动能定理和功能关系

动能定理和功能关系
动能定理和功能关系

1、子弹以某速度击中静止在光滑水平面上的木块,当子弹进入木块深度为x 时,木块相对水平面移动距离

2

x

,求木块获得的动能1k E ?和子弹损失的动能2k E ?之比。

2、物体质量为10kg ,在平行于斜面的拉力F 作用下沿斜面向上运动,斜面与物体间的动摩擦因数为1.0=μ,当物体运动到斜面中点时,去掉拉力F ,物体刚好能运动到斜面顶端,斜面倾角为30°,求拉力F 多大?(2

/10s m g =)

3、质量为 5×105kg 的机车,以恒定的功率沿平直轨道行驶,在3min 内行驶了1450m ,其速度从10m/s 增加到最大速度15m/s .若阻力保持不变,求机车的功率和所受阻力的数值.

【单个物体做功..与能量变化....

之间的关系判定】 1.节日燃放礼花弹时,要先将礼花弹放入一个竖直的炮筒中,然后点燃礼花弹的发射部分,通过火药剧烈燃烧产生的高压燃气,将礼花弹由炮筒底部射向空中.若礼花弹在由炮筒底部出发至炮筒口的过程中,克服重力做功w 1,克服炮筒阻力及空气阻力做功w 2,高压燃气对礼花弹做功w 3,则礼花弹在炮筒内运动的过程中(设礼花弹发射过程中质量不变) ( )

A .礼花弹的动能变化量为w 3+w 2+w 1

B .礼花弹的动能变化量为w 3-w 2-w 1

C .礼花弹的机械能变化量为w 3-w 2

D .礼花弹的机械能变化量为w 3-w 1

2.飞船返回时高速进入大气层后,受到空气阻力的作用,接近地面时,减速伞打开,在距地面几米处,制动发动机点火制动,飞船迅速减速,安全着陆.下列说法正确的是( )

A .制动发动机点火制动后,飞船的重力势能减小,动能减小

B .制动发动机工作时,由于化学能转化为机械能,飞船的机械能增加

C .重力始终对飞船做正功,使飞船的机械能增加

D .重力对飞船做正功,阻力对飞船做负功,飞船的机械能不变

3.如图,质量为m 的小车在水平恒力F 推动下,从山坡底部A 处由静止起运动至高为h 的坡顶B ,获得的速度为v ,AB 的水平距离为x .下列说法正确的是( ) A .小车克服重力所做的功是mgh

B .合力对小车做的功是1

2

mv 2

C .推力对小车做的功是Fx -mgh

D .小车机械能增加了1

2

mv 2+mgh

4.如图所示,某段滑雪道倾角为30°,总质量为m (包括雪具在内)的滑雪运动员从雪道上距底端高为h 处由静止

开始匀加速下滑,加速度大小为1

3

g ,他沿雪道滑到底端

的过程中,下列说法正确的是( )

A .运动员减少的重力势能全部转化为动能

B .运动员获得的动能为2

3

mgh

C .运动员克服摩擦力做功为2

3

mgh

D .下滑过程中系统减少的机械能为1

3

mgh

5.如图跳水运动员最后踏板的过程可以简化为下述模型:运动员从高处落到处于自然状态的跳板(A 位置)上,随跳板一同向下做变速运动到达最低点(B 位置).对于运动员开始

与跳板接触到运动至最低点B的过程中,下列说法中正确的是()

A.运动员的动能一直在减小

B.运动员的机械能一直在减小

C.运动的加速度先变小后变大

D.跳板的弹性势能先增加后减小

6.如图,斜劈静止在水平地面上,有一物体沿斜劈表面向下运动,重力做的功与克服力F做的功相等.则下列判断中正确的是()

A.物体可能加速下滑

B.物体可能受三个力作用,且合力为零

C.斜劈受到地面的摩擦力方向一定水平向左

D.撤去F后斜劈可能不受地面的摩擦力

【含弹簧类功能关系判定】

1.如图所示,物体A的质量为m,置于水平地面上,A的上端连一轻弹簧,原长为L,劲度系数为k,现将弹簧上端B缓慢地竖直向上提起,使B点上移距离为L,此时物体A 也已经离开地面,则下列论述中正确的是( )

A.提弹簧的力对系统做功为mgL

B.物体A的重力势能增加mgL

C.系统增加的机械能小于mgL

D.以上说法都不正确

2.轻质弹簧吊着小球静止在如图所示的A位置,现用水平外力F将小球缓慢拉到B位置,此时弹簧

与竖直方向的夹角为θ,在这一过程中,

对于整个系统,下列说法正确的是

( )

A.系统的弹性势能不变

B.系统的弹性势能增加

C.系统的机械能不变

D.系统的机械能增加

3.如图所示,一小球从光滑圆弧轨道顶端由静止开始下滑,进人光滑水平面又压缩弹簧.在此过程中,小球重力势能和动能的最大值分别为E p和E k,弹簧弹性势能的最大值为E p’,则它们之间的关系为( )

A.E p=E k=E p’ B.E p>E k>E p’

C.E p=E k+E p’ D.E p+E k=E p’

4.如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,开始弹簧处于原长h.今让圆环沿杆自由滑下,滑到杆的底端时速度恰为零.则此过程中()

A.圆环的机械能守恒

B.弹簧对圆环先做正功后做负功

C.弹簧的弹性势能变化了mgh

D.重力的功率一直减小

5.如图所示,光滑水平面OB与足够长的粗糙斜面BC交于B点.轻弹簧左端固定于竖直墙面,现用质量为m1的滑块压缩弹簧至D 点,然后由静止释放,滑块脱离弹簧后经B点滑上斜面,上升到最大高度,并静止在斜面上.不计滑块在B点的机械能损失;换用相同材料质量为m2的滑块(m2>m1)压缩弹簧至同一点D后,重复上述过程,下列说法正确的是()

A.两滑块到达B点的速度相同

B.两滑块沿斜面上升的最大高度相同

C.两滑块上升到最高点过程克服

重力做的功相同

D.两滑块上升到最高点过程机械

能损失相同

【连接体(系统)功能关系判定】

1.如图a 、b 两物块质量分别为m 、2m ,用不计质量的细绳相连接,悬挂在定滑轮的两侧,不计滑轮质量和一切摩擦.开始时,a 、b 两物块距离地面高度相同,用手托住物块b ,然后突然由静止释放,直至a 、b 物块间高度差为h .在此过程中,下列说法正确的是( )

A .物块a 的机械能逐渐增加

B .物块b 机械能减少了2

3

mgh

C .物块b 重力势能的减少量等于细绳拉力对它所做的功

D .物块a 重力势能的增加量小于其动能增加

2.如图所示,一直角斜面固定在地面上,A 、B 两质量相同的物块系于一根跨过定滑轮的轻绳两端,分别置于动摩擦因数相同的两斜面上,两物块可以看成质点,且位于同一高度并处于静止状态.绳子均与斜面平行.若剪断绳,让两物块从静止开始沿斜面下滑,下列叙述正确的是( )

A .两物块沿斜面下滑的时间可能相同

B .落地时A 物块的动能大于B 物块的动能

C .落地时A 物块的机械能等于B 物块的机械能

D .落地时两物块重力的功率可能相同

3.如图,置于足够长斜面上的盒子A 内放有光滑球B ,B 恰与盒子前、后壁接触,斜面光滑且固定于水平地面上.一轻质弹簧的一端与固定在斜面上的木板P 拴接,另一端与A 相连.今用外力推A 使弹簧处于压缩状态,然后由静止释放,则从释放盒子直至其获得最大速度的过程中( )

A .弹簧的弹性势能一直减小直至为零

B .A 对B 做的功等于B 机械能的增加量

C .弹簧弹性势能的减小量等于A 和B 机械能的增加量

D .A 所受重力和弹簧弹力做功的代数和小于A 动能的增加量

4.如图,在粗糙的水平面上,质量相等的两个物体A 、B 间用一轻质弹簧相连组成系统.且该系统在外力F 作用下一起做匀加速直线运动,当它们的总动能为2E k 时撤去水平力F ,最后系统停止运动.不计空气阻力,认为最大静摩擦力等于滑动摩擦力,从撤去拉力F 到系统停止运动的过程中( ) A .合外力对物体A 所做总功的绝对值等于E k

B .物体A 克服摩擦阻力做的功等于E k

C .系统克服摩擦阻力做的功可能等于系统的总动能2E k

D .系统克服摩擦阻力做的功一定等于系统机械能的减小量

5.如图,轻质弹簧的一端与固定的竖直板P 栓接,另一端与物体A 相连,物体A 静止于光滑水平桌面上,A 右端连接一细线,细线绕过光滑的定滑轮与物体B 相连.开始时用手托住B ,让细线恰好伸直,然后由静止释放B ,直至B 获得最大速度.下列有关

该过程的分析正确的是( ) A .B 物体受到绳的拉力保持不变

B .B 物体机械能的减少量小于弹簧弹性势能的增加量

C .A 物体动能的增加量等于B 物体重力做功与弹簧对A 的弹力做功之和

D .A 物体与弹簧所组成的系统机械能的增加量等于细线拉力对A 做的功

6.如图,顶端装有定滑轮的斜面体放在粗糙水平地面上,M 、N 两物体通过轻弹簧和细绳连接,并处于静止状态(不计绳的质量和绳与滑轮间的摩擦).现用水平向右的恒力F 作用于物体N 上,物体N 升高到一定的距离h 的过程中,斜面体与物体M 仍然保持静止.设M 、N 两物体的质量都是m ,在此过程中( ) A .恒力F 所做的功等于物体N 增加的机械能 B .物体N 的重力势能增加量一定等于mgh

C .当弹簧的势能最大时,N 物体的动能最大

D .M 物体受斜面的摩擦力一定变大

7.如图所示,一轻弹簧左端固定在长木板m 2的左端,右端与小木块m 1连接,且m 1与m 2及m 2与地面之间接触面光滑.开始时m 1和m 2均静止,现同时对m 1、m 2施加等大、反向的水平恒力F 1和F 2,从两物体开始运动至以后的整个过程中,关于m 1、m 2和

弹簧组成的系统(整个过程中弹簧形变不超过其弹性限度),下列说法正确的是()

A.由于F1、F2等大反向,故系统机械

能守恒

B.由于F1、F2分别对m1、m2做正功,

故系统动能不断增加

C.由于F1、F2分别对m1、m2做正功,故系统机械能不断增加D.当弹簧弹力大小与F1、F2大小相等时,m1、m2的动能最大

功的计算与动能定理、功能关系经典题

3.足球运动员用力踢质量为0.3 kg的静止足球,使足球以10 m/s的 速度飞出,假定脚踢足球时对足球的平均作用力为400 N,球在水平 面上运动了20 m后停止,那么人对足球做的功为(选C ) A.8 000 J B.4 000 J C.15 J D.无法确定 4.某人用手将一质量为1 kg的物体由静止向上提升1 m,这时物体的 速度为2 m/s,则下列说法中错误的是(g取10 m/s2)(选B ) A.手对物体做功12 J B.合外力对物体做功12 J C.合外力对物体做功2 J D.物体克服重力做功10 J 9、距沙坑高7m处,以v0=10m/s的初速度竖直向上抛出一个重力为5N的物体,物体落到沙坑并陷入沙坑0.4m深处停下.不计空气阻力,g=10m/s2.求: (1)物体上升到最高点时离抛出点的高度; (2)物体在沙坑中受到的平均阻力大小是多少? 四、动能定理分析连结体问题 4、如图所示,m A=4kg,m B=1kg,A与桌面间的动摩擦因数μ=0.2,B与地面间的距离s=0.8m,A、B间绳子足够长,A、B原来静止,求:(1)B落到地面时的速度为多大; (2)B落地后,A在桌面上能继续滑行多远才能静止下来。(g取10m/s2) 1.关于功的判断,下列说法正确的是() A.功的大小只由力和位移决定 B.力和位移都是矢量,所以功也是矢量 C.因为功有正功和负功,所以功是矢量 D.因为功只有大小而没有方向,所以功是标量 解析:选D.由功的公式W=Fx cosα可知做功的多少不仅与力和位 移有关,同时还与F和x正方向之间的夹角有关,故A错;功是标量没 有方向,但有正负,正、负不表示大小,也不表示方向,只表示是动力做功还是阻力做功,故B、C错误,D项正确. 2.人以20 N的水平恒力推着小车在粗糙的水平面上前进了5.0 m,人放手后,小车还前进了2.0 m才停下来,则小车在运动过程中,人的推力所做的功为() A.100 J B.140 J C.60 J D.无法确定 解析:选A.人的推力作用在小车上的过程中,小车发生的位移是5.0 m,故该力做功为W=Fx cosα=20×5.0×cos0° J=100 J. 4.如图4-1-17所示,B物体在拉力F的作用下向左运动,在运动的过程中,A、B 之间有相互的力,则对各力做功的情况,下列说法中正确的是(地面光滑,A、B物体粗糙)() A.A、B都克服摩擦力做功 B.A、B间弹力对A、B都不做功 C.摩擦力对B做负功,对A不做功

动量定理与动能定理的应用

动量定理与动能定理的应用 一、动量守恒定律 1.定律内容:一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律. 说明:(1)动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体,它是一个实验规律,也可用牛顿第三定律和动量定理推导出来. (2)相互间有作用力的物体系称为系统,系统内的物体可以是两个、三个或者更多,解决实际问题时要根据需要和求解问题的方便程度,合理地选择系统. 2.动量守恒定律的适用条件 (1)系统不受外力或系统所受外力的合力为零. (2)系统所受外力的合力虽不为零,但F内》F外,亦即外力作用于系统中的物体导致的动量的改变较内力作用所导致的动量改变小得多,则此时可忽略外力作用,系统动量近似守恒.例如:碰撞中的摩擦力和空中爆炸时的重力,较相互作用的内力小的多,可忽略不计. (3)系统所受合外力虽不为零,但系统在某一方向所受合力为零,则系统此方向的动量守恒,例图6�8,光滑水平面的小车和小球所构成的系统,在小球由小车顶端滚下的过程中,系统水平方向的动量守恒. 3.动量守恒的数学表述形式: (1)p=p′即系统相互作用开始时的总动量等于相互作用结束时(或某一中间状态时)的总动量. (2)Δp=0即系统的总动量的变化为零.若所研究的系统由两个物体组成,则可表述为:m1v1+m2v2=m1v1′+m2v2′(等式两边均为矢量和)(3)Δp1=-Δp2 即若系统由两个物体组成,则两个物体的动量变化大小相等,方向相反,此处要注意动量变化的矢量性.在两物体相互作用的过程中,也可能两物体的动量都增大,也可能都减小,但其矢量和不变. 二、碰撞 1.碰撞是指物体间相互作用时间极短,而相互作用力很大的现象. 在碰撞过程中,系统内物体相互作用的内力一般远大于外力,故碰撞中的动量守恒,按碰撞前后物体的动量是否在一条直线区分,有正碰和斜碰,中学物理只研究正碰(正碰即两物体质心的连线与碰撞前后的速度都在同一直线上). 2.按碰撞过程中动能的损失情况区分,碰撞可分为二种: a.弹性碰撞:碰撞前后系统的总动能不变,对两个物体组成的系统满足: m1v1+m2v2=m1v1′+m2v2′ 1

应用动能定理解题的基本步骤

应用动能定理解题的基本步骤 (1)确定研究对象,研究对象可以是一个单体也可以是一个系统. (2)分析研究对象的受力情况和运动情况,是否是求解“力、位移与速率关系”问题. (3)若是,根据W合=E k2-E k1列式求解. 动能定理和功能原理 动能定理 把几个有相互作用的质点所组成的系统作为研究对象,探讨功与能之间所遵循的规律。首先,把动能定理的关系式推广到由几个质点组成的系统。这时,用E k和E k0分别表示系统内所有质点在终态和初态的总动能,W表示作用在各质点上所有的力所做的功的总和,则有

W=E k-E k0 值得注意的是,所有的力所做的功的代数和,不是合力的功。因为由几个质点组成的系统,不同于一个质点,各力作用点的位移不一定相同。作用力又可区分为外力和内力,外力是指系统外其它物体对系统内各质点的作用力,内力是指系统内各质点之间的相互作用力。虽然内力的合力为零,但内力的功一般不为零,因为各力作用点的位移不一定相同。因此,对于系统来说,上式中的W 应等于外力所做的功与内力所做的功之和,所以,上式可改写为 W外+W内=E k-E k0(1) 这就是质点系的动能定理,它在惯性参考系中成立。

功能原理 系统的内力可分为保守内力和非保守内力。因此,内力的功W内应等于保守内力的功与非保守内力的功之和。所以(1)式可写为 W外力+W保守内力+W非保守内力=E k-E k0 (从系统的动能定理出发阐述系统的功能定理,根据系统的动能定理表达式,把内力功分为保守性内力功和非保守性内力功) 由于保守内力所做的功可用系统势能的减少来表示,即W保守内力=Ep0-E p,所以,上式可改写为 W外力+W非保守内力=(E k+E p)-(Ek0+Ep0)

动能定理与功能关系专题.

动能定理与功能关系专题 复习目标: 1.多过程运动中动能定理的应用; 2.变力做功过程中的能量分析; 3.复合场中带电粒子的运动的能量分析。 专题训练: 1.滑块以速率1v 靠惯性沿固定斜面由底端向上运动,当它回到出发点时速度变为2v ,且12v v <,若滑块向上运动的位移中点为A ,取斜面底端重力势能为零,则 ( ) (A ) 上升时机械能减小,下降时机械能增大。 (B ) 上升时机械能减小,下降时机械能减小。 (C ) 上升过程中动能和势能相等的位置在A 点上方 (D ) 上升过程中动能和势能相等的位置在A 点下方 2.半圆形光滑轨道固定在水平地面上,并使其轨道平面与地面垂直,物体m 1,m 2同时由轨道左右两端最高点释放,二者碰后粘在一起运动,最高能上升至轨道的M 点,如图所示,已知OM 与竖直方向夹角为0 60,则物体的质量 2 1 m m =( ) A . (2+ 1 ) ∶(2— 1) C .2 ∶1 B .(2— 1) ∶ (2+ 1 ) D .1 ∶2 3.如图所示,DO 是水平面,初速为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零。如果斜面改为AC ,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初速度 ( ) (已知物体与路面之间的动摩擦因数处处相同且为零。) A .大于 v 0 B .等于v 0 C .小于v 0 D .取决于斜面的倾角 4.光滑水平面上有一边长为l 的正方形区域处在场强为E 的匀强电场中,电场方向与正方形一边平行。一质量为m 、带电量为q 的小球由某一边的中点,以垂直于该边的水平初速0v 进入该正方形区域。当小球再次运动到该正方形区域的边缘时,具有的动能可能为:( ) (A )0 (B ) qEl mv 212120+ (C )202 1mv (D )qEl mv 32212 0+ 5.在光滑绝缘平面上有A .B 两带同种电荷、大小可忽略的小球。开始时它们相距很远,A 的质量为4m ,处于静止状态,B 的质量为m ,以速度v 正对着A 运动,若开始时系统具有的电势能为零,则:当B 的速度减小为零时,系统的电势能为 ,系统可能具有的最大电势能为 。 6.如图所示,质量为m ,带电量为q 的离子以v 0速度,沿与电场垂直的方向从A 点飞进匀强电场,并且从另一端B 点沿与场强方向成1500角飞出,A 、B 两点间的电势差为 ,且ΦA ΦB (填大于或 小于)。 7.如图所示,竖直向下的匀强电场场强为E ,垂直纸面向里的匀强磁场磁感强度为B ,电量为q ,质量为m 的带正电粒子,以初速率为v 0沿水平方向进入两场,离开时侧向移动了d ,这时粒子的速率v 为 (不计重力)。 A B C D

高中物理公式大全(全集) 八、动量与能量

八、动量与能量 1.动量 2.机械能 1.两个“定理” (1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p ) (2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k ) 动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化. 例如,质量为m 的小球以速度v 0与竖直方向成θ角 打在光滑的水平面上,与水平面的接触时间为Δt ,弹起 时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则 在Δt 内: 以小球为研究对象,其受力情况如图所示.可见小球 所受冲量是在竖直方向上,因此,小球的动量变化只能在 竖直方向上.有如下的方程: F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ) 小球水平方向上无冲量作用,从图中可见小球水平方向动量不变. 综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方 面考虑了.Δt 内应用动能定理列方程:W 合=m υ02/2-m υ02 /2 =0 2.两个“定律” (1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零 公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′ (2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功 公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k 3.动量守恒定律与动量定理的关系 一、知识网络 二、画龙点睛 规律

动能定理和功能原理

动能定理和功能原理 抛砖引玉指点迷津思维基础学法指要思维体操心中有数动脑动手创新园地 一.教法建议 【】抛砖引玉在经典力学中,“动能定理”是“牛顿运动定律”的推论和发展,“功能原理”也是“牛顿运动定律”的进一步推导的结果。因此我们建议:教师不要把本单元的内容当作新知识灌输给学生,而是引导学生运用“牛顿运动定律”对下述的这个匀加速运动问题进行分析和推导,使学生自己获得新知识──“动能定理”和“功能原理”。 具体的教学过程请参考下列四个步骤: 第三步:运用牛顿第二定律和①、②两式导出“动能定理”。. m、所受之合外力为产生之加速度若已知物体的质量为、a为。则根据牛顿第二定律可以写出:③ 将①、②两式代入③式: 导出:④ 若以W表示外力对物体所做的总功⑤ EEBA处时的动能若以表示物体通过处时的动能,以表示物体通过ktko则:⑥ ⑦ 将⑤、⑥、⑦三式代入④式,就导出了课本中的“动能定理”的数学表达形式:WEE =-kokt EEE-若以△表示动能的变化kokkt则可写出“动能定理”的一种简单表达形式: E W=△k它的文字表述是:外力对物体所做的总功等于物体动能的变化。这个结论叫做“动能定理”。 第四步:在“动能定理”的基础上推导出“功能原理”。 在推导“动能定理”的过程中,我们曾经写出过④式,现抄列如下: ④ FS为了导出“功能原理”我们需要对其中的下滑分力做功项进行分析推导。1.θFmg的关系如下:时,下滑分力和重力我们知道,当斜面的底角为1 将⑩式代入④式后进行推导: 若以代入⑾式,就导出了一种“功能原理”的数学表达形式: FsfsEE-=△+△PK Fsfs之差(不包括重力做的功它的物理意义是:动力对物体做功与物体克服阻力做功),等于物体动能的变化量与势能的变化量之和。 若在⑾式基础上进行移项变化可导出下式:

动能定理功能关系练习题题含答案

动能定理练习 巩固基础 一、不定项选择题(每小题至少有一个选项) 1.下列关于运动物体所受合外力做功和动能变化的关系,下列说法中正确的是() A.如果物体所受合外力为零,则合外力对物体所的功一定为零; B.如果合外力对物体所做的功为零,则合外力一定为零; C.物体在合外力作用下做变速运动,动能一定发生变化; D.物体的动能不变,所受合力一定为零。 2.下列说法正确的是() A.某过程中外力的总功等于各力做功的代数之和; B.外力对物体做的总功等于物体动能的变化; C.在物体动能不变的过程中,动能定理不适用; D.动能定理只适用于物体受恒力作用而做加速运动的过程。3.在光滑的地板上,用水平拉力分别使两个物体由静止获得相同的动能,那么可以肯定() A.水平拉力相等B.两物块质量相等 C.两物块速度变化相等D.水平拉力对两物块做功相等 4.质点在恒力作用下从静止开始做直线运动,则此质点任一时刻的动能() A.与它通过的位移s成正比 B.与它通过的位移s的平方成正比

C.与它运动的时间t成正比 D.与它运动的时间的平方成正比 5.一子弹以水平速度v射入一树干中,射入深度为s,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v/2的速度射入此树干中,射入深度为() A.s B.s/2 C.2 /s D.s/4 6.两个物体A、B的质量之比m A∶m B=2∶1,二者动能相同,它们和水平桌面的动摩擦因数相同,则二者在桌面上滑行到停止所经过的距离之比为() A.s A∶s B=2∶1 B.s A∶s B=1∶2 C.s A∶s B=4∶1 D.s A∶s B=1∶4 7.质量为m的金属块,当初速度为v0时,在水平桌面上滑行的最大距离为L,如果将金属块的质量增加到2m,初速度增大到2v0,在同一水平面上该金属块最多能滑行的距离为() A.L B.2L C.4L D.0.5L 8.一个人站在阳台上,从阳台边缘以相同的速率v0,分别把三个质量相同的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,则比较三球落地时的动能() A.上抛球最大B.下抛球最大C.平抛球最大D.三球一样大 9.在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为

费尔马大定理及其证明

费尔马大定理及其证明 近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。它们被称为近代三大数学难题。 300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。这被认为是“20世纪最重大的数学成就”。 费尔马大定理的由来 故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。丢番图活动于公元250年前后。 1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程 x^2+ y^2 =z^2 的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。” 费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。后来,人们就把这一论断称为费尔马大定理。用数学语言来表达就是:形如x^n+y^n=z^n的方程,当n大于2时没有正整数解。 费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。童年时期是在家里受的教育。长大以后,父亲送他在大学学法律,毕业后当了一名律师。从1648年起,担任图卢兹市议会议员。

费马大定理的美妙证明

费马大定理的美妙证明 成飞 中国石油大学物理系 摘要:1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” 0、费马大定理: 当n>3时,X n +Y n=Z n,n次不定方程没有正整数解。 1、当n=1,X+Y=Z,有任意Z≥2组合的正整数解。任意a.b.c;只要满足方程X+Y=Z;a,b.c 由空间平面的线段表示,有 a b c 可见,线段a和线段b之和,就是线段c。 2、当n=2,X2+Y2=Z2,有正整数解,但不任意。 对于这个二次不定方程来说,解X=a,Y=b,Z=c,在空间平面中,a,b,c不能构成两线段和等于另外线段。 又因为,解要满足二次不定方程,解必然a+b>c且c>a,b。 可以知道,二次不定方程的解,a,b,c在空间平面中或许可以构成三角形, B c A 根据三角形余弦定理,有 c2=a2+b2-2ab× cosɑ( 0<ɑ< π)

此时,a,b,c,即构成了三角形,又要满足二次不定方程X2+Y2=Z2 ,只有当且仅当ɑ=900,cosɑ=0,a,b,c构成直角三角形时c2=a2+b2,既然X=a,Y=b,Z=c,那么二次不定方程X2+Y2=Z2有解。 3、当n=3,X3+Y3=Z3,假设有正整数解。a,b,c就是三次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。 此时,a,b,c也必构成三角形, B A 根据三角形余弦定理,有 c2 = a2+b2-2ab× cosɑ( 0<ɑ< π) 因为,a,b,c是三次不定方程X3+Y3=Z3的正整数解,cosɑ是连续函数,因此在[-1,1]内取值可以是无穷个分数。根据大边对大角关系,ɑ角度取值范围(60o,180o),由此我们cosɑ的取值分成两部分,(-1,0]和[0,?)范围内所有分数;而a+b>c,且c>a,b, 1、当cosɑ=(-1,0],三角形余弦定理关系式得到, c2 = a2+b2+mab m=[0,1)内正分数; 等式两边同乘以c,有 c3 = a2c + b2c + mabc 因为c>a,b,那么 c3 > a3+ b3 2、当cosɑ=?,三角形余弦定理关系式得到, c2 = a2+b2-ab 等式两边同乘以a+b,有 (a+b)c2 = a3+ b3 又因为a+b>c, 所以,c3 < a3+ b3 (根据三角形大角对大边,c>a,b,即ɑ不可能等于600) 那么,cosɑ=[0,?)时,更加满足c3 < a3+ b3 既然,a,b,c是三次不定方程X3+Y3=Z3的解,又a3+ b3≠ c3, 那么,X3+Y3≠Z3,得到结果与原假设相矛盾,所以,假设不成立。 即,n=3时,X3+Y3=Z3 ,三次不定方程没有正整数解。 4、n>3, X n +Y n=Z n,假设有正整数解。a,b,c就是n次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。此时,a,b,c构成三角形,根据三角形余弦定理有,

2019版高考物理大二轮复习考前基础回扣练7动能定理功能关系

回扣练7:动能定理 功能关系 1.在光滑的水平面上有一静止的物体,现以水平恒力F 1推这一物体,作用一段时间后换成相反方向的水平恒力F 2推这一物体,当恒力F 2作用的时间与恒力F 1作用的时间相等时,物体恰好回到原处,此时物体的动能为32 J ,则在整个过程中,恒力F 1、F 2做的功分别为( ) A .16 J 、16 J B .8 J 、24 J C .32 J 、0 J D .48 J 、-16 J 解析:选B.设加速的末速度为v 1,匀变速的末速度为v 2,由于加速过程和匀变速过程的位移相反,又由于恒力F 2作用的时间与恒力F 1作用的时间相等,根据平均速度公式有v 1 2= - v 1+v 2 2 ,解得v 2=-2v 1,根据动能定理,加速过程W 1=12mv 21,匀变速过程W 2=12mv 22-12 mv 2 1根据题意12 mv 2 2=32 J ,故W 1=8 J ,W 2=24 J ,故选B. 2.如图甲所示,一次训练中,运动员腰部系着不可伸长的绳,拖着质量m =11 kg 的轮胎从静止开始沿着笔直的跑道加速奔跑,绳与水平跑道的夹角是37°,5 s 后拖绳从轮胎上脱落.轮胎运动的v -t 图象如图乙所示,不计空气阻力,已知sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2 .则下列说法正确的是( ) A .轮胎与水平地面间的动摩擦因数μ=0.2 B .拉力F 的大小为55 N C .在0~5 s 内,轮胎克服摩擦力做功为1 375 J D .在6 s 末,摩擦力的瞬时功率大小为275 W 解析:选D.撤去F 后,轮胎的受力分析如图1所示,由速度图象得5 s ~7 s 内的加速度a 2=-5 m/s 2 ,根据牛顿运动定律有N 2-mg =0,-f 2=ma 2,又因为f 2=μN 2,代入数据解得μ=0.5,故A 错误; 力F 拉动轮胎的过程中,轮胎的受力情况如图2所示,根据牛顿运动定律有F cos 37°-f 1=ma 1,mg -F sin 37°-N 1=0, 又因为f 1=μN 1,由速度图象得此过程的加速度a 1=2 m/s 2 ,联立解得:F =70 N ,B 错误;在0 s ~5 s 内,轮胎克服摩擦力做功为0.5×68×25 J=850 J ,C 错误;因6 s 末轮胎的速度为5 m/s ,所以在6 s 时,

高三一轮-功能关系----动能定理

一、功能关系----动能定理 斜面模型 1. 已知物体与轨道之间的滑动摩擦因数相同,轨道两端的宽度相等,且轨道两端位于同一水平面上。问质量不同的物体,以相同的初速度沿着如图4所示的不同运行轨道运动时,末速度的大小关系( C ) A . B . C . D . 2. (多选)在滑沙场有两个坡度不同的滑道AB 和(均可看作斜面).甲、乙两名旅游者分别乘两个相同完全的滑沙撬从A 点由静止开始分别沿AB 和滑下,最后都停在水平沙面BC 上,如图所示.设滑沙撬和沙面间的动摩擦因数处处相同,斜面与水平面连接处均可认为是圆滑的,滑沙者保持一定姿势坐在滑沙撬上不动.则下列说法中正确的是( AB ) A .甲在B 点的速率一定大于乙在点的速率 B .甲滑行的总路程一定大于乙滑行的总路程 C .甲全部滑行的水平位移一定大于乙全部滑行的水平位移 D .甲在B 点的动能一定大于乙在点的动能 3. 如图所示,一质量为m 的物块以一定的初速度0v 从斜面底端沿斜面向上运动,恰能滑行到斜面顶端.设物块和斜面的动摩擦因数一定,斜面的高度h 和底边长度x 可独立调节(斜边长随之改变),下列说法错误.. 的是( B ) A .若仅增大m ,物块仍能滑到斜面顶端 B .若再施加一个水平向右的恒力,物块一定从斜面顶端滑出 C .若仅增大h ,物块不能滑到斜面顶端,但上滑最大高度一定增大 D .若仅增大x ,物块不能滑到斜面顶端,但滑行水平距离一定增大 4. 如图示,一个小滑块由左边斜面上1A 点由静止开始下滑,又在水平面上滑行,接着滑上右边的斜面,滑到1D 速度减为零,假设全过程中轨道与滑块间的动摩擦因素不变,不计滑块在转弯处受到撞击的影响,测得1A 、1D 两点连线与水平方向的夹角为1θ,若将物体从2A 静止释放,滑块到2D 点速度减为零,22A D 连线与水平面夹角为2θ,则( C ) A .21θθ< B .21θθ> C .21θθ= D .无法确定 21v v >41v v <32v v =4 3v v >AB 'AB 'B 'B 'm m m m 图4 m 1 m 2 m 3 m 4 v 1 v 3 v 2 v 4

费马大定理的证明

学院 学术论文 论文题目:费马大定理的证明 Paper topic:Proof of FLT papers 姓名 所在学院 专业班级 学号 指导教师 日期 【摘要】:本文运用勾股定理,奇偶性质的讨论,整除性的对比及对等式有解的分析将费马大

定理的证明由对N>2的情况转换到证明n=4,n=p 时方程n n n x y z +=无解。 【关键字】:费马大定理(FLT )证明 Abstract : Using the Pythagorean proposition, parity properties, division of the contrast and analysis of the solutions for the equations to proof of FLT in N > 2 by the situation to prove N = 4, N = p equation no solution. Keywords: Proof of FLT (FLT) 引言: 1637年,费马提出:“将一个立方数分为两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。”即方程 n n n x y z +=无正整数解。 当正整数指数n >2时,没有正整数解。当然xyz=o 除外。这就是费马大定理(FLT ),于1670年正式发表。费马还写道:“关于此,我确信已发现一种奇妙的证法,可惜这里的空白太小,写不下”。[1] 1992年,蒋春暄用p 阶和4n 阶复双曲函数证明FLT 。 1994年,怀尔斯用模形式、谷山—志村猜想、伽罗瓦群等现代数学方法间接证明FLT ,但是他的证明明显与费马设想的证明不同。 据前人研究,任何一个大于2的正整数n ,或是4的倍数,或是一个奇素数的倍数,因此证明FLT ,只需证明两个指数n=4及n=p 时方程没有正整数解即可。方程 444x y z +=无正整数解已被费马本人及贝西、莱布尼茨、欧拉所证明。方程 n n n x y z +=无正整数解,n=3被欧拉、高斯所证明;n=5被勒让德、狄利克雷所证明;n=7被拉梅所证明;特定条件下的n 相继被数学家所证明;现在只需继续证明一般条件下方程n n n x y z +=没有正整数解,即证明FLT 。[2] 本文通过运用勾股定理,对奇偶性质的讨论,整除性的对比及对等式有解的分析证明4n =,n p =时n n n x y z +=无正整数解。

高中物理功能关系知识点和习题总结

高中物理功能关系 专题定位本专题主要用功能的观点解决物体的运动和带电体、带电粒子、导体棒在电场或磁场中的运动问题.考查的重点有以下几方面:①重力、摩擦力、静电力和洛伦兹力的做功特点和求解;②与功、功率相关的分析与计算;③几个重要的功能关系的应用;④动能定理的综合应用;⑤综合应用机械能守恒定律和能量守恒定律分析问题.本专题是高考的重点和热点,命题情景新,联系实际密切,综合性强,侧重在计算题中命题,是高考的压轴题. 应考策略深刻理解功能关系,抓住两种命题情景搞突破:一是综合应用动能定理、机械能守恒定律和能量守恒定律,结合动力学方法解决多运动过程问题;二是运用动能定理和能量守恒定律解决电场、磁场内带电粒子运动或电磁感应问题. 1.常见的几种力做功的特点 (1)重力、弹簧弹力、静电力做功与路径无关. (2)摩擦力做功的特点 ①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功. ②相互作用的一对静摩擦力做功的代数和总等于零,在静摩擦力做功的过程中,只有 机械能的转移,没有机械能转化为其他形式的能;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.在一对滑动摩擦力做功的过程中,不仅有相互摩擦物体间机械能的转移,还有部分机械能转化为内能.转化为内能的量等于系统机械能的减少量,等于滑动摩擦力与相对位移的乘积. ③摩擦生热是指滑动摩擦生热,静摩擦不会生热. 2.几个重要的功能关系 (1)重力的功等于重力势能的变化,即W G=-ΔE p. (2)弹力的功等于弹性势能的变化,即W弹=-ΔE p. (3)合力的功等于动能的变化,即W=ΔE k. (4)重力(或弹簧弹力)之外的其他力的功等于机械能的变化,即W其他=ΔE. (5)一对滑动摩擦力做的功等于系统中内能的变化,即Q=F f·l相对. 1.动能定理的应用

费马大定理的简单证明

费马大定理的简单证明 李联忠 (营山中学 四川 营山 637700) 费马大定理:一个正整数的三次以上的幂不能分为两正整数的同次幂之和。即不定方程n n n y x z +=当n ≥3时无正整数解。 证明: 当n=2时,有 222y x z += ∴ ))((222y z y z y z x +-=-= (1) 令 22)(m y z =- 则 22m y z += 代入(1)得 222222222222)(2)22(2l m m y m m y m y z x =+=+=-= ∴ ml x 2= 22m l y -= 22m l z += 当n=3时,有 333y x z += ∴ ))((22333y zy z y z y z x ++-=-= (2) 令 323)(m y z =- 则 323m y z +=代入(2)得 ] [23223232333)3()3(3y y m y m y m y z x ++++=-= )3333(36432232m y m y m +?+=)33(36332233m y m y m ++= 若方程333y x z +=有正整数解,则)33(63322m y m y ++为某正整数的三次幂,即 363322)33(l m y m y =++ ∴ )33)(3(3)3(4222263332m l m l m l m l m y y ++-=-=+ 则必有 )33(3)3(4222322m l m l m y m l y ++=+-=和,而y,m,l 都取正整数时,这两等式是不可能同时成立的。所以363322)33(l m y m y =++不成立。即x 不可能取得正整数。所以,当n=3时,方程333y x z +=无正整数解。 当n>3时,同理可证方程n n n y x z +=无正整数解。 定理得证。

动能定理与功能关系专题

专题七 动能定理与功能关系专题 复习目标: 1多过程运动中动能定理的应用; 2?变力做功过程中的能量分析; 3. 复合场中带电粒子的运动的能量分析。 专题训练: 1滑块以速率V i 靠惯性沿固定斜面由底端向上运动,当它回到出发点时速度变为 V 2,且 V2 ::: Vi ,若滑块向上运动的位移中点为 A ,取斜面底端重力势能为零,则 ( ) (A )上升时机械能减小,下降时机械能增大。 (B) 上升时机械能减小,下降时机械能减小。 (C) 上升过程中动能和势能相等的位置在 A 点上方 (D) 上升过程中动能和势能相等的位置在 A 点下方 2?半圆形光滑轨道固定在水平地面上,并使其轨道平面与地面垂直,物体 m i ,m 2同时由 4. 光滑水平面上有一边长为 I 的正方形区域处在场强为 E 的匀强电场中,电场方向与正方 形一边平行。一质量为 m 、带电量为q 的小球由某一边的中点,以垂直于该边的水平初速 v 0进入该正方形区域。当小球再次运动到该正方形区域的边缘时,具有的动能可能为: 轨道左右两端最高点释放, 二者碰后粘在一起运动,最高能上升至轨道的 M 点,如图所示, 已知0M 与竖直方向夹角为 60°,则物体的质量 m i =( m 2 A ? ( 2 + 1 ) : ( 2 — 1) C . 2 : 1 B . ( . 2 — 1) : ( ■ 2 + 1 ) D . 1 : .2 3.如图所示,DO 是水平面,初速为v °的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零。如果斜面改为 AC ,让该物体从 D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初 速度 ( ) (已知物体与路面之间的动摩擦因数处处相同且为零。 ) A .大于v o B .等于v ° C ?小于v ° D .取决于斜面的倾角

动量定理知识点及题型解析

第6章第1课时动量动量定理 考点内容要求考纲解读 动量,冲量,动量定理Ⅱ本章是高考考查的重点,主要考查动量和 能量的综合、动量守恒与牛顿运动定律、运动 学规律、机械能知识的综合,考试题目往往涉 及多个物体、多个过程,必须灵活选取研究对 象,巧妙运用动量的观点、能量的观点等,才 能顺利求解. 预计本章在高考中,还将以综合考查为 主,综合牛顿运动定律、动量定理、动能定理、 动量守恒定律、机械能守恒定律等知识进行考 查.题型以计算题为主,难度中等以上.命题 背景多与碰撞、反冲、平抛运动、圆周运动等 相联系,侧重考查学生分析问题、解决问题的 能力. 动量守恒定律Ⅱ 动量知识和机械能知识的应用(包 括碰撞、反冲、火箭) Ⅱ 实验:验证动量守恒定律 说明:动量定理和动量守恒定律的 应用只限于一维的情况 2.掌握并能应用动量定理进行有关计算及解释有关现象. ?考点梳理 一、动量和冲量 1.动量 (1)定义:物体的质量和速度的乘积. (2)表达式:p=mv.单位:千克米每秒(kg·m/s). (3)动量的三性 ①矢量性:方向与速度的方向相同. ②瞬时性:动量是描述物体运动状态的物理量,动量定义中的速度是瞬时速度,是针对某一时刻而 言的. ③相对性:大小与参考系的选择有关,通常情况是指相对地面的动量. (4)动量与动能的大小关系:p=2mE k. 2.冲量 (1)定义:力和力的作用时间的乘积. (2)表达式:I=Ft.单位:牛秒(N·s)

(3)矢量性:冲量是矢量,它的方向由力的方向决定. (4)物理意义:表示力对时间的积累. (5)作用效果:使物体的动量发生变化. 二、动量定理 1.内容:物体所受合力的冲量等于物体的动量的变化. 2.表达式:Ft=Δp=p′-p. 3.矢量性:动量变化量的方向与冲量方向相同,还可以在某一方向上应用动量定理. 1.[对动量概念的考查] 下列关于动量的说法中正确的是() A.质量大的物体动量一定大 B.质量和速率都相同的物体的动量一定相同 C.一个物体的速率改变,它的动量不一定改变 D.一个物体的运动状态变化,它的动量一定改变 答案 D 解析根据动量的定义p=mv,它由速度和质量共同决定,故A错;又因动量是矢量,它的方向与速度方向相同,而质量和速率都相同的物体,其动量大小一定相同,方向不一定相同,故B错;一个物体速率改变则它的动量大小一定改变,故C错;物体的运动状态变化指速度发生变化,它的动量也就发生了变化,故D对. 2.[对冲量概念的考查] 关于冲量,下列说法正确的是() A.冲量是物体动量变化的原因 B.作用在静止物体上的力的冲量一定为零 C.动量越大的物体受到的冲量越大 D.冲量的方向就是物体受力的方向 答案 A 解析力作用一段时间便有了冲量,而力作用一段时间后,物体的运动状态发生了变化,物体的动量就发生了变化.因此说冲量是物体动量变化的原因,A选项正确;只要有力作用在物体上,经历一段时间,这个力便有了冲量I=Ft,与物体处于什么状态无关,物体运动状态的变化情况是所有作用在物体上的力共同产生的效果,所以B选项不正确;物体所受冲量I=Ft与物体的动量的大小p=mv无关,C选项不正确;冲量是一个过程量,只有在某一过程中力的方向不变时,冲量的方向才与力的方向相同,故D选项不正确. 3.[动量定理的理解与应用]

功能关系-动能定理(有答案)

功能关系练习题(重点为动能定理) 动能定理: 1.下列关于运动物体所受的合外力、合外力做功和动能变化的关系,正确的是(A) A.如果物体所受的合外力为零,那么,合外力对物体做的功一定为零 B.如果合外力对物体所做的功为零,则合外力一定为零 C.物体在合外力作用下作变速运动,动能一定变化 D.物体的动能不变,所受的合外力必定为零 2.原来静止在水平面上的物体,受到恒力F作用开始运动,通过的位移为S,则(D)A.当有摩擦时,力F对物体做功多 B.当无摩擦时,力F对物体做功多 C.当有摩擦时,物体获得的动能大 D.当无摩擦时,物体获得的动能大 3、A、B两物体放在光滑的水平面上,分别在相同的水平恒力作用下,由静止开始通过相同的位移,若A的质量大于B的质量,则在这一过程中( C ) A、A获得的动能大 B、B获得的动能大 C、A、B获得的动能一样大 D、无法比较谁获得的动能大 4.关于做功和物体动能变化的关系,正确的是( C ) A.只要动力对物体做功,物体的动能就增加 B.只要物体克服阻力做功,它的动能就减少 C.外力对物体做功的代数和等于物体的末动能与初动能之差 D.动力和阻力都对物体做功,物体的动能一定变化 5.一物体速度由0增加到v,再从v增加到2v,外力做功分别为W1和W2,则W1和W2关系正确的( C ) A.W1=W2 B.W2=2W1 C.W2=3W1 D.W2=4W1 6.一质量为2 kg的滑块,以4 m/s的速度在光滑的水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力,经过一段时间,滑块的速度方向变为向右,大小为4 m/s,在这段时间里水平力做的功为( A ) A.0 B.8 J C.16 J D.32 J 7.a、b、c三个物体质量分别为m、2m、3m,它们在水平路面上某时刻运动的动能相等。当每个物 体受到大小相同的制动力时,它们的制动距离之比是( C ) A.1∶2∶3 B.12∶22∶32 C.1∶1∶1 D.3∶2∶1 8.质量为m,速度为υ的子弹,能射入固定的木板L深。设阻力不变,要使子弹射入木板3L深, 子弹的速度应变为原来的( D) A.3倍 B.6倍 C.3/2倍 D .3倍 9.粗细均匀,长为5m,质量为60kg的电线杆横放在水平地面上,如果要把它竖直立起,至少 要做______ _J的功(g=10m/s2)1500J 10.如图所示,在高为H的平台上以v0抛出球,不计空气阻力,当它到达离抛出点的竖 直距离为h的B点时,小球的动能增量为( D ) A.mv02/2 B.mv o2/2 +mgh C.mgH-mgh D.mgh 11、以10m/s的初速度竖直向上抛出一个质量为0.5kg的物体,它上升的最大高度为4m,设空气 对物体的阻力大小不变,求物体落回抛出点时的动能。15J 12、如图,物体置于倾角为370的斜面底端,在恒定的沿斜面向上的拉力F作用下, 由静止开始沿斜面向上运动。F大小为物重的2倍,斜面与物体间的动摩擦因数为 0.5,求物体运动5m时的速度大小。(g取10m/s2)10m/s

功能原理完整版

0 引 言 在物理学中,如何选择适当的参照系是非常重要的,在力学中通常选用惯性系,但有时也可选用非惯性系。功能原理在惯性系中成立,在非惯性系中作适当处理后也成立,有时用它解题很方便。本文就给出这样的例题。关于非惯性系参照系中,在《理论力学》中只是研究动力学方程,缺少的是非惯性系中的功能原理。本文经过推导得出质点系非惯性系的功能原理。 1 功能原理的研究 1.1 质点系的动能定理 质点系也是实际物体的一种理想模型,它可以当作有限个质点组成的一个系统。设一个质点系有N 个质点组成,其中第i 个质点的质量为m i ,第j 个质点作用在m i 上的力(内力)为f ij ,这N 个质点以外的其他物体作用在m i 上的合力(外力)为f i ,则由牛顿运动定律 ()1 1N i i i ij ij j dv m f f dt ==+-∑δ (1-1) 式中i v 是i m 的速度,而 10ij i j i j =?=? ≠?, 当, 当δ (1-2) 当i m 的位移为i dr 时,以i dr 点乘上式便得 ()( ) 212 1 1N i i ij ij i i i j f dr f dr d m v =+-=∑ δ (1-3) 将上式对所有的N 个质点求和,便得 ()21211111N N N N i i ij ij i i i i i j i f dr f dr d m v ====?? +-= ??? ∑∑∑∑ δ (1-4) 令 1 N i i i dA f dr == ∑ 外, (1-5) ()11 1N N ij ij i i j dA f dr ===-∑∑ 内δ, (1-6) 分别代表外力和内力作的功,则(1-4)可写作: 2121N i i i dA dA d m v =?? += ??? ∑外内。 (1-7) 这就是质点系的动能定理。 1.2质点系统的功能原理 质点系的内力可以分为保守内力和非保守内力。例如,质点系内各质点的万有引力是保守内力; 质点间的摩擦力是非保守内力。因而,质点系内力的功A 内可以写成保守内力的功(用符号A 内保 表

费马大定理是怎么证明的

费马大定理是怎么证明的 已故数学大师陈省身说道,20世纪最杰出的数学成就有两个,一个是阿蒂亚—辛格指标定理,另一个是费马大定理。当然,20世纪的重大数学成就远不止这两个,不过这两大成就却颇具代表性,特别是从科普的角度来看。 说实在的,数学虽然总是居于科学之首,可是一般人对数学可以说几乎一无所知,尤其是说到数学有什么成就、有什么突破的时候。理、化、天、地、生,门门都有很专门的概念、知识、技术,可不久之前的大成绩很容易就可以普及到寻常百姓家。激光器制造出来还不到50年,激光唱盘早已尽人皆知了,克隆出现不到10年,克隆这字眼已经满天飞了。即使人们不太懂黑洞的来龙去脉,一般人理解起来也不会有太大障碍。可是有多少人知道最新的数学成就呢?恐怕很难很难。数学隔行都难以沟通,更何况一般人呢。正因为如此,99%的数学很难普及,成百上千的基本概念就让人不知所云,一些当前的热门,如量子群、非交换几何、椭圆上同调,听起来就让人发晕。幸好,还有1%的数学还能对普通的人说清楚,费马大定理就是其中的一个。 费马大定理在世界上引起的兴趣就正如哥德巴赫猜想在中 国引起的热潮差不多。之所以受到许多人的关注,关键在于它们不需要太多的准备知识。对于费马大定理,人们只要知道数学中头一个重要定理就行了。这个定理在中国叫勾股定

理或商高定理,在西方叫毕达哥拉斯定理。它的内涵丰富,从数论的角度看就是求不定方程(即变元数多于方程数的方程)X2+Y2=Z2的正整数解。中国在很早已知(3,4,5)是这个方程的一个解,也就是32+42=52,其后也陆续得到其他解,最后知道它的所有解。这样,一个不定方程的问题得到圆满解决。 数学家的思想方向是推广,这个问题到了17世纪数学家费马的手中,就自然问,当指数变是3,4……时,又会怎样?这样费马的问题就变成不定方程Xn+Yn=Znn=3,4,……是否有正整数解的问题。费马误以为自己证明了对于所有n≥3的情形,这个方程(不妨称为费马方程)都没有正整数解,实际上,他的方法只证明n=4的情形。不过,这个他没有证明的定理还是被称为费马大定理。 这样一个叙述简单易懂的定理对于后来的数学家是一大挑战,其后200多年,数学家只是部分地解决了这个问题,可是却给数学带来丰富的副产品,最重要的是代数数论。原来的问题却成为一个难啃的硬骨头。20世纪初,有人悬赏10万德国马克,征求费马大定理的证明,成千上万的错误证明寄到评审机构那里,其中几乎没有什么真正的数学家。本书的第四章生动地描写了其中的故事。 有时我们把这些人称为业余数学爱好者,近来称之为民间科

相关文档
最新文档