完整版变化率问题与导数的概念导学案

完整版变化率问题与导数的概念导学案
完整版变化率问题与导数的概念导学案

第1课时 变化率问题与导数的概念

a 课得学□目标

1. 通过物理中的变化率问题和瞬时速度引入导数的概念

2. 掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤

3.

通过构建

导数概念,使学生体会极限思想,为将来学习极限概念积累学习经验 ?

4. 通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的 重要过

程.

?iJLil ML It*

从it 申豊代 知识徉系梳理

借助多媒体播放2012年伦敦奥运会中国跳水运动员陈若琳夺得女子单人 10米跳台冠军

的视频?上节课我们已经学习了平均变化率的问题 ,我们知道运动员的平均速度不一定能够

反映她在某一时刻的运动状态

,而运动员在不同时刻的运动状态是不同的

,我们需要借助于

瞬时速度这样的量来刻画,那么我们如何才能求出运动员在某一时刻的瞬时速度呢

问题1:根据以上情境,设陈若琳相对于水面的高度 h (单位:m)与起跳后的时间t (单 位:s)存在函数关系 h (t )=-4. 9t 2+6. 5t+10,如果用她在某段时间内的平均速度描述其运动 状态,那么:

(1)在O W t <0.5这段时间里,运动员的平均速度v =

(2)在1< t <2这段时间里,运动员的平均速度■-= ______________________ .

问题2:函数y=f (x )从X 1到X 2的平均变化率公式是 _________________ .如果用X 1与增量△ x 表示,平均变化率的公式是 ______________ .

问题3:函数f (x )在x=x o 处的瞬时变化率的定义:一般地,函数y=f (x )在x=x o 处的瞬时变

第一章导数及其应用

匕知识记忆与理解

-

化率是 =

,我们称它为函数

y=f (x )在x=x o 处的导数,记作f (x o )或y ,

Ar —HIJ E J T -*D

ir

二殆

即 f'(X o )=二鶴 ~ .

问题4:在导数的定义中,对△ X T 0的理解是:△ x>0, △ x<0,但_____________ .

如哄鬥削也,旳氧覃盘化

基础学习交流

__ 2

1. 已知函数 y=f (x ) =x +1,当 x=2, △ x=0.1 时,△ y 的值为(

).

A 0.40

B . 0.41

C0. 43

D 0. 44

2. 设函数 f (x )在点x o 附近有定义,且有f (x o +A x ) -f (x 0)=a A x+b ( △ x ) (a , b 为常数),则 ( ).

Af (x ) =a Bf (x ) =b C.f (x °)=a D.f' (x °)=b

3. ____________________________________________________ 一质点按规律s ( t ) =2t 2运动,则在t= 2时的瞬时速度为 _______________________________________ .

4. 求y=2x +4x 在点x=3处的导数.

£点难点探究

??-

求平均变化率

_ 2 _____________________________________________________________________

(1)已知函数f (x )=-x +x 的图象上的一点

A (-1, -2)及附近一点 耳-1 + A x , - 2+A y ),则

(2)求y=x 2在x=X 0附近的平均变化率

求物体运动的瞬时速度

若一物体运动方程为s =:爲4^(

思维探究与创新-

早学色*視不讲

求此物体在t= 1和t= 4时的速度.

导数定义的应用 已知f (x °)=2,求

.

A —D

才港

it 为您■削力鼻律牝

,思维拓展应用

GD"

函数y=5x 2+6在区间[2,2 +△ x ]内的平均变化率为 _____ .

5閉二

质点M 按规律s (t )=at 2+1作直线运动(位移单位:m,时间单位:s),若质点M 在t=2 s 时 的瞬时速度为8 m/s,求常数a 的值

.

1. 自变量x 从X 0变到

X i 时,函数值的增量与相应自变量的增量之比是函数

( )?

A 在区间[x o , x i ]上的平均变化率

B.在x o 处的变化率 C 在x i 处的变化量

D 在区间[X o , x i ]上的导数 2.

函数f (x )=x 2在x o 到x o +A x 之间的平均变化率为 k i ,在x o - △ x 到

x o 之间的平均变化率为 k 2,则k i , k 2的大小关系是( ).

Ak i >k 2

B k i =k 2

C k i

D 无法确定

3. (i)设函数y=f (x ),当 兰自变量x

由x o 变化到

x o +A x 时,函数值的改变量

A y

数 y=f (x ) =3x 2,

A y=f (i +A x )-f (i)= 5

/U

'區甕=

,f'(i)=

.

4.

已知自由下落物体的运动方程是 s= gt 2( s 的单位是m,t 的单

位是s),求:

(1) 物体在t o 到t o +A t 这段时间内的平均速度; (2) 物体在t o 时的瞬时速度;

⑶物体在t o =2 s 到t i =2. i s 这段时间内的平均速度; ⑷ 物体在t=2 s 时的瞬时速度.

全新视角拓展

__

3

求函数f (x ) =x +2x+i 在x o =i 处的导数f (i).

3

已 知 f (x )=x-8x ,

贝U 殳也

|

ide

考题变式(我来改编):

思维导图构建

求雷嫂值的塔蜃g 松1出臥)

廝歌的甲却变牝牢—1

一求学数歩■卜

十平购变化卓?严宀加

愛連运成的

n 时產鹰」

A A K

导 珀dm 牡

f

JU —2

学习体验廿拿

第一章导数及其应用

第1课时 变化率问题与导数的概念

知识体系梳理

问题 1:(1)

:'九

=4. 05 m/s (2)

:;

T ;

「'

=-8.2 m/s

士如[讥%J

Hr

—卄一

...."卄蚯矶吋

冋题3: \ —: ----------- 问题4: △ x 工0

基础学习交流

2 2

第 E9S?

总结评价与反思-

昭学図■不址不

1L

问题

1. B T x=2, △x=0.1,二△y=f(x+A x)-f (x)=f(

2. 1)-f (2) =(2.1 +1)-(2 +1) =0.41.

二物体在t= 1和t=4时的瞬时速度分别是

6和6.

2. C 二=

' =a+b A x , f' (x o)=b.;::「=、i“(a+b A x )=a.

2 2 2

3. 8 s (2 +A t )-s (2) =2(2 +A t ) -2X 2 =2( A t ) +8A t ,

2 2 2

4.解:A y=2(3 + A x ) +4(3 +A x ) -(2 X 3 +4X 3) =2( A x ) +16A x , ]=2A x+16,

=i (2 A x+16) =16,

即 y'| X =3=16. 重点难点探究

【解 析】

2 2 2

(1) v A y=f (-1+A x ) -f (-1)=-(-1 + A x ) +(- 1 + A x )-[-(-1) +(-1)] =-( A x ) +3 A x ,

?[ =^£=- A x+3

⑵ 因为 A y=(x o +A x )2-彳,所以壬= _

=2x 0+ A x ,所以y=x 2在X =X O 附近的平均变化

率为 2x 0+ A x.

【小结】1.本题需利用平均变化率的定义来解决

,但要注意A x 可正、可负、不可为零,

A y 可正、可负、可为零 .

2. 求平均变化率可根据定义代入公式直接求解

,解题的关键是弄清自变量的增量 A x 与

函数值的增量 A y ,求平均变化率的主要步骤是

(1) 先计算函数值的改变量 A y=f (X" -f (x o ). (2) 再计算自变量的改变量 A X =X 1-X 。.

探究二:【解析】当t=1时,s=3t 2+2,

2 2

A s=s (t+ A t )-S (t )=3(1 +A t ) +2-(3+2) =6 A t+3( A t ),

二 v=b::.-=

----- -- =[上!‘」(6+3 A t)=6. 虫 Jim 、 T

2

当 t=4 时,S =29+3( t- 3),

2 2 2

A s=s (t+ A t )-S (t )=29+3(4 + A t- 3) -29-3(4-3) =3( A t ) +6 A t ,

v= =

? -

_ = (3 A t+ 6) =6.

Jr

=(2 A t+8)=8.

(3)得平均变化率

导数的概念导学案

导数的概念导学案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

预习目标:“导数的概念”了解瞬时速度的定义,能够区分平均速度和瞬时速 度,理解导数(瞬时变化率)的概念 预习内容: 问题1 我们把物体在某一时刻的速度称为________。一般地,若物体的运动规律为 )(t f s =,则物体在时刻t 的瞬时速度v 就是物体在t 到t t ?+这段时间内,当_________时平均速度的极限,即t s v x ??=→?0lim =___________________ 问题2 函数y =f (x )在x =x 0处的瞬时变化率是: 000 0()()lim lim x x f x x f x f x x ?→?→+?-?=?? 我们称它为函数()y f x =在0x x =处的______,记作'0()f x 或________,即___________________________________________________________. 提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑? 课内探究学案 一:探究求导数的步骤: (即________变化率) 二:精讲点拨 例1(1)求函数23x y =在1=x 处的导数. (2)求函数x x x f +-=2)(在1x =-附近的平均变化率,并求出该点处的导数. 三:有效训练 求22+=x y 在点x=1处的导数. );()()1(00x f x x f y -?+=?求增量;)()()2(00x x f x x f x y ?-?+=??算比值时)(在求0.)3(0→???='=x x y y x x

偏导数的几何意义

偏导数的几何意义 实验目的:通过实验加深学生对偏导数定义的理解掌握偏导数的几何意义并从直观上理解二阶混合偏导数相等的条件 背景知识: 一偏导数的定义 在研究一元函数时.我们从研究函数的变化率引入了导数概念.对于多元函数同样需要讨论它的变化率.但多元函数的变化量不只一个,因变量与自变量的关系要比一元函数复杂的多. 所以我们首先考虑多元函数关于其中一个自变量的变化率,以二元函数= 为例, 如果只有自变量变化,而自变量y固定(即看作常量),这时它就是的一元函数,这函数对x 的导数,就称为二元函数z对于的偏导数,即有如下定义 定义设函数z= 在点的某一邻域内有定义,当y固定在,而在 处有增量时,相应的函数有增量 - , 如果 (1) 存在,则称此极限为函数= 在点处对的偏导数,记做 , , ,或 例如,极限(1)可以表为 = 类似的,函数z= 在点处对的偏导数定义为

记做, , 或 如果函数= 在区域D内每一点( )处对的偏导数都存在,那么这个偏导数就是的函数,它就称为函数= 对自变量的偏导函数,记做 , , ,或 类似的,可以定义函数= 对自变量的偏导函数,记做 , , ,或 由偏导数的概念可知, 在点处对的偏导数显然就是偏导 函数在点处的函数值,就像一元函数的导函数一样,以后在不至于混淆的地方也把偏导函数简称为偏导数. 至于求= 的偏导数,并不需要用新的方法,因为这里只有一个自变量在变动,另外一个自变量看作是固定的,所以仍旧是一元函数的微分法问题,求时,只要把暂时看作常量而对求导;求时,则只要把暂时看作是常量,而对求导数. 偏导数的概念还可以推广导二元以上的函数,例如三元函数在点( )处对的偏导数定义为

人教版高中数学全套教案导学案111变化率问题

1. 1.1变化率问题课前预习学案。知道平均变化率的定义。,课本中的问题1,2 预习目标:“变化率问题”预习内容:气球膨胀率问题1 气球,,随着气球内空气容量的增加我们都吹过气球回忆一下吹气球的过程,可以发现 ,如何描 述这种现象呢?的半径增加越来越慢.从数学角度43?r?r)V(dmVL r)气球的体积:(单位:之间的函数关系是)与半径(单位33V?)r(V V r,如果将半径那么表示为体积的函数3?4在吹气球问题中,当空气容量V从0增加到1L时,气球的平均膨胀率为__________ 当空气容量V从1L增加到2L时,气球的平均膨胀率为__________________ 当空气容量从V增加到V时,气球的平均膨胀率为_____________21问题2 高台跳水 h 与起跳后)单位:m在高台跳水运动中,,运动员相对于水面的高度h(2如何用运动+10. +6.5-4.9tt 的时间t(单位:s)存在函数关系h(t)= v? 粗略地描述其运动状态员在某些时间段内的平均速度v5t.?00?=_________________ 这段 时间里,在v2?t?1=_________________ 这段时间里,在ot 问题3 平均变化率????xffxx到从已知函数,则变化率可用式子_____________,此式称之为函数1x?xx看做是相表示=___________,可把,即习惯上用 ___________.x??x?x122x?xx__________________,代替对于类似有的一个“增量”,可用,?x)?f(x?211_______________________ 于是,平均变化率可以表示为提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 课内探究学案 1.学习目标理解平均变化率的概念; 2.了解平均变化率的几何意义; .

导数学案(有答案)

3.1.1平均变化率 课时目标 1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的实际问题. 1.函数f(x)在区间[x1,x2]上的平均变化率为____________.习惯上用Δx表示________,即__________,可把Δx看作是相对于x1的一个“__________”,可用__________代替x2;类似地,Δy=__________,因此,函数f(x)的平均变化率可以表示为________. 2.函数y=f(x)的平均变化率Δy Δx= f(x2)-f(x1) x2-x1 的几何意义是:表示连接函数y=f(x)图象 上两点(x1,f(x1))、(x2,f(x2))的割线的________. 一、填空题 1.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数________.(填序号) ①在[x0,x1]上的平均变化率; ②在x0处的变化率; ③在x1处的变化率; ④以上都不对. 2.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数的增量Δy=______________. 3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,f(1+Δx)),则Δy Δx= ________. 4.某物体做运动规律是s=s(t),则该物体在t到t+Δt这段时间内的平均速度是______________. 5.如图,函数y=f(x)在A,B两点间的平均变化率是________. 6.已知函数y=f(x)=x2+1,在x=2,Δx=0.1时,Δy的值为________. 7.过曲线y=2x上两点(0,1),(1,2)的割线的斜率为______. 8.若一质点M按规律s(t)=8+t2运动,则该质点在一小段时间[2,2.1]内相应的平均速度是________. 二、解答题 9.已知函数f(x)=x2-2x,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.10.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.

变化率与导数、导数的计算学案(高考一轮复习)

20XX 年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算 一.学习目标: 1.了解导数概念的实际背景,理解导数的几何意义; 2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1 x 的导数; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.学习重、难点: 1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 2.学习难点:理解导数的几何意义. 三.学习方法:讲练结合 四.自主复习: 1.导数的概念 (1)函数在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0 Δy Δx , 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0 . (2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________. (3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.

2.基本初等函数的导数公式 3.运算法则 (1)[f(x)±g(x)]′=_________________; (2)[f(x)·g(x)]′=________________________; (3)[f(x) g(x) ]′=_______________________ (g(x)≠0).五.复习前测: 1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1 C.cos1-1 D.-1-cos1

人教新课标版数学高二-2-2导学案 变化率问题 导数的概念

1.1.1 变化率问题 1.1.2 导数的概念 (结合配套课件、作业使用,效果更佳) 周;使用时间16 年 月 日 ;使用班级 ;姓名 【学习目标】 1.了解导数概念的实际背景. 2.会求函数在某一点附近的平均变化率. ` 3.会利用导数的定义求函数在某点处的导数. 重点:会利用导数的定义求函数在某点处的导数 难点:会求函数在某一点附近的平均变化率 【检查预习】预习课本,完成导学案“自主学习”部分,准备上课回答. 【自主学习】 知识点一 函数的平均变化率 假设如图是一座山的剖面示意图,并建立如图所示平面直角坐标系.A 是出发点,H 是山顶.爬山路线用函数y =f (x )表示. 自变量x 表示某旅游者的水平位置,函数值y =f (x )表示此时旅游者所在的高度.设点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2). 思考1 若旅游者从点A 爬到点B ,自变量x 和函数值y 的改变量分别是多少? 思考2 怎样用数量刻画弯曲山路的陡峭程度? 思考3 观察函数y =f (x )的图象,平均变化率Δy Δx =f (x 2)-f (x 1) x 2-x 1表示什么? (1)定义式:Δy Δx =f (x 2)-f (x 1) x 2-x 1 . (2)实质: 的增量与 增量之比. (3)作用:刻画函数值在区间[x 1,x 2]上变化的快慢. (4)几何意义:已知P 1(x 1,f (x 1)),P 2(x 2,f (x 2))是函数y =f (x )的图象上两点,则平均变化率Δy Δx =f (x 2)-f (x 1) x 2-x 1表示割线P 1P 2的 知识点二 瞬时速度 思考1 物体的路程s 与时间t 的关系是s (t )=5t 2.试求物体在[1,1+Δt ]这段时间内的平均速度.

(整理)CH8(5)偏导数的几何意义.

§8-5 多元函数微分学的几何应用 A 级同步训练题: 一、客观题: 1、 曲面z=F(x,y,z)的一个法向量为( ) (A ){1,,-'''z y x F F F } ; (B ){1,1,1-'-'-'z y z F F F }; (C ){,,,z y x F F F '''} ; (D ){1,,y z F F '-'-}. 2、 旋转抛物面z=x 2+2y 2-4在点(1,-1,-1)处的法线方程为( ) (A ) 114121-+=+=-z y x ; (B )11 4121-+= -+=-z y x ; (C )114121-+=+=--z y x ; (D )1 14121--= -=-+z y x . 3、曲线2 ,ln ),1sin(t z t y t x ==-=在对应于1=t 点处的切线方程是( ) (A) 11 11-= =z y x ; (B) 21 111-= -=z y x ; (C) 2 111-= =z y x ; (D) 2 11z y x ==. 4、曲线x=t 3,y=t 2 ,z=t 在点(1,1,1)的切向量s = 。 5、x 2-y 2+z 2=3在点(1,1,1)的切平面方程为 二、求曲面πππ =-+z x y y x 在点处的切平面和法线方程 。 三、求曲线3 2 ,,t z t y t x ===上的点,使曲线在该点处的切线平行于平面16=-z y 。 四、求曲线19,1,123 2 --=+=--=t t z t y t t x 上的点,使曲线在该点处的切线垂直于 平面0432=+--z y x 。 五、求曲面z=x 2+y 2在(1,2,2)处的切平面与法线方程。 B 级同步训练题: 一、客观题: 1、 设曲面xy z =上点的切平面平行于平面, 则点到已知平面的距离等于( ) (A ) ;(B ) ;(C ) 21 24 ; (D ). 2、曲面)cos(y x x e z yz ++=在点?? ? ??1,0,2π处的法线方程为( )

(完整版)变化率与导数、导数的计算知识点与题型归纳

1 ●高考明方向 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数 y =c (c 为常数),y =x ,y =x 2,y =x 3,y =1 x 的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则 求简单函数的导数. ★备考知考情 由近几年高考试题统计分析可知,单独考查导数运算的题目很少出现,主要是以导数运算为工具,考查导数的几何意义为主,最常见的问题就是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系,以平行或垂直直线斜率间的关系为载体求参数的值,以及与曲线的切线相关的计算题.考查题型以选择题、填空题为主,多为容易题和中等难度题,如2014广东理科10、文科11. 2014广东理科10 曲线52-=+x y e 在点()0,3处的切线方程为 ; 2014广东文科11 曲线53=-+x y e 在点()0,2-处的切线方程为 ;

一、知识梳理《名师一号》P39 知识点一导数的概念 (1)函数y=f(x)在x=x0处的导数 称函数y=f(x)在x=x0处的瞬时变化 率lim Δx→0Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx 为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x =x0 . (2)称函数f′(x)=lim Δx→0f(x+Δx)-f(x) Δx为f(x)的导函数. 注意:《名师一号》P40 问题探究问题1 f′(x)与f′(x0)有什么区别? f′(x)是一个函数,f′(x0)是常数, f′(x0)是函数f′(x)在点x0处的函数值. 例.《名师一号》P39 对点自测1 1.判一判 (1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.() (2)f′(x0)与[f(x0)]′表示的意义相同.() (3)f′(x0)是导函数f′(x)在x=x0处的函数值.() 答案(1)×(2)×(3)√ 2

高中数学第三章.1变化率问题3.1.2导数的概念学案含解析新人教A版选修7.doc

3.1.1 & 3.1.2 变化率问题 导数的概念 [提出问题] 假设下图是一座山的剖面示意图,并建立如图所示的平面直角坐标系.A 是出发点,H 是山顶.爬山路线用函数y =f (x )表示. 自变量x 表示某旅游者的水平位置,函数值y =f (x )表示此时旅游者所在的高度.设点 A 的坐标为(x 1,y 1),点 B 的坐标为(x 2,y 2). 问题1:若旅游者从点A 爬到点B ,且这段山路是平直的,自变量x 和函数值y 的改变量Δx ,Δy 分别是多少? 提示:自变量x 的改变量为Δx =x 2-x 1,函数值的改变量为Δy =y 2-y 1. 问题2:Δy 的大小能否判断山路的陡峭程度? 提示:不能. 问题3:怎样用数量刻画弯曲山路的陡峭程度呢? 提示:对山坡AB 来说,Δy Δx =y 2-y 1 x 2-x 1可近似地刻画. 问题4:能用Δy Δx 刻画山路陡峭程度的原因是什么? 提示:因Δy Δx 表示A ,B 两点所在直线的斜率k ,显然,“线段”所在直线的斜率越大, 山路越陡.这就是说,竖直位移与水平位移之比Δy Δx 越大,山路越陡;反之,山路越缓. 问题5:从点A 到点B 和从点A 到点C ,两者的Δy Δx 相同吗? 提示:不相同.

[导入新知] 函数的平均变化率 对于函数y =f (x ),给定自变量的两个值x 1,x 2,当自变量x 从x 1变为x 2时,函数值从 f (x 1)变为f (x 2),我们把式子f x 2-f x 1 x 2-x 1 称为函数y =f (x )从x 1到x 2的平均变化率. 习惯上用Δx 表示x 2-x 1,即Δx =x 2-x 1,可把Δx 看作是相对于x 1 的一个“增量”,可用x 1+Δx 代替x 2.类似地,Δy =f (x 2)-f (x 1).于是,平均变化率可表示为 Δy Δx . [化解疑难] 1.正确理解增量Δx 与Δy Δx 是自变量x 在x 0处的改变量,不是Δ与x 的乘积,Δx 的值可正,可负,但不能为0.Δy 是函数值的改变量,可正,可负,也可以是0.函数的平均变化率为0,并不一定说明函数f (x )没有变化. 2.平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”.利用平均变化率的大小可以刻画变量平均变化的趋势和快慢程度. [提出问题] 一质点的运动方程为s =8-3t 2 ,其中s 表示位移,t 表示时间. 问题1:试求质点在[1,1+Δt ]这段时间内的平均速度. 提示:Δs Δt = 8-+Δt 2 -8+3×1 2 Δt =-6-3Δt . 问题2:当Δt 趋近于0时,“问题1”中的平均速度趋近于什么?如何理解这一速度? 提示:当Δt 趋近于0时,Δs Δt 趋近于-6.这时的平均速度即为t =1时的瞬时速度. [导入新知] 1.瞬时速度的概念 物体在某一时刻的速度称为瞬时速度: 设物体运动的路程与时间的关系是s =s (t ),当Δt 趋近于0时,函数s (t )在t 0到t 0 +Δt 之间的平均变化率s t 0+Δt -s t 0 Δt 趋近于一个常数,把这个常数称为瞬时速 度. 2.导数的定义

3.1 导数的概念及其运算导学案

§3.1 导数的概念及其运算 2014高考会这样考 1.利用导数的几何意义求切线方程;2.考查导数的有关计算,尤其是简单的复合函数求导. 复习备考要这样做 1.理解导数的意义,熟练掌握导数公式和求导法则;2.灵活进行复合函数的求导;3.会求某点处切线的方程或过某点的切线方程. 1. 函数y =f (x )从x 1到x 2的平均变化率 函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1) x 2-x 1,若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平 均变化率可表示为Δy Δx . 2. 函数y =f (x )在x =x 0处的导数 学&科& (1)定义 称函数y =f (x )在x =x 0处的瞬时变化率lim Δx → f (x 0+Δx )-f (x 0)Δx =lim Δx →0 Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0),即f ′(x 0)=lim Δx → Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . (2)几何意义 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3. 函数f (x )的导函数 称函数f ′(x )=lim Δx → f (x +Δx )-f (x ) Δx 为f (x )的导函数,导函数有时也记作y ′. 4. 基本初等函数的导数公式

5. (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)?? ??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x ) g 2(x ) (g (x )≠0). 6. 复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. [难点正本 疑点清源] 1. 深刻理解“函数在一点处的导数”、“导函数”、“导数”的区别与联系 (1)函数f (x )在点x 0处的导数f ′(x 0)是一个常数; (2)函数y =f (x )的导函数,是针对某一区间内任意点x 而言的.如果函数y =f (x )在区间(a ,b )内每一点x 都可导,是指对于区间(a ,b )内的每一个确定的值x 0都对应着一个确定的导数f ′(x 0).这样就在开区间(a ,b )内构成了一个新函数,就是函数f (x )的导函数f ′(x ).在不产生混淆的情况下,导函数也简称导数. 2. 曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系 (1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不

第一章 1.1 1.1.1 1.1.2 导数的概念(优秀经典导学案课时作业及答案详解)

[A组学业达标] 1.已知函数f(x)=-x2+x,则f(x)从-1到-0.9的改变量为() A.-0.29 B.-2.9 C.0.29 D.2.9 解析:f(-1)=-(-1)2+(-1)=-2. f(-0.9)=-(-0.9)2+(-0.9)=-1.71. 所以函数值的改变量为 f(-0.9)-f(-1)=-1.71-(-2)=0.29.故选C. 答案:C 2.将半径为R的球加热,若球的半径增量为ΔR,则球的表面积增量ΔS等于() A.8πRΔR B.8πRΔR+4π(ΔR)2 C.4πRΔR+4π(ΔR)2D.4π(ΔR)2 解析:球的表面积S=4πR2,则ΔS=4π(R+ΔR)2-4πR2=8πRΔR+4π(ΔR)2,故选B. 答案:B 3.一质点的运动方程为s=3-5t2,则在时间[1,1+Δt]内相应的平均速度为() A.-2-Δt B.2+Δt C.-10-5Δt D.10+5Δt 解析:v=3-5(1+Δt)2-(3-5×12) Δt =-10-5Δt,故选C. 答案:C 4.给定函数f(x),则lim Δx→0f(x0-Δx)-f(x0) Δx等于() A.f′(x0) B.f′(-x0) C.-f′(x0) D.-f′(-x0) 解析:lim Δx→0f(x0-Δx)-f(x0) Δx =-lim Δx→0 f(x0-Δx)-f(x0) (x0-Δx)-x0 =-lim -Δx→0 f(x0-Δx)-f(x0) -Δx = -f′(x0),故选C.

答案:C 5.若f(x)=x3,f′(x0)=3,则x0的值是() A.1 B.-1 C.±1 D.3 3 解析:因为Δy=f(x0+Δx)-f(x0)=(x0+Δx)3-x30=3x20Δx+3x0(Δx2)+(Δx)3, 所以Δy Δx =3x20+3x0Δx+(Δx)2, 所以f′(x0)=lim Δx→0 [3x20+3x0Δx+(Δx)2]=3x20, 由f′(x0)=3得3x20=3,所以x0=±1,故选C. 答案:C 6.甲、乙两人的运动路程与时间的函数关系分别为s=s1(t),s=s2(t),图象如图,则在时间段[0,t0]内甲的平均速度________乙的平均速度(填“大于”“小于”或“等于”). 解析:由图象知s1(t0)=s2(t0),s1(0)>s2(0), 所以 s1(t0)-s1(0) t0 < s2(t0)-s2(0) t0 ,即v甲<v乙. 答案:小于 7.一物体的运动方程为s= 3 t,则当t=2时该物体的瞬时速度为________. 解析:瞬时速度即为s对t的导数, 所以v=s′|t=2=lim Δt→0 3 2+Δt -3 2 Δt =lim Δt→0 -3Δt 2(2+Δt)Δt =lim Δt→0 -3 4+2Δt =-3 4. 答案:- 3 4

高二数学选修1、3-1-1变化率问题与导数的概念

3.1.1变化率问题与导数的概念 一、选择题 1.在函数变化率的定义中,自变量的增量Δx满足() A.Δx<0B.Δx>0 C.Δx=0 D.Δx≠0 [答案] D [解析]自变量的增量Δx可正、可负,但不可为0. 2.函数在某一点的导数是() A.在该点的函数的增量与自变量的增量的比 B.一个函数 C.一个常数,不是变数 D.函数在这一点到它附近一点之间的平均变化率 [答案] C [解析]由导数定义可知,函数在某一点的导数,就是平均变化率的极限值. 3.在x=1附近,取Δx=0.3,在四个函数①y=x②y=x2③y=x3④y=1 x 中,平均变化率 最大的是() A.④B.③ C.②D.① [答案] B [解析]①的平均变化率为1,②的平均变化率为2.3,③的平均变化率为3.99,④的平均变化率为-0.77. 4.质点M的运动规律为s=4t+4t2,则质点M在t=t0时的速度为() A.4+4t0B.0 C.8t0+4 D.4t0+4t20 [答案] C [解析]Δs=s(t0+Δt)-s(t0)=4Δt2+4Δt+8t0Δt, Δs Δt =4Δt+4+8t0, lim Δt→0Δs Δt =lim Δt→0 (4Δt+4+8t0)=4+8t0. 5.函数y=x+1 x 在x=1处的导数是() A.2 B.5 2 C.1 D.0

[答案] D [解析] Δy =(Δx +1)+1Δx +1-1-1=Δx +-Δx Δx +1 , Δy Δx =1-1Δx +1 , lim Δx →0 Δy Δx =lim Δx →0 ??? ?1-1Δx +1=1-1=0, ∴函数y =x +1x 在x =1处的导数为0. 6.函数y =f (x ),当自变量x 由x 0改变到x 0+Δx 时,Δy =( ) A .f (x 0+Δx ) B .f (x 0)+Δx C .f (x 0)·Δx D .f (x 0+Δx )-f (x 0) [答案] D [解析] Δy 看作相对于f (x 0)的“增量”,可用f (x 0+Δx )-f (x 0)代替. 7.一个物体的运动方程是s =3+t 2,则物体在t =2时的瞬时速度为( ) A .3 B .4 C .5 D .7 [答案] B [解析] lim Δt →0 3+(2+Δt )2-3-22 Δt =lim Δt →0 Δt 2+4Δt Δt =lim Δt →0 (Δt +4)=4. 8.f (x )在x =x 0处可导,则lim Δx →0 f (x 0+Δx )-f (x 0)Δx ( ) A .与x 0,Δx 有关 B .仅与x 0有关,而与Δx 无关 C .仅与Δx 有关,而与x 0无关 D .与x 0,Δx 均无关 [答案] B [解析] 式子lim Δx →0 f (x 0+Δx )-f (x 0)Δx 表示的意义是求f ′(x 0),即求f (x )在x 0处的导数,它仅与x 0有关,与Δx 无关. 9.设函数f (x )在点x 0附近有定义,且有f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则( ) A .f ′(x )=a B .f ′(x )=b C .f ′(x 0)=a D .f ′(x 0)=b [答案] C

偏导数的几何意义教学内容

偏导数的几何意义

偏导数的几何意义 实验目的:通过实验加深学生对偏导数定义的理解掌握偏导数的几何意义并从直观上理解二阶混合偏导数相等的条件 背景知识: 一偏导数的定义 在研究一元函数时.我们从研究函数的变化率引入了导数概念.对于多元函数同样需要讨论它的变化率.但多元函数的变化量不只一个,因变量与自变量的关系要比一元函数复杂的多.所以我们首先考虑多元函数关于其中一个自变量的变化率,以二元函数= 为例,如果只有自变量变化,而自变量y固定(即看作常量),这时它就是的一元函数,这函数对x的导数,就称为二元函数z对于的偏导数,即有如下定义 定义设函数z= 在点的某一邻域内有定义,当y固定在,而在处有增量时,相应的函数有增量 - , 如果 (1) 存在,则称此极限为函数= 在点处对的偏导数,记做

, , ,或 例如,极限(1)可以表为 = 类似的,函数z= 在点处对的偏导数定义为 记做, , 或 如果函数= 在区域D内每一点( )处对的偏导数都存在,那么这个偏导数就是的函数,它就称为函数= 对自变量的偏导函数,记做 , , ,或 类似的,可以定义函数= 对自变量的偏导函数,记做 , , ,或

由偏导数的概念可知, 在点处对的偏导数显然就是偏导函数在点处的函数值,就像一元函数的导函数一样,以后在不至于混淆的地方也把偏导函数简称为偏导数. 至于求= 的偏导数,并不需要用新的方法,因为这里只有一个自变量在 变动,另外一个自变量看作是固定的,所以仍旧是一元函数的微分法问题,求 时,只要把暂时看作常量而对求导;求时,则只要把暂时看作是常量,而对求导数. 偏导数的概念还可以推广导二元以上的函数,例如三元函数在点( )处对的偏导数定义为 = 其中( )是函数的定义域的内点,它们的求法也仍旧是一元函数的微分法问题 例求的偏导数 解= , = 二偏导数的几何意义

变化率与导数、导数的计算

第十一节变化率与导数、导数的计算 [备考方向要明了] 考什么怎么考 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数y=c(c为常 数),y=x,y=x2,y=x3, y= 1 x的导数. 4.能利用基本初等函数的导数公式和 导数的四则运算法则求简单函数的导 数. 1.对于导数的几何意义,高考要求较高,主要以选择 题或填空题的形式考查曲线在某点处的切线问题, 如2012年广东T12,辽宁T12等. 2.导数的基本运算多涉及三次函数、指数函数与对数 函数、三角函数等,主要考查对基本初等函数的导 数及求导法则的正确利用. [归纳·知识整合] 1.导数的概念 (1)函数y=f(x)在x=x0处的导数: 称函数y=f(x)在x=x0处的瞬时变化率 lim Δx→0 f(x0+Δx)-f(x0) Δx=lim Δx→0 Δy Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即 f′(x0)=lim Δx→0 Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx. (2)导数的几何意义: 函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0). (3)函数f(x)的导函数:

称函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. [探究] 1.f ′(x )与f ′(x 0)有何区别与联系? 提示:f ′(x )是一个函数,f ′(x 0)是常数,f ′(x 0)是函数f ′(x )在x 0处的函数值. 2.曲线y =f (x )在点P 0(x 0,y 0)处的切线与过点P 0(x 0,y 0)的切线,两种说法有区别吗? 提示:(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 3.过圆上一点P 的切线与圆只有公共点P ,过函数y =f (x )图象上一点P 的切线与图象也只有公共点P 吗? 提示:不一定,它们可能有2个或3个或无数多个公共点. 2.几种常见函数的导数 3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

课时跟踪检测(十七) 变化率与导数、导数的运算

课时跟踪检测(十七) 变化率与导数、导数的运算 一抓基础,多练小题做到眼疾手快 1.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)和(-1,3) D .(1,-3) 解析:选C f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C. 2.曲线f (x )=2x -e x 与y 轴的交点为P ,则曲线在点P 处的切线方程为( ) A .x -y +1=0 B .x +y +1=0 C .x -y -1=0 D .x +y -1=0 解析:选C 曲线f (x )=2x -e x 与y 轴的交点为(0,-1). 且f ′(x )=2-e x ,∴f ′(0)=1. 所以所求切线方程为y +1=x , 即x -y -1=0. 3.(2018·温州模拟)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(2 017)=( ) A .1 B .2 C .12 017 D .2 0182 017 解析:选D 令e x =t ,则x =ln t ,所以f (t )=ln t +t ,故f (x )=ln x +x .求导得f ′(x )=1x +1,故f ′(2 017)=12 017+1=2 0182 017 .故选D. 4.若曲线f (x )=x sin x +1在x =π2 处的切线与直线ax +2y +1=0 相互垂直,则实数a =________. 解析:因为f ′(x )=sin x +x cos x ,所以f ′????π2=sin π2+π2cos π2 =1.又直线ax +2y +1=0的斜率为-a 2 ,所以1×????-a 2=-1,解得a =2. 答案:2 5.(2018·杭州模拟)已知函数f (x )=x 33-b 2 x 2+ax +1(a >0,b >0),则函数g (x )=a ln x +f ′(x )a 在点(b ,g (b ))处切线的斜率的最小值是________. 解析:因为a >0,b >0,f ′(x )=x 2-bx +a ,所以g ′(x )=a x +2x -b a ,则g ′(b )=a b +2b -b a =a b +b a ≥2,当且仅当a =b =1时取等号,所以斜率的最小值为2.

变化率问题和导数的概念

第一章导数及其应用 1.1变化率与导数 1.1.1变化率问题 1.1.2导数的概念 双基达标(限时20分钟) 1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy), 则Δy Δx等于 (). A.4 B.4x C.4+2Δx D.4+2(Δx)2 解析Δy Δx= f(1+Δx)-f(1) Δx= 2(1+Δx)2-2 Δx=4+2Δx. 答案 C 2.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是 ().A.4 B.4.1 C.0.41 D.3 解析v=(3+2.12)-(3+22) 0.1=4.1. 答案 B 3.如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在 1.2 s末的瞬时速度为 ().A.-4.8 m/s B.-0.88 m/s C.0.88 m/s D.4.8 m/s 解析物体运动在1.2 s末的瞬时速度即为s在1.2处的导数,利用导数的定义即可求得. 答案 A

4.已知函数y =2+1 x ,当x 由1变到2时,函数的增量Δy =________. 解析 Δy =? ? ???2+12-(2+1)=-12. 答案 -1 2 5.已知函数y =2 x ,当x 由2变到1.5时,函数的增量Δy =________. 解析 Δy =f (1.5)-f (2)=21.5-22=43-1=1 3. 答案 1 3 6.利用导数的定义,求函数y =1 x 2+2在点x =1处的导数. 解 ∵Δy =??????1(x +Δx )2+2-? ???? 1x 2+2=-2x Δx -(Δx )2(x +Δx )2·x 2, ∴Δy Δx =-2x -Δx (x +Δx )2·x 2 , ∴y ′=lim Δx →0 Δy Δx =lim Δx →0 -2x -Δx (x +Δx )2·x 2=-2 x 3, ∴y ′|x =1=-2. 综合提高 (限时25分钟) 7.已知函数y =f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为 ( ). A .0.40 B .0.41 C .0.43 D .0.44 解析 Δy =(2+0.1)2-22=0.41. 答案 B 8.设函数f (x )可导,则 lim Δx →0 f (1+Δx )-f (1) 3Δx 等于 ( ). A .f ′(1) B .3f ′(1) C.1 3f ′(1) D .f ′(3)

第1讲 变化率与导数、导数的计算

第1讲变化率与导数、导数的计算 [学生用书P39] 一、知识梳理 1.导数的概念 (1)函数y=f(x)在x=x0处的导数 一般地,称函数y=f(x)在x=x0处的瞬时变化率 lim Δx→0f(x0+Δx)-f(x0) Δx=lim Δx→0 Δy Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x= x0,即f′(x0)=lim Δx→0Δy Δx =lim Δx→0 f(x0+Δx)-f(x0) Δx . (2)导数的几何意义 函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0). (3)函数f(x)的导函数 称函数f′(x)=lim Δx→0f(x+Δx)-f(x) Δx 为f(x)的导函数. 2.基本初等函数的导数公式 原函数导函数 f(x)=c(c为常数)f′(x)=0 f(x)=x n(n∈Q*)f′(x)=nx n-1 f(x)=sin x f′(x)=cos_x f(x)=cos x f′(x)=-sin_x

3.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)?? ?? ??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 常用结论 1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 2.[af (x )+bg (x )]′=af ′(x )+bg ′(x ). 3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. 二、习题改编 1.(选修2-2P65A 组T2(1)改编)函数y =x cos x -sin x 的导数为( ) A .x sin x B .-x sin x C .x cos x D .-x cos x 解析:选B.y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 2.(选修2-2P18A 组T6改编)曲线y =1-2 x +2在点(-1,-1)处的切线方程为________. 解析:因为y ′= 2 (x +2) 2,所以y ′|x =-1=2. 故所求切线方程为2x -y +1=0. 答案:2x -y +1=0 3.(选修2-2P7例2改编)有一机器人的运动方程为s =t 2+3 t (t 是时间,s 是位移),则该 机器人在t =2时的瞬时速度为________.

《导数的概念与几何意义》导学案

第1课时 导数的概念与几何意义 1.理解导数的概念,能利用导数的定义求函数的导数. 2.理解函数在某点处的导数的几何意义是该函数图像在该点的切线的斜率,并利用其几何意义解决有关的问题. 3.掌握应用导数几何意义求解曲线切线方程的方法. 4.在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法. 如图,当点P n (x n ,f (x n ))(n=1,2,3,4)沿着曲线f (x )趋近点P (x 0,f (x 0))时,割线PP n 的变化趋势是什么? 问题1:根据创设的情境,割线PP n 的变化趋势是 . 问题2:导数的概念与求法: 我们将函数f (x )在x=x 0处的瞬时变化率称为f (x )在x=x 0处的导数, lim Δx→0 f (x 0+Δx )?f (x 0)Δx 即有f'(x 0)==,所以求导数的步骤为:lim Δx→0Δy Δx lim Δx→0f (x 0+Δx )?f (x 0)Δx (1)求函数的增量:Δy=f (x 0+Δx )-f (x 0); (2)算比值:=; Δy Δx f (x 0+Δx )?f (x 0)Δx (3)求极限:y'=. | x =x 0lim Δx→0Δy Δx 问题3:函数y=f (x )在x=x 0处的导数,就是曲线y=f (x )在x=x 0处的切线的斜率k=f'(x 0)= 相应的切线方程是: . 问题4:曲线上每一点处的切线斜率反映了什么?直线与曲线有且只有一个公共点时,直

线是曲线的切线吗? 它反映的是函数的 情况,体现的是数形结合,以曲代直的思想. 不一定是,有些直线与曲线相交,但只有一个公共点.相反,有些切线与曲线的交点 . 1.下列说法正确的是( ). A.曲线的切线和曲线有且只有一个交点  B.过曲线上的一点作曲线的切线,这点一定是切点  C.若f'(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处无切线  D.若y=f(x)在点(x0,f(x0))处有切线,则f'(x0)不一定存在 2.如果曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么( ). A.f'(x0)>0 B.f'(x0)<0 C.f'(x0)=0 D.f'(x0)不存在 3.设P0为曲线f(x)=x3+x-2上的点,且曲线在P0处的切线平行于直线y=4x-1,则P0点的坐标 为 . 4.函数y=3x+2上有一点(x0,y0),求该点处的导数f'(x0). 三,课后反思:

相关文档
最新文档