中山大学一元微积分历年考研真题专业课考试试题

中山大学一元微积分历年考研真题专业课考试试题
中山大学一元微积分历年考研真题专业课考试试题

目 录2008年中山大学609一元微积分考研真题2009年中山大学611一元微积分考研真题2010年中山大学610一元微积分考研真题2011年中山大学620一元微积分考研真题2012年中山大学620一元微积分考研真题2013年中山大学620一元微积分考研真题2014年中山大学622一元微积分考研真题2015年中山大学622一元微积分考研真题2016年中山大学622一元微积分考研真题2017年中山大学621一元微积分考研真题2018年中山大学621一元微积分考研真题2019年中山大学621一元微积分考研真题

2008年中山大学609一元微积分考

研真题

高等数学考研知识点总结

高等数学考研知识点总结 一、考试要求 1、理解函数的概念,掌握函数的表示方法,会建立应用问题的函数关系。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形,了解初等函数的概念。 5、理解(了解)极限的概念,理解(了解)函数左、右极限的概念以及函数极限存在与左、右极限之间的关系。 6、掌握(了解)极限的性质,掌握四则运算法则。 7、掌握(了解)极限存在的两个准则,并会利用它们求极限,掌握(会)利用两个重要极限求极限的方法。 8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型 10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。1

1、掌握(会)用洛必达法则求未定式极限的方法。 二、内容提要 1、函数(1)函数的概念: y=f(x),重点:要求会建立函数关系、(2)复合函数: y=f(u), u=,重点:确定复合关系并会求复合函数的定义域、(3)分段函数: 注意,为分段函数、(4)初等函数:通过有限次的四则运算和复合运算且用一个数学式子表示的函数。(5)函数的特性:单调性、有界性、奇偶性和周期性* 注: 1、可导奇(偶)函数的导函数为偶(奇)函数。特别:若为偶函数且存在,则 2、若为偶函数,则为奇函数;若为奇函数,则为偶函数; 3、可导周期函数的导函数为周期函数。特别:设以为周期且存在,则。 4、若f(x+T)=f(x), 且,则仍为以T为周期的周期函数、 5、设是以为周期的连续函数,则, 6、若为奇函数,则;若为偶函数,则 7、设在内连续且存在,则在内有界。 2、极限 (1) 数列的极限: (2) 函数在一点的极限的定义: (3)

一元函数微积分学在物理学上的应用1

一元函数微积分学在物理学上的应用速度、加速度、功、引力、压力、形心、质心 用导数描述某些物理量1.速度是路程对时间的导数.加速度是速度对时间的导数。????(t),内转过的角度则物体在时刻?2.设物体绕定轴旋转,在时间间隔t0,t的???(t).(t)?角速度3.当物体的温度高于周围介质的温度时,物体就不断冷却,若物体的温度T与时间?(t).Tt 的冷却速度为t的函数关系为T=T(t),则物体在时刻??段干的质量为m?m(x),0点算起,则杆在点0,x x处的3.一根杆从一端??(x).(x)=m线密度是??这段 时间内通过导线横截面的电量为Q?Q(t4.一根导线在),0,t则导线?(t).t的电流强度 I(t)=Q在时刻5.某单位质量的物体从某确定的温度升高到温度T时所需的热量为 q(T),?(T).时的比热C(T)=q则物体在温度T???(t).t时刻的功率为w?w(t),6. 某力在0,t 则时间内作的功w例1 . 设有长为12cm的非均匀杆AB,AM部分的质量与动点M到端点A的距离x的平 方52成正比,杆的全部质量为360g,则杆的质量的表达式m(x)?x,杆在任一点2 ?(x)=5x M处的线密度 5522??(x)m?x)?x5,x(x)=(m(x)=kx解:?,令x?12,m360得k?,所以m22 ?dx)F(?wx)(xF a b所作的功到b变力沿直线运动从a变力作功: 例2(1)(功1.)一圆柱形的注水桶高为5m,底圆半径为3m,桶内盛满了水,试问要把桶内的水全部吸出需作多少功?解:作x轴如图所示取深度x为积分变量,它的变化区间为[0,5]相应于[0,上任一小区间5][x,x?dx]的一薄层水的高度为dx,因此如x的单位为m,2??dxkN,这薄层水的重力为9.8把这层水吸出桶外需作的功近似为 ?3?dx?x88dw??2525????3462(kJ?8dx?w?所求的功为?882x?82?)20. 例2(2)(功2)设有一半径为.R,长度为l的圆柱体平放在深度为2R的水池中,???1))(圆柱体的侧面与水面相切,设圆柱体的比重为(,现将圆柱体从水中移出水面,问需作多少功?解:分析:依题意就是把圆柱体的中心轴移至x?2R处,计算位于[x,x?1]上的体积微元移至[2R?x,2R?x?dx]时所作的微元功。由于在水面上方与下方所受力不同,所以应分开计算,注意到介于x与x?dx之间的体积微元为2222dx(长?宽lR??x2R高?x)dx?l?2它在水面下方需移动R?x,上方需移动R?x RR 2222????dxx?R?x2)R?xdx?l)R(w?2l(?1)?(Rx?R?RR

一元函数微分学教案

第二章 一元函数微分学 一、 导数 (一)、导数概念 1、导数的定义: 设函数)(x f y =在点0x 的某个邻域内有定义,当自变量在点0x 处取得改变量x ?时,函数)(x f 取得相应的改变量,)()(00x f x x f y -?+=?,如果当0→?x 时,x y ??的极限存在,即x y x ??→?0lim x x f x x f x ?-?+=→?)()(lim 000存在,则此极限值为函数)(x f 在点0x 的导数,可记作)(0x f '或|0x x y ='或|0x x dx dy =或|0 )(x x dx x df = 2、根据定义求导数的步骤(即三步曲) ①求改变量)()(x f x x f y -?+=? ②算比值 x y ??x x f x x f ?-?+=)()( ③取极限x y x f y x ??='='→?0lim )(x x f x x f x ?-?+=→?)()(lim 0 例1:根据定义求2 x y =在点3=x 处的导数。 解:223)3(-?+=?x y 2)(6x x ?+?= x x y ?+=??6 6)6(lim lim 0 0=?+=??→?→?x x y x x 3、导数定义的几种不同表达形式 ①x x x x x f x x f x f x ?+=??-?+='→?00000) ()(lim )(令 ②000)()(lim )(0x x x f x f x f x x --='→ 时 =当0)()(lim )(0000x x x f x f x f x ??-='→? ③x f x f f x )0()(lim )0(0-='→ 4、左右导数的定义: 如果当)0(0-+→?→?x x 时,x y ??的极限存在,则称此极限为)(x f 在点0x 为右导数(左

考研高等数学145分高手整理完整经典笔记(考研必备免费下载)

最新下载(https://www.360docs.net/doc/e23859953.html,) 中国最大、最专业的学习资料下载站转载请保留本信息 数学重点、难点归纳辅导 第一部分 第一章集合与映射 §1.集合 §2.映射与函数 本章教学要求:理解集合的概念与映射的概念,掌握实数集合的表示法,函数的表示法与函数的一些基本性质。 第二章数列极限 §1.实数系的连续性 §2.数列极限 §3.无穷大量 §4.收敛准则 本章教学要求:掌握数列极限的概念与定义,掌握并会应用数列的收敛准则,理解实数系具有连续性的分析意义,并掌握实数系的一系列基本定理。 第三章函数极限与连续函数 §1.函数极限 §2.连续函数 §3.无穷小量与无穷大量的阶 §4.闭区间上的连续函数 本章教学要求:掌握函数极限的概念,函数极限与数列极限的关系,无穷小量与无穷大量阶的估计,闭区间上连续函数的基本性质。 第四章微分 §1.微分和导数 §2.导数的意义和性质 §3.导数四则运算和反函数求导法则 §4.复合函数求导法则及其应用 §5.高阶导数和高阶微分 本章教学要求:理解微分,导数,高阶微分与高阶导数的概念,性质及相互关系,熟练掌握求导与求微分的方法。 第五章微分中值定理及其应用 §1.微分中值定理 §2.L'Hospital法则 §3.插值多项式和Taylor公式 §4.函数的Taylor公式及其应用 §5.应用举例

§6.函数方程的近似求解 本章教学要求:掌握微分中值定理与函数的Taylor公式,并应用于函数性质的研究,熟练运用L'Hospital法则计算极限,熟练应用微分于求解函数的极值问题与函数作图问题。 第六章不定积分 §1.不定积分的概念和运算法则 §2.换元积分法和分部积分法 §3.有理函数的不定积分及其应用 本章教学要求:掌握不定积分的概念与运算法则,熟练应用换元法和分部积分法求解不定积分,掌握求有理函数与部分无理函数不定积分的方法。 第七章定积分(§1 —§3) §1.定积分的概念和可积条件 §2.定积分的基本性质 §3.微积分基本定理 第七章定积分(§4 —§6) §4.定积分在几何中的应用 §5.微积分实际应用举例 §6.定积分的数值计算 本章教学要求:理解定积分的概念,牢固掌握微积分基本定理:牛顿—莱布尼兹公式,熟练定积分的计算,熟练运用微元法解决几何,物理与实际应用中的问题,初步掌握定积分的数值计算。 第八章反常积分 §1.反常积分的概念和计算 §2.反常积分的收敛判别法 本章教学要求:掌握反常积分的概念,熟练掌握反常积分的收敛判别法与反常积分的计算。 第九章数项级数 §1.数项级数的收敛性 §2.上级限与下极限 §3.正项级数 §4.任意项级数 §5.无穷乘积 本章教学要求:掌握数项级数敛散性的概念,理解数列上级限与下极限的概念,熟练运用各种判别法判别正项级数,任意项级数与无穷乘积的敛散性。 第十章函数项级数 §1.函数项级数的一致收敛性 §2.一致收敛级数的判别与性质 §3.幂级数

一元函数微分学习题

第二部分 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107—135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量. (D) y y d -?是比h 高阶的无穷小量. 答D 2.已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件。 (C )充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈?≤x x x f ,则0=x 必是

)(x f 的( ) (A )间断点。 (B )连续而不可导的点。 (C )可导的点,且0)0(='f 。 (D )可导的点,但0)0(≠'f 。 答C 6.设函数f(x)定义在[a ,b]上,判断何者正确?( ) (A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A )0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f = )(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x

考研数学之微积分在经济学中的应用

考研数学之微积分在经济学中的应用 来源:文都教育 这一部分内容,数一和数二都不考,只有数三考试,考试内容比较简单。这一部分和常微分方程联系紧密,只要常微分法方程学的好,这一部分都不会困难,主要是计算量比较大一些。一下是文都数学老师总结的这一部分的主要内容,希望对数三考生有所帮助。 一、 差分方程 1、定义 设函数).(t y y t = 称改变量t t y y -+1为函数t y 的差分, 也称为函数t y 的一阶差分, 记为t y ?, 即t t t y y y -=?+1 或 )()1()(t y t y t y -+=?. 一阶差分的差分称为二阶差分t y 2?, 即 t t t t y y y y ?-?=??=?+12)(.2)()(12112t t t t t t t y y y y y y y +-=---=+++++ 类似可定义三阶差分, 四阶差分,…… ),(),(3423t t t t y y y y ??=???=? 2、差分方程的概念 一般形式:0),,,,,(2=???t n t t t y y y y t F 或.0),,,,,(21=+++n t t t t y y y y t G 差分方程中所含未知函数差分的最高阶数称为该差分方程的阶. 特别的,称1(x)y (x)x x y P f ++=为一阶差分方程,同样的,(x)0f ≠为非齐次的,反之为其次的;若为常数,我们称之为一阶常系数差分方程. 3、一阶常系数线性差分方程的解法 一阶常系数线性差分方程的一般形式为:)(1t f ay y t t =++, 其中常数0≠a ,)(t f 为t 的已知函数,当)(t f 不恒为零时,称为一阶非齐次差分方程; 当0)(≡t f 时,差分方程:01=++t t ay y 称为与一阶非次线性差分方程对应的一阶齐

一元微积分的应用

第九讲 一元微积分的应用 §1 函数单调增减性的判别 定理:设函数()f x 在(),a b 内恒有()'0f x >(()'0f x <),则()f x 在(),a b 内是单调增 的(或单调减的),记为: (或 )。 注意:个别点处()'0f x =不影响()f x 的单调性。 例:3'2,3,0y x y x x ===时'0y =,但是3y x = 应用: 一.判别单调性: 例1:设函数()f x 在[]0,a 0a ≥连续,()0f x =。在()0,a 内可导,()'f x 单调增, 令()()f x F x x =。证明:在()F x 在()0,a 内单增。 证明:()()() ()'00f x f x f xf x ξξ=- <<= 拉氏定理 ()()()()()()()()' ' ' ''' ' 2 2 f x xf x f x xf x xf f x f F x x x x x ξξ---??==== ≥???? ( ()' f x 单调增,0x >) ; 故在()F x 在()0,a 内单增。 二.求单调区间 例2:设()() 1 10x f x dt x ?= > ? ? ,求()f x 的单减区间。 解:()' 1f x =()' 0f x =1x ?=; ∴当()0,1x ∈时,()' 0f x <,所以()f x 单调减; 当()1,x ∈∞时,()' 0f x >,所以()f x 单调增; ∴()f x 的单减区间为:()0,1或者(]0,1。 三.证明不等式 例3:证明:1x >时,() ()2 2 1ln 1x x x ->- 证明:令:()() ()2 2 1ln 1F x x x x =---,则:

一元函数微积分学内容提要

第四部分 一元函数微积分 第11章 函数极限与连续[内容提要] 一、函数:(138-141页) 1、函数的定义:对应法则、定义域的确定、函数值计算、简单函数图形描绘。 2、函数分类:基本初等函数(幂函数、指数函数、对数函数、三角函数、反 三角函数的统称);复合函数([()]y f x ?=);初等函数(由常数和基本初等函数构成的,且只能用一个式子表达的函数);分段函数;隐函数;幂指函数(()()g x y f x =);反函数。 3、函数的特性:奇偶性;单调性;周期性;有界性. 二、极限: 1、极限的概念:(141-142页) 定义1:(数列极限)给定数列{}n x ,如果当n 无限增大时,其通项n x 无限趋向 于某一个常数a ,即a x n -无限趋近于零,则称数列{}n x 以a 的极限,或称数列{}n x 收敛于a ,记为a x n n =∞ →lim ,若{}n x 没有极限,则称数列{} n x 发散。 定义2:(0x x →时函数)(x f 的极限)设函数)(x f 在点0x 的某一去心邻域0(,) U x δo 内有定义,当x 无限趋向于0x (0x x ≠)时,函数)(x f 的值无限趋向于 A ,则称0x x →时, )(x f 以A 为极限,记作A x f x x =→)(lim 0 。 左极限:设函数)(x f 在点0x 的左邻域00(,)x x δ-内有定义,当0x x <且无限趋向 于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的左极限为A ,记作0 0(0)lim ()x x f x f x A -→-==。 右极限:设函数)(x f 在点0x 的右邻域00(,)x x δ+内有定义,当0x x >且无限趋向 于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的右极限为A ,记作0 0(0)lim ()x x f x f x A +→+==。 定义3:(x 趋于无穷大时函数)(x f 的极限)设)(x f 在区间)0(>>a a x 时有定义, 若x 无限增大时,函数)(x f 的值无限趋向于常数A ,则称当∞→x 时,

微积分(经济类)考研真题

1. .使得试补充定义设)1() 1,2 1 [,)1(1sin 11)(f x x x x x f ∈--+=πππ6.._____)1ln 1[lim 20 =++→x x x 极限](/03数四考研题 5.3.设常数a ≠ 1 2 ,则∞n lim →ln [ ] n na n a 21 12() -+-n =( ). 02数三、四考研题 1.设对任意的总有且则(A)(B)(C)(D)存在且等于零.存在但不一定等于零.一定不存在. 不一定存在. )()(x x ?≤≤x ,g x f )(,x lim ∞ →x g )(=-)(x ?[]0, x lim ∞ →x f )(( ). 00数三考研题 . ______2 lim ,0,02.3 0=+>>→x x x x b a b a 则均为常数若00数四考研题 (D)(C)(B)(A)x x f x g f x f ( ). )()()0()('有可去间断点在有跳跃间断点在存在且为不恒等于零的奇函数设=则函数,,;; ;. 4.03数三考研题 处左极限不存在处右极限不存在x =0x =0x =0x =0) (考研真题一 上连续在 ] 1,21[)(x f .03数三考研题 上连续在使 试补充定义设] 0, 2 1 [ )()0(0,2 1,)1(1 )(x f f x x x f ∈---=π.7.03数四考研题1x πsin 1x π](.__________,,5)(cos sin lim 8.0 ===--→b a b x a e x x x 则若04数三、四考研题 得( ). )2)(1()2sin(||)(9.2 x x x x x x f ---=在下列哪个区间内有界函数);1,0((B));0,1((A)-); 2,1((C)). 3,2((D)04数三、四考研题 2. .,),()(10.且 内有定义在设x f +∞-∞04数三、四考研题 .0)((D); )(0(C);)(0(B);)(0(A)( ). ,0, 0, 0,1)(, )(lim 的取值有关处的连续性与在点的连续点必是的第二类间断点必是的第一类间断点必是则a x x g x g x x g x x g x x x x f x g a x f x ====???? ?=≠==∞ →) (11.极限.________1 2sin lim 2=+∞ →x x x x 05数三、四考研题 12.________. 1lim )1(=?? ? ??+-∞ →n n n n 06数三、四考研题 13.当+→0x 时,与 x 等价的无穷小量是( ). (A)x e -1; )1ln x +; 11-+x ; x cos 1-.(B)(C) (D)(07数三、四考研题 =- +-11lim x e e _____________.32cos 0x x 17. 18.当0→x 时,ax x x f sin )(-=与)1ln()(2bx x x g -=为等价无穷小,14.设函数??? ? ?>≤+=c x c x x x f ,2,1)(2在),(+∞-∞则. _____=c x 内连续,设,0b a <<则n n n n b a 1) (lim --∞ →+(A) ; a (B); 1-a (C) ; b (D) . 1-b 15.( ).等于16.设某企业生产线上产品合格率为0.96, 不合格产品中只有 4 3 进行再加工且再加工的合格率为0.8,其余均为废品80元20元2万元, 每件合格品获利, 每件废品亏损, , 问企业每天至少生产多少产品, ? 为保证该企业每天平均利润不低于产品可08四考研题 08数三、四考研题 08四考研题09数三考研题

第四章 一元函数微积分的应用

第四章一元函数微积分的应用 内容提要:一元函数微分学的应用很广:导数与切线的关系直接从导数的定义上就可以得到,它也进一步反应了微分学的基本思想:“以曲代直”;导数与单调性的关系是中值定理的推论,它不但可以帮助我们很方便地计算函数的单调区间,还是我们证明很多不等式的重要思路;函数的极值点与拐点是重要的考点,考生需要理解并掌握它们的定义和判别定理,它们也都可以通过函数的单调性来理解。一元函数微分学的应用在考试中出现的频率很高,但总体难度不大,只要记住相应的定理和计算公式即可。 定积分的应用分为几何应用和物理应用两部分。几何应用包括通过定积分计算平面图形的面积、平面曲线的弧长、旋转体的体积和侧面积;物理应用主要是通过定积分计算一些物理量:变力做的功,液体的静压力,平面图形的质心或形心等。定积分的应用的理论基础是定积分的定义,它的基本思想是微元法,微元法可以概括为分割、近似、求和、取极限,其中近分割和近似是这四步的关键。考生复习时应该掌握常见的几何量和物理量的计算公式,同时还要深入理解微元法的思想,对主要公式要掌握其推导过程。 第一节导数的应用 Ⅰ考点精讲 1.导数与切线 设函数可导,则曲线在任意一点的切线斜率等于该点的导数值。也就是说,曲线在处的切线方程可表示为,该点的法线方程可表示为。 2.单调性定理:设函数在上连续,在上可导。 (1)如果在上有,那么函数在上单调递增。 (2)如果在上有,那么函数在上单调递减。

(单调性定理也是中值定理的推论,考生可以尝试自行推导) 3.函数极值点及其判定方法 1).极值点 设函数在点的某领域内有定义,如果对任意的,有 ,则称是函数的一个极大值(或极小值)。2).极值点的判别定理 a.(必要条件)设函数在处可导,并在处取得极值,那么。(罗尔定理 的推论) b.(第一充分条件)设函数在处连续,并在的某去心邻域内可导。 ⅰ)若时,而时,则在处取得极大值; ⅱ)若时,而时,则在处取得极小值; ⅲ)若时,符号保持不变,则则在处没有极值; c.(第二充分条件)设函数在处存在二阶导数且,那么 ⅰ)若则在处取得极小值; ⅱ)若则在处取得极大值。 4.函数的凹凸性 1)凹函数与凸函数的定义

一元函数微分学练习题(答案)

一元函数微分学练习题答案 一、计算下列极限: 1.93 25 235lim 222-=-+=-+→x x x 2.01)3(3)3(13lim 2 2223=+-=+-→x x x 3.x x x 11lim --→) 11(lim )11()11)(11(lim 00+--=+-+---=→→x x x x x x x x x 21 1 011 1 11lim -=+--= +--=→x x 4.0111 111lim )1)(1()1(lim 112lim 1212 21=--+-=-+=-++=-++-→-→-→x x x x x x x x x x x 5.21 )23()124(lim 2324lim 202230=++-=++-→→x x x x x x x x x x x x 6.x t x t x t x x t x t x t x t t t 2)2(lim ) )((lim )(lim 00220-=--=--+-=--→→→ 7.0001001311 1lim 13lim 4 2322 42=+-+=+-+ =+-+∞ →∞→x x x x x x x x x x 8.943)3(2) 13()31()12(lim )13()31()12(lim 10 82108 210 108822=-?=---=---=∞→∞→x x x x x x x x x x x 原式 9.2)211(lim 22 11)211(1lim )21...41211(lim =-=-- =++++∞→∞→∞→n n n n n n 10.21 2lim 02tan lim 3sin lim )2tan 3sin (lim 0000=+=+=+ →→→→x x x x x x x x x x x x x x 11.01 sin lim 20=→x x x (无穷小的性质)

考研高等数学全面复习资料电子版

高等数学考研复习资料,最全篇,适合于一遍,二遍复习研究细节,祝你考研数学春风得意马,突破130分大关! 目录 一、函数与极限 ········································································错误!未指定书签。 1、集合的概念····································································错误!未指定书签。 2、常量与变量····································································错误!未指定书签。 2、函数·············································································错误!未指定书签。 3、函数的简单性态······························································错误!未指定书签。 4、反函数··········································································错误!未指定书签。 5、复合函数·······································································错误!未指定书签。 6、初等函数·······································································错误!未指定书签。 7、双曲函数及反双曲函数·····················································错误!未指定书签。 8、数列的极限····································································错误!未指定书签。 9、函数的极限····································································错误!未指定书签。 10、函数极限的运算规则 ······················································错误!未指定书签。

一元微积分在经济上的运用

一元微积分在经济上的运用 近几年来,我国的经济学界和经济部门越来越意识到用数学方法来解决经济问题的重要性,正在探索经济问题中应用数学的规律。鹤壁职业技术学院李兰军老师在《商场现代化》2008年10月(下旬刊)上作了概率统计在经济问题中的应用研究。实践证明,一元微积分也是对经济和经济管理问题进行量的研究的有效工具。本文将利用一元微积分方法解决一些经济问题,分析生产量、成本与利润和需求量(销售量)、价格与收益的关系,研究怎样确定或变动产品的生产量、销售量,以及商品的价格。 一、微分在经济学中的应用 由微分的定义知,当很小时,有近似公式,而所以,这个公式可用来计算函数在某一点附近的函数值的近似值。 例1设某国的国民经济消费模型为。其中:y为总消费(单位:十亿元);x为可支配收入(单位:十亿元)。当x=100.05时,问总消费是多少? 解令因为相对于较小,可用上面的近似公式来求值。 由此可以通过统计可支配收入来预测总消费是多少,以便确定产品的生产量。 二、最值在经济学中的应用 在经济分析中,经常遇到利润最大,成本最低等问题 1.最大利润问题 利润是衡量企业经济效益的一个主要指标。在一定的设备条件,如何安排生产才能获得最大利润,这是企业管理中的现实问题。 例2某厂生产某种产品,其固定成本为3万元,每生产一百件产品,成本增加2万元。其总收入R(单位:万元)是产量q(单位:百件)的函数,,求达到最大利润时的产量。 解由题意,成本函数为,于是,利润函数 , 令,得(百件).又,所以当时,函数取得极大值,因为这里极值点是惟一的,所以极大值又是最大值,即产量为300件时取得最大利润。 2.最小成本问题 例3 已知某个企业的成本函数为:, 其中C——成本(单位:千元)q——产量(单位:t).求平均可变成本y(单位:千元/t)的最小值。 解平均可变成本,令,得。 又,所以时,y取得极小值,由于因为这里极值点是惟一的,所以极小值又是最小值。(千元/t), 即产量为4.5t时平均可变成本取得最小值9750元/t. 导数概念在经济学中有两个重要的应用——边际分析和弹性分析。 1.边际分析 边际概念是经济学中的一个重要概念,一般指经济函数的变化率。当经济函数的自变量改变很小时,经济函数的边际函数是指它的导函数。利用导数研究经济变量的边际变化的方法,称为边际分析方法。 例4设某产品的需求函数为q=100-5p,求边际收益函数,以及q=20,50和70时的边际收益。 解收入函数为R(q)=pq,式中的销售价格p需要从需求函数中反解出来,即, 于是收入函数为,边际收入函数为,

一元函数微积分基本练习题及答案

一、极限题 1、求.)(cos lim 2 1 0x x x → 2、6 sin )1(lim 2 2 x dt e x t x ?-→求极限。 3、、)(arctan sin arctan lim 20x x x x x -→ 4、2 1 0sin lim x x x x ?? ? ??→ 5、? ?+∞ →x t x t x dt e dt e 0 20 2 2 2)(lim 6、 ) 1ln(1 lim -→+x e x x 7、x x x e x cos 11 20 ) 1(lim -→+ 8、 x x x x x x ln 1lim 1+--→ 9、) 1ln()2(sin ) 1)((tan lim 2 30 2 x x e x x x +-→ 10、1 0lim( )3 x x x x x a b c →++ , (,,0,1)a b c >≠ 11、)1)(12(lim 1--+∞ →x x e x 12、 )cot 1(lim 2 20x x x -→ 13、[] )1(3sin 1 lim 11x e x x ---→ 14、() ?? ???=≠+=0 021)(3 x A x x x f x 在0=x 点连续,则A =___________ 二、导数题 1、.sin 2 y x x y ''=,求设 2、.),(0y x y y e e xy y x '==+-求确定了隐函数已知方程 3、.)5()(2 3 的单调区间与极值求函数-=x x x f 4、要造一圆柱形油罐,体积为V ,问底半径r 和高h 等于多少时,才能使表面积最小, 这时底直径与高的比是多少?

考研高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 222 2 12211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '--='-='? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞ ∞或00型,)()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

考研数学常用微积分公式背诵表

()/ x μ=1x μμ- ()/x a =ln x a a () / x e =x e ()/ log a x = 1 ln x a () / ln x = 1x () / sin x =cos x ()/ cos x =sin x - ()/ tan x =2sec x ()/ cot x =2 csc x - ()/ sec x =sec tan x x () / csc x =csc cot x x - ()/ arcsin x = () / arccos x =()/ arctan x = 2 1 1x + ()/ arccot x =211x -+ () / uv =//u v uv + / u v ??= ??? // 2 u v uv v - kdx =?kx x dx μ =?1 1x μμ++ dx x =?ln x 21dx x =+?arctan x =arcsin x cos xdx =?sin x sin xdx =?cos x - 2 sec xdx =?tan x 2 c cs xdx =?cot x - sec tan x xdx =?sec x csc cot x xdx =?csc x - x e dx =?x e x a dx =?ln x a a tan xdx =?ln cos x - cot xdx =?ln sin x sec xdx =?ln sec tan x x + csc xdx =?ln csc cot x x - 22 1dx x a =+?1arctan x a a 22 1 dx x a =-?1ln 2x a a x a -+ = ln x =arcsin x a 等价无穷小()0x → sin ~x x tan ~x x arcsin ~x x arctan ~x x ln(1)~x +x 1~x e -x 1cos ~ x -212x 1~1 2 x 1~x a -ln x a 渐近线k =() lim x f x x →∞ b =()lim x f x kx →∞-??? ? 曲率k = () // 3/22 1y y +

第五章 一元函数微积分的应用(完整资料).doc

【最新整理,下载后即可编辑】 第五章 一元微积分的应用 5.1 函数图象的几何性质 一 基本概念 定义1 极值点与极值: (1)极大值点(极小值点):函数()y f x =在0x 的某邻域内有定义,若0()x U x ?∈有 0()()f x f x <(0()()f x f x >), 则称0x 为()f x 的极大值点(极小值点);函数值0()f x 为()f x 的极大值(极小值). (2)极大值点和极小值点统称为极值点;极大值和极小值统称为极值. 定义2 凸凹函数: 函数()f x 在I 上有定义,若对任意的12,x x I ∈,有 1212()() ( )22 x x f x f x f ++<12 12()()()22x x f x f x f ++??> ? ?? (1) 则称()f x 在区间I 上是凹函数(凸函数). 公式(1)可以改写为: 1212()()() f x x f x f x αβαβ+<+1212()()() f x x f x f x αβαβ+>+ (2) 其中,(0,1)αβ∈,且1αβ+=. 定义3 拐点: 如果函数()f x 在点0x 的左右邻域的凸凹性不同,则称点00(,())x f x 是函数()f x 的拐点; 定义4 渐近线: 若曲线()y f x =上的点M ,沿曲线无限远离原点时,它与定直线L 的距离趋于零,则称直线L 就是曲线()y f x =的渐近线。 注1 极值点和最值点的区别和联系: (1)极值点未必是最值点,最值点也未必是极值点; (2)最值点若是在区间内部,最值点就是极值点;

(3)若函数在定义域区间内仅有唯一极值点,则此极值点就是最值点. 注2 拐点是曲线上的点00(,())x f x ,并非是数轴上的点0x x =. 二 基本方法 1 求极值点 有两类点可能成为极值点:导数等于0的点和导数不存在的点(仅仅可能是极值点). 判断上述两类点是否为极值点的具体方法: (1)几何方法:若0x 的左右邻域的单调性不同,则0x 是极值点,0()f x 是极值; 在0x 的左邻域00(,)x x δ-上,()0f x '>;在0x 的右邻域00(,)x x δ+上,()0f x '<,0x 为极大值点. 在0x 的左邻域00(,)x x δ-上,()0f x '<;在0x 的右邻域00(,)x x δ+上,()0f x '>,0x 为极小值点. (2)代数方法:求0x 的导数,若0()f x '=(1)00()()0n f x f x -''===,而()0()0n f x ≠,则 (a) 如果n 是偶数,0x 是极值点,若()0()0n f x >,0x 是极小值点,若()0()0n f x <,0x 是极大值点; (b) 如果n 是奇数,0x 不是极值点. 2 求函数()y f x = 的单调区间 (1)求函数()f x 的定义域; (2)在定义域内求出一阶导函数()f x '等于零的点和一阶导函数不存在的点; (3)用上述两类点将定义域分成若干区间,并判断导函数()f x '在每个区间的符号,从而得到单调区间. 3 求函数()y f x = 在区间[,]a b 或(,)a b 上的最值: 具体方法:求函数()f x 在闭区间[,]a b 上一阶导函数等于0点和一阶导函数不存在的点:令12,,,n x x x ,则函数()y f x =在[,]a b 的

考研数学:微积分公式汇总教材

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员!考研数学:微积分公式汇总

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员!

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员!

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员!

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员!

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 凯程考研: 凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。 凯程考研的宗旨:让学习成为一种习惯; 凯程考研的价值观:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿; 使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上; 敬业:以专业的态度做非凡的事业; 服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。 特别说明:凯程学员经验谈视频在凯程官方网站有公布,同学们和家长可以查看。扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。 如何选择考研辅导班: 在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。 师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。还要深入了解教师的学术背景、资料著述成就、辅导成就等。凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。 对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师

相关文档
最新文档