第3章例题三刚体平衡.ppt
合集下载
大学物理课件第3章-刚体

究力的平衡和静力问题。
刚体的分类总结
根据是否可以发生平动或转动, 可以将刚体分为可动刚体和固定 刚体两类。不同类型的刚体在研 究力和运动关系时具有不同的应
用场景和特点。
02
刚体的运动
平动
01
02
03
平动定义
刚体在运动过程中,其上 任意两点都保持相对位置 不变的运动。
平动特点
刚体上任意两点在运动过 程中保持相对位置不变, 刚体整体做平行移动,没 有发生旋转。
刚体的稳定性
总结词
刚体的稳定性是指刚体在外力作用下保 持原有平衡状态的能力。
VS
详细描述
刚体的稳定性是指刚体在外力作用下保持 原有平衡状态的能力。如果外力较小,刚 体能够恢复到原来的平衡状态,则称该平 衡状态是稳定的。反之,如果外力较小, 刚体不能恢复到原来的平衡状态,则称该 平衡状态是不稳定的。刚体的稳定性可以 通过对平衡状态的稳定性进行分析来确定 。
刚体的性质总结
刚体的性质包括不发生形变、具有无限大的弹性和重心位 置不变。这些性质使得刚体成为研究力和运动关系的理想 化模型。
刚体的分类
可动刚体
可动刚体是指可以发生平动或转 动的刚体。这类刚体通常用于研 究物体的运动状态和力的作用效
果。
固定刚体
固定刚体是指形状和大小始终不 变的刚体。这类刚体通常用于研
06
刚体的应用
刚体在日常生活中的应用
钟表
钟表内部的齿轮、指针等都是刚 体,其运动规律符合刚体的运动
定理。
ቤተ መጻሕፍቲ ባይዱ
交通工具
自行车、汽车、火车等交通工具中 的轮子、轴承等都是刚体,其运动 规律符合刚体的运动定理。
家居用品
家具如椅子、桌子等,其结构大多 由刚体组成,符合刚体的运动定理 。
刚体的分类总结
根据是否可以发生平动或转动, 可以将刚体分为可动刚体和固定 刚体两类。不同类型的刚体在研 究力和运动关系时具有不同的应
用场景和特点。
02
刚体的运动
平动
01
02
03
平动定义
刚体在运动过程中,其上 任意两点都保持相对位置 不变的运动。
平动特点
刚体上任意两点在运动过 程中保持相对位置不变, 刚体整体做平行移动,没 有发生旋转。
刚体的稳定性
总结词
刚体的稳定性是指刚体在外力作用下保 持原有平衡状态的能力。
VS
详细描述
刚体的稳定性是指刚体在外力作用下保持 原有平衡状态的能力。如果外力较小,刚 体能够恢复到原来的平衡状态,则称该平 衡状态是稳定的。反之,如果外力较小, 刚体不能恢复到原来的平衡状态,则称该 平衡状态是不稳定的。刚体的稳定性可以 通过对平衡状态的稳定性进行分析来确定 。
刚体的性质总结
刚体的性质包括不发生形变、具有无限大的弹性和重心位 置不变。这些性质使得刚体成为研究力和运动关系的理想 化模型。
刚体的分类
可动刚体
可动刚体是指可以发生平动或转 动的刚体。这类刚体通常用于研 究物体的运动状态和力的作用效
果。
固定刚体
固定刚体是指形状和大小始终不 变的刚体。这类刚体通常用于研
06
刚体的应用
刚体在日常生活中的应用
钟表
钟表内部的齿轮、指针等都是刚 体,其运动规律符合刚体的运动
定理。
ቤተ መጻሕፍቲ ባይዱ
交通工具
自行车、汽车、火车等交通工具中 的轮子、轴承等都是刚体,其运动 规律符合刚体的运动定理。
家居用品
家具如椅子、桌子等,其结构大多 由刚体组成,符合刚体的运动定理 。
理论力学第三章刚体力学课件

理论力学
电子科技大学物理电子学院 付传技
Email:fcj@
1
第三章 刚体力学
刚体也是一个理想模型,它可以看作是一种特殊 的质点组,这个质点组中任何两个质点之间的距离不 变,这使得问题大为简化,使我们能更详细地研究它 的运动性质,得到的结果对实际问题很有用。
我们先研究刚体运动的描述,在建立动力学方程 后,着重研究平面平行运动和定点运动。
17
我们分别用Ox1x2x3(或Oxyz)和Ox1x2 x3(或Oxyz) 来标志空间坐标系和本体坐标系,它们的单位矢量
分别为e和e( =1, 2,3或x, y, z)。
本体系相对于空间系的取向可以用其单位矢量e1, e2,e3在空间系中的9个方向余弦来描写:
cos(e , e ) e e a (=1, 2,3)
或a a (行行正交)a a (列列正交)
这些关系通常叫做正交条件。满足正交条件 的矩阵叫正交矩阵,相应的变换称为正交变换。
22
根据Kronec ker 符号 对指标的交换的对称性
可知,9个正交条件实际上只有6个独立(3个对角 ,3个非对角),所以独立的方向余弦数目为
9-6=3
23
2)Aˆ的行列式为1.即 det Aˆ 1ˆ 证:对正交条件两端取行列式,并注意到 det AˆT det Aˆ,得 det Aˆ 1ˆ 因为不转动(恒等变换)为连续转动的一种 特例,它所对应的变换矩阵为单位阵,所以 只能取正号。
8
4)定点转动
定点转动的独立变量有三个,其中两个 确定转动轴的方向,一个确定其它点绕轴转 动的角度。
9
Euler定理
定点运动刚体的任何位移都可以通过 绕过该定点某轴的一次转动来实现。
10
5)一般运动(Chasles定理)
电子科技大学物理电子学院 付传技
Email:fcj@
1
第三章 刚体力学
刚体也是一个理想模型,它可以看作是一种特殊 的质点组,这个质点组中任何两个质点之间的距离不 变,这使得问题大为简化,使我们能更详细地研究它 的运动性质,得到的结果对实际问题很有用。
我们先研究刚体运动的描述,在建立动力学方程 后,着重研究平面平行运动和定点运动。
17
我们分别用Ox1x2x3(或Oxyz)和Ox1x2 x3(或Oxyz) 来标志空间坐标系和本体坐标系,它们的单位矢量
分别为e和e( =1, 2,3或x, y, z)。
本体系相对于空间系的取向可以用其单位矢量e1, e2,e3在空间系中的9个方向余弦来描写:
cos(e , e ) e e a (=1, 2,3)
或a a (行行正交)a a (列列正交)
这些关系通常叫做正交条件。满足正交条件 的矩阵叫正交矩阵,相应的变换称为正交变换。
22
根据Kronec ker 符号 对指标的交换的对称性
可知,9个正交条件实际上只有6个独立(3个对角 ,3个非对角),所以独立的方向余弦数目为
9-6=3
23
2)Aˆ的行列式为1.即 det Aˆ 1ˆ 证:对正交条件两端取行列式,并注意到 det AˆT det Aˆ,得 det Aˆ 1ˆ 因为不转动(恒等变换)为连续转动的一种 特例,它所对应的变换矩阵为单位阵,所以 只能取正号。
8
4)定点转动
定点转动的独立变量有三个,其中两个 确定转动轴的方向,一个确定其它点绕轴转 动的角度。
9
Euler定理
定点运动刚体的任何位移都可以通过 绕过该定点某轴的一次转动来实现。
10
5)一般运动(Chasles定理)
《工程力学:第三章-力系的平衡条件和平衡方程》解析

工程力学 1. 选择研究对象。以吊车大梁 AB为研究对象,进行受力分析 (如图所示) 2.建立平衡方程
第三章 力系的平衡条件和平衡方程
FAX FTB cos 0 Fy 0
F
x
0
: (1)
M
FAy FQ FP FTB sin 0
A
(F ) 0
工程力学
第三章 力系的平衡条件和平衡方程
§3.3 考虑摩擦时的平衡问题
3.3.1 滑动摩擦定律
概念:
静摩擦力:F 最大静摩擦力:Fmax 滑动摩擦力: Fd
静摩擦因数:
水平拉力: Fp
Fmax f s FN
fs
工程力学
第三章 力系的平衡条件和平衡方程
3.3.2 考虑摩擦时构件的平衡问题
考虑摩擦力时与不考虑摩擦力时的平衡 解题方法和过程基本相同, 但是要注意摩擦力的方向与运动趋势方向相反;且在滑动之前摩擦 力不是一个定值,而是在一定范围内取值。
l l sin 0
(3)
工程力学
第三章 力系的平衡条件和平衡方程
• 联立方程(1)(2)(3)得:
FAX
FQ FP 3 l x 2
(2)由FTB结果可以看出,当x=L时,即当电动机移动到大梁右 端B点时,钢索所受的拉力最大,最大值为
非静定问题:未知数的数目多于等于独立的平衡方程的数目,不能 解出所有未知量。相应的结构为非静定结构或超静定结构。
会判断静定问题和非静定问题
工程力学
第三章 力系的平衡条件和平衡方程
工程力学
第三章 力系的平衡条件和平衡方程
3.2.2 刚体系统平衡问题的特点与解法
1.整体平衡与局部平衡的概念 系统如果整体是平衡的,则组成系统的每一个局部以及每一个 2.研究对象有多种选择 刚体也必然是平衡的。
第三章刚体力学基础[1]PPT课件
![第三章刚体力学基础[1]PPT课件](https://img.taocdn.com/s3/m/21ab6d8ae45c3b3566ec8b80.png)
注意: F应该理解为外力在转动平面内的分力
如果有几个外力矩作用在刚体上,则合力矩等于
各个力矩的代数和
Mi riFi
i
i
力是引起质点运动状态变化的原因,而力矩是引起
转动物体运动状态变化的原因
二 刚体绕定轴的转动定律
刚体转动定律可由牛顿第二定律直接导出
F ifi m iai
外力的合力
内力的合力
假设 Fi和fi 都是位于质
点i所在的转动平面内
得到:
质点i的加速度 Z Mz
df
dF
Odr
dm
dF
F i fi m ia i m ir i
转动平面
dFn
转动定律
将力分解为作用在质量元△m上
的切向力和法向力
Z Mz
Fifim iai
dF df
Finfinmiain
将切向分量式两边同乘r,
例1、求质量为m、半径为R的均匀圆环的转动惯量。 轴与圆环平面垂直并通过圆心。
解: J r2dm
Z
R 2dm R 2 dm m2R O
J是可加的,所以若为薄圆筒 (不计厚度)结果相同。
R dm
例2、求质量为m、半径为R、厚为l 的均匀圆盘的转动 惯量。轴与盘平面垂直并通过盘心。
解:取半径为r宽为dr的薄圆环,
•转轴的位置
布,与转轴的位置结合决定转
•刚体的形状
轴到每个质元的矢径。
单个质点的转动惯量 J miri2 n
质点系的转动惯量 J (miri2)
i1
质量连续分布的刚 体的转动惯量
J r2dm m
国际单位制中转动惯量的单位为千克·米2(kg·m2)
转动惯量的定义及物理意义
《刚体的平衡》课件

刚体的平衡条件
01
力的合成条件
如果一个刚体在力的作用下保 持静止或匀速运动,那么这些 力可以通过力的合成相互抵消
,即合力为零。
02
力矩的平衡条件
如果一个刚体在力矩的作用下 保持静止或匀速转动,那么这 些力矩可以通过力矩的平衡相
互抵消,即合力矩为零。
03
刚体的平衡条件
根据牛顿第一定律,一个刚体 在力的作用下保持静止或匀速 运动,必须满足两个条件,即 合力为零和合力矩为零。这两 个条件也被称为刚体的平衡条
在分析刚体的平衡问题时,需要计算所有 作用在刚体上的力和力矩,并判断它们是 否满足力矩平衡条件。
力的平衡原理
定义
应用
力的平衡原理是指在刚体上作用的所 有外力在任意轴上的投影代数和为零 ,则刚体平衡。
在分析刚体的平衡问题时,需要计算 所有作用在刚体上的外力在任意轴上 的投影,并判断它们是否满足力的平 衡条件。
《刚体的平衡》ppt课件
目录
• 刚体的平衡概述 • 刚体的平衡形态 • 刚体的平衡原理 • 刚体的平衡应用 • 刚体的平衡问题解决
01
刚体的平衡概述
平衡的定义
01
平衡的定义
02
平衡的分类
平衡是指刚体在力的作用下,通过力的合成或力矩的平衡,使刚体的 状态保持不变或匀速运动。
根据刚体的运动状态,平衡可以分为静态平衡和动态平衡。静态平衡 是指刚体在力的作用下保持静止状态;动态平衡是指刚体在力的作用 下保持匀速运动状态。
复杂问题
如桥梁、高层建筑等大型 结构的平衡问题。
实际应用
如工程设计、机械制造等 领域中的刚体平衡问题。
THANKS
土木工程
在土木工程领域,刚体的平衡在建筑物的地基设计、斜坡稳定性分析等方面具有广泛应用。了解刚体的平衡有助于预 防建筑物因不均匀沉降或滑坡而造成的损坏。
大学物理.第三章.刚体的转动PPT课件

M ij
O
rj
d ri
i
j
Fji Fij
M ji
Mij M ji
第33页/共66页
例3-4 如图所示, 均匀细杆, 长为L,在平面内以角
速度ω绕端点转动,摩擦系数为μ 求M摩擦力。
ω
解: 质量线密度:
m L
质量元:
r dm dr
所受摩擦力为:
dF gdm gdr
第34页/共66页
例3-5 现有一圆盘在平面内以角速度ω转动,求 摩擦力产生的力矩(μ、m、R)。
ω
解:
dm ds rdrd
dF gdm grdrd
dM1
rdF
r2gdrd 第35页/共66页
要揭示转动惯量的物理意义,实际上是要找到一 个类似于牛顿定律的规律——转动定律。
二、转动定律 刚体可看成是由许多小质元组 成,在p点取一质元,
O
受力:外力 ,与 成 角
P
合内力 ,与 成 角
第36页/共66页
如图可将力分解为两个
力,只求那个垂直于轴
的力的力矩就可以了。 第39页/共66页
3)转动定律说明了I是物体转动惯性大小的量度。 因为:
即I越大的物体,保持原来转动状态的性质就 越强,转动惯性就越大;反之,I越小,越容 易改变状态,保持原有状态的能力越弱。或者 说转动惯性越小。 如一个外径和质量相同的实心圆 柱与空心圆筒,若 受力和力矩一 样,谁转动得快些呢?
当杆到达铅直位置时重力矩所作的功.
FN ZL
以杆为研究对象
受力: mg,FN
φ mg
重力矩: M
A mg 1
L
mg
1 2
L
cos
大学物理课件第3章-刚体

大学物理课件第3章-刚体
刚体力学是大学物理课程的重要组成部分。它涵盖了刚体的定义、运动学、 动力学、静力学、力学、弹性和应用等多个方面内容,为学习者提供了全面 的知识体系。
刚体的定义
刚体的概念
刚体是指具有固定形状和 大小,并且内部各点相对 位置保持不变的物体。
理想刚体的定义
理想刚体是指无限刚度、 无限强度、不变形且能够 保持自身形状和大小的物 体。
刚体的动力学
刚体的动量
刚体的动量是其质 量乘以速度,刚体 受到外力时动量会 发生变化。
刚体的角动量
刚体的角动量是其 惯性矩乘以角速度, 刚体绕固定轴旋转 时角动量会发生变 化。
刚体的动能
刚体的动能是其质 量乘以速度的平方, 与速度和质量有关。
刚体的动力学定 理
动力学定理描述了 刚体受力和加速度 之间的关系,F = ma。
实际刚体的特点
实际刚体在外力作用下会 发生微小的形变,但变形 较小,可以近似看作刚体。
刚体的运动学
1
刚体的运动状态
刚体可以既进行平动运动,也可以进行转动运动。
2
刚体的平动运动
刚体的平动运动包括直线运动和曲线运动,由质心位置和速度决定。
3
刚体的转动运动
刚体的转动运动包括绕固定轴的转动,由角位移和角速度决定。
刚体的静力学
1 刚体的平衡条件
刚体在平衡状态下,力 矩和力的合力为零。
2 刚体的平衡性质
刚体在平衡状态下,质 心位置不变,不会发生 任何运动。
3 刚体的平衡实例
如天平平衡ቤተ መጻሕፍቲ ባይዱ桥梁平衡 等实际应用中,刚体的 平衡性质起到重要作用。
刚体的力学
刚体的受力分析
通过力的分析,可以确定刚体 受力的大小、方向和作用点。
刚体力学是大学物理课程的重要组成部分。它涵盖了刚体的定义、运动学、 动力学、静力学、力学、弹性和应用等多个方面内容,为学习者提供了全面 的知识体系。
刚体的定义
刚体的概念
刚体是指具有固定形状和 大小,并且内部各点相对 位置保持不变的物体。
理想刚体的定义
理想刚体是指无限刚度、 无限强度、不变形且能够 保持自身形状和大小的物 体。
刚体的动力学
刚体的动量
刚体的动量是其质 量乘以速度,刚体 受到外力时动量会 发生变化。
刚体的角动量
刚体的角动量是其 惯性矩乘以角速度, 刚体绕固定轴旋转 时角动量会发生变 化。
刚体的动能
刚体的动能是其质 量乘以速度的平方, 与速度和质量有关。
刚体的动力学定 理
动力学定理描述了 刚体受力和加速度 之间的关系,F = ma。
实际刚体的特点
实际刚体在外力作用下会 发生微小的形变,但变形 较小,可以近似看作刚体。
刚体的运动学
1
刚体的运动状态
刚体可以既进行平动运动,也可以进行转动运动。
2
刚体的平动运动
刚体的平动运动包括直线运动和曲线运动,由质心位置和速度决定。
3
刚体的转动运动
刚体的转动运动包括绕固定轴的转动,由角位移和角速度决定。
刚体的静力学
1 刚体的平衡条件
刚体在平衡状态下,力 矩和力的合力为零。
2 刚体的平衡性质
刚体在平衡状态下,质 心位置不变,不会发生 任何运动。
3 刚体的平衡实例
如天平平衡ቤተ መጻሕፍቲ ባይዱ桥梁平衡 等实际应用中,刚体的 平衡性质起到重要作用。
刚体的力学
刚体的受力分析
通过力的分析,可以确定刚体 受力的大小、方向和作用点。
大学物理课件第3章-刚体

F
T
m
o
x
例4. 质量为M =16 kg的实心滑轮,半径为R = 0.15 m。 一根细绳绕在滑轮上,一端挂一质量为m的物体。
求(1)由静止开始1秒钟后,物体下降的距离。(2) 绳子的张力。
解: TR
a
1 2
MR
2
a R
T
1 2
Ma
2
mg T ma
M
T
mg mM 2
注: 可以用质点动力学 的方法来处理刚体 的平动问题。
转动:
刚体上所有质点都绕同一直线作圆 周运动。这种运动称为刚体的转动。这 条直线称为转轴。
定轴转动:
转轴固定不动的转动。
刚体的转动动能
mn
rn
o
r1
m1
r2
m2
令
I mi ri
i
2
kg m
2
I 为刚体对 z 轴的转动惯量。
结论: 刚体的转动惯量与刚体的形状、大小、质量 的分布以及转轴的位置有关。 对于质量连续分布的刚体:
2
2
( mi ri )
Ek
1 2
J
2
设在外力矩 M 的作用下,刚体绕定轴发生角位移d 元功:
dA Md
A I
d dt
A
由转动定律 有
d dt
d I d
1 2 1 2
dA I
2
1
I d
I 2 -
2
I 1
2
刚体绕定轴转动的动能定理 :合外力矩对刚体所 做的功等于刚体转动动能的增量。
l a v
o
30°
机械能守恒:
11 l 2 2 2 Ml ma mga1 cos 30 Mg 1 cos 30 23 2
T
m
o
x
例4. 质量为M =16 kg的实心滑轮,半径为R = 0.15 m。 一根细绳绕在滑轮上,一端挂一质量为m的物体。
求(1)由静止开始1秒钟后,物体下降的距离。(2) 绳子的张力。
解: TR
a
1 2
MR
2
a R
T
1 2
Ma
2
mg T ma
M
T
mg mM 2
注: 可以用质点动力学 的方法来处理刚体 的平动问题。
转动:
刚体上所有质点都绕同一直线作圆 周运动。这种运动称为刚体的转动。这 条直线称为转轴。
定轴转动:
转轴固定不动的转动。
刚体的转动动能
mn
rn
o
r1
m1
r2
m2
令
I mi ri
i
2
kg m
2
I 为刚体对 z 轴的转动惯量。
结论: 刚体的转动惯量与刚体的形状、大小、质量 的分布以及转轴的位置有关。 对于质量连续分布的刚体:
2
2
( mi ri )
Ek
1 2
J
2
设在外力矩 M 的作用下,刚体绕定轴发生角位移d 元功:
dA Md
A I
d dt
A
由转动定律 有
d dt
d I d
1 2 1 2
dA I
2
1
I d
I 2 -
2
I 1
2
刚体绕定轴转动的动能定理 :合外力矩对刚体所 做的功等于刚体转动动能的增量。
l a v
o
30°
机械能守恒:
11 l 2 2 2 Ml ma mga1 cos 30 Mg 1 cos 30 23 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r FAy
8
例 3gt-3 图示结构中,已知 q=12N/m, M=20N·m, a=1m, CD DE。不计自重和摩擦,求固定端 A 处的约束力。
q
工 解 (1) 以 CD 为研究对象
程 力
FC 20N
学
(2) 以 ABC 为研究对象
第 130
Fiy 0
章
动量原理平面力系
FAy FC 0 FAy FC
1.5m 1m
3m
工 解 (2) 以 BCD 为研究对象
程 力
Fix 0
学
第
FDx Q FBx 0
130 章
FBx Q FDx
M
rB
C
P
30
A
Dq
5m
动量原理平面力系 的 平 衡
版权所有 钟艳玲 张强
2kN
FrBy FBy
2kN M
rB
FBx
r
MD (Fi ) 0
学
FEH a FBx 2a 0
第 130
FBx FEH / 2 3qa / 4
章
r
动量原理平面力系 的
MA(Fi ) 0
FEH 3a FBy 2a 0 FBy 9qa / 4
平
衡
版权所有 钟艳玲 张强
Fiy 0
FAy FBy F 0
的
平 衡
FBy 3F / 2
版权所有
Fix 0 FAx FBx 0
1
钟艳玲 张强
例 3gt-1 已知:Fr , a,各构件的重量及摩擦不计
求:A、B 两处的约束力。
Dr
aa
工 程 力 学
第 130
解 (1) 以整体为研究对象
rq
1 1212 201 (qa/2)Q
B Cr
3 16N m
2a/3
r FAx
A MA FC
r FAy
7
例 3gt-3 图示结构中,已知 q=12N/m, M=20N·m, a=1m, CD DE。不计自重和摩擦,求固定端 A 处的约束力。
q
工 解 (1) 以 CD 为研究对象
3m
工 解 (2) 以 BCD 为研究对象
程 力
Fiy 0
学
第
FDy FBy 0
130 章
FDy FBy 2kN
M
rB
C
P
30
A
Dq
5m
动量原理平面力系 的 平 衡版权所有 钟艳玲 张强rMB (Fi ) 0
FrBy FBy
2kN M
FDx 3 FDy 5 M Q20
FAx 2a FAy 2a
r FE E
r FDy r
r FAy
FCy
A rE C
FE 2a 0
FAx
FAx F / 2 FBx F / 2
r FE
r F r FCx
2
例 3gt-2 图示结构中,忽略各杆自重和轴销处摩擦,杆 CH 受均布载荷作用,集度为 q 。求 B、C 处的约束反力。
Fiy 0
FCy 0
r FEH H
r FCxC
r FCy
qr Q (3qa)
3
例 3gt-2 图示结构中,忽略各杆自重和轴销处摩擦,杆 CH 受均布载荷作用,集度为 q 。求 B、C 处的约束反力。
解 (2) 以 BDE 为研究对象
工 程 力
r
MD (Fi ) 0
学
FEH a FBx 2a 0
工 程 力
解或
r FBy
r P
B
r
学
30
FBx
M
rB
C
P
30
1.5m 1.5m
1m
3m
第 130 章
动量原理平面力系 的 平 衡
版权所有 钟艳玲 张强
r FAx
r FBy rB FBx
Ar MA FAy
M
r
r
FCy
FBy
Crr B FCx FBx
A
Dq
5m
M
C (qar/2=6kN) Q
r FBx
B
C (qar/2=6kN) Q
FDx (M Q 2 FDy 5) / 3 FDx 4kN
rD
FDx
r FDy
14
例 3gt-4 图示结构中, P=20kN, M=10kN·m, q=4kN/m, 结 构尺寸如图。不计结构自重,求 A,D 两处的约束力。
aa
例 3gt-1 已知:Fr , a,各构件的重量及摩擦不计
求:A、B 两处的约束力。
Dr
工 解 (1) 以整体为研究对象
程 力
r
MB (Fi ) 0
学
第
FAy 2a F a 0
130 章
FAy F / 2
F EC
r
r
FAy
FBy
Ar
Br
aFAx
a
aFBx
动量原理平面力系
C (qar/2=6kN) Q
rD
FDx 4kN FDx
r FDy
15
例 3gt-4 图示结构中, P=20kN, M=10kN·m, q=4kN/m, 结
构尺寸如图。不计结构自重,求 A,D 两处的约束力。
工 解 (3) 以 AB 为研究对象
程 力
Fix 0
r P
学
30
第
FAx P cos 30 FBx 0
求:A、D 两处的约束力。
a
工
(2) 以 BC 为研究对象
程 力
r
MB (Fi ) 0
学
FCy a M 0
第
r FBy
学
r
MD (Fi ) 0
第 130
FC a M 0
章 动量原理平面力系
FC
M a
20 20N 1
的
平
衡
版权所有 钟艳玲 张强
q
D
BC
M
A
E
a
aa
r FC
D
C
M
r FDE
q
B Cr
r FAx
A MA FC
r FAy
6
例 3gt-3 图示结构中,已知 q=12N/m, M=20N·m, a=1m, CD DE。不计自重和摩擦,求固定端 A 处的约束力。
FDx
r FDy
10
例 3gt-4 图示结构中, P=20kN, M=10kN·m, q=4kN/m, 结 构尺寸如图。不计结构自重,求 A,D 两处的约束力。
工 程 力
解或
r FBy
r P
B
r
学
30
FBx
M
rB
C
P
30
1.5m 1.5m
1m
3m
第 130 章
动量原理平面力系 的 平 衡
版权所有 钟艳玲 张强
q
工 解 (1) 以 CD 为研究对象
q
D
程 力
FC 20N
BC
M
a
学
(2) 以 ABC 为研究对象
A
E
第 130
r
MA(Fi ) 0
aa r
章
动量原理平面力系 的 平 衡
版权所有 钟艳玲 张强
M
A
Q
2 3
a
FC
a
0
FC
D
MA
1 2
qa
2 3
a
FC
a
C
M
r FDE
E
H
D
q
2a 3a
第 130
FBx FEH / 2 3qa / 4 A
BC
章
r
2a
3a
动量原理平面力系 的
MB (Fi ) 0
FAD 2a cos 45 FEH 3a 0
FAD 9 2qa / 4
r FAD
r
3
E
FEH FEH
qa 2
工 程 力
解 分析
r FBy
r P
B
r
学
30
FBx
M
rB
C
P
30
1.5m 1.5m
1m
3m
第 130 章
r FAx
Ar MA FAy
动量原理平面力系 的
r FBy
M
rB
FBx
r FCy C
r FCx
平
衡
版权所有 钟艳玲 张强
A
Dq
5m
r
C FCy
r FCx
(qar/2=6kN) Q
rD q
2a 3a
E
H
D
q
A
BC
2a
3a
r FAD
A
r FBx
r
3
E
FEH FEH
qa 2
D
B
r FBy
5
例 3gt-3 图示结构中,已知 q=12N/m, M=20N·m, a=1m, CD DE。不计自重和摩擦,求固定端 A 处的约束力。
工 解 分析 CD 是否为二力杆?
程 力
(1) 以 CD 为研究对象