衡的驱动力(过冷或过饱和)与晶面生长的速率的关系,它是和晶体表面的微观形貌息息相关的。从20世纪20年代就开始了这方面的研究。晶面的光滑(原子尺度而言)与否对生长动力学起了关键性的作用。在粗糙的晶面上,几乎处处可以填充原子成为生长场所,从而导出了快速的线性生长律。至于偏离低指数面的邻位面,W.科塞耳与 F.斯特兰斯基提出了晶面台阶-扭折模型,晶面上台阶的扭折处为生长的场所。由此可以导出相应的生长律。至于光滑的密集平面(这些是生长速率最低,因而在晶体生长中最常见的),当一层原子填满后,表面就没有台阶提供继续填充原子的场所,则要通过热激活来克服形成二维晶核的势垒后,方能继续生长。这样,二维成核率就控制晶面生长速率,导出了指数式的生长律。只有在甚高的驱动力(例如过饱和度达50%)作用下方可观测到生长。但实测的结果与此推论有显著矛盾。为了解释低驱动力作用下光滑晶面的生长,F.C.夫兰克于1949年提出螺型位错在晶面露头处会形成永填不满的台阶,促进晶面的生长。在晶体生长表面上观测到的螺旋台阶证实了夫兰克的设想。在W.伯顿、N.卡夫雷拉与夫兰克1951年题为《晶体生长与表面平衡结构》这一重要论文中,对于理想晶体和实际晶体的晶面生长动力学进行了全面的阐述,成为晶体生长理论发展的重要里程碑。

工程热力学思考题答案,第五章

第五章 热力学第二定律 5.1热力学第二定律能否表达为:“机械能可以全部变为热能,而热能不可能全部变为机械能。”这种说法有什么不妥当? 答:不能这样表述。表述不正确,对于可逆的定温过程,所吸收的热量可以全部转化为机械能,但是自身状态发生了变化。所以这种表述不正确。 5.2理想气体进行定温膨胀时,可从单一恒温热源吸入的热量,将之全部转变功对外输出,是否与热力学第二定律的开尔文叙述矛盾?提示:考虑气体本身是否有变化。 答:不矛盾,因为定温膨胀气体本身状态发生了改变。 5.3自发过程是不可逆过程,非自发过程必为可逆过程,这一说法是否正确? 答:不正确。自发过程是不可逆过程是正确的。非自发过程却不一定为可逆过程。 5.4请归纳热力过程中有哪几类不可逆因素? 答:。不可逆因素有:摩擦、不等温传热和不等压做功。 5.5试证明热力学第二定律各种说法的等效性:若克劳修斯说法不成立,则开尔文说也不成立。 答:热力学第二定律的两种说法反映的是同一客观规律——自然过程的方向性 →是一致的,只要一种表述可能,则另一种也可能。 假设热量Q2 能够从温度T2 的低温热源自动传给温度为T1 的高温热源。现有一循环热机在两热源间工作,并且它放给低温热源的热量恰好等于Q2。整个系统在完成一个循环时,所产生的唯一效果是热机从单一热源(T1)取得热量Q1-Q2,并全部转变为对外输出的功W 。低温热源的自动传热Q2 给高温热源,又从热机处接受Q2,故并未受任何影响。这就成了第二类永动机。?违反了克劳修斯说法,?必须违反了开尔文说法。反之,承认了开尔文说法,克劳修斯说法也就必然成立。 5.6下列说法是否有误: (1)循环净功Wnet 愈大则循环效率愈高;(×) (2)不可逆循环的热效率一定小于可逆循环的热效率;( ×) (3)可逆循环的热效率都相等,1 21T T t -=η(×) 5.7 循环热效率公式121q q q t -=η和1 21T T T t -=η是否完全相同?各适用于哪些场合? 答:这两个公式不相同。121q q q t -= η适用于任何工质,任何循环。121T T T t -=η适用于任

相关文档
最新文档