设计失效分析DFMEA经典案例剖析

合集下载

DFMEA(Design Failure Mode and Effects Analysis,设计失效模式及后果分析)

DFMEA(Design Failure Mode and Effects Analysis,设计失效模式及后果分析)

DFMEA出自 MBA智库百科(/)DFMEA(Design Failure Mode and Effects Analysis,设计失效模式及后果分析)目录[隐藏]• 1 什么是DFMEA• 2 DFMEA基本原则• 3 DFMEA与PFMEA的关系• 4 形式和格式(Forms and Formats)• 5 我们应在何时进行设计失效模式及后果分析?• 6 我们应在什么时间进行设计失效模式及后果分析?•7 我们应在什么时间进行设计失效模式及后果分析?•8 我们应在什么时间进行设计失效模式及后果分析?•9 由谁进行设计失效模式及后果分析?•10 怎样进行设计失效模式及后果分析?•11 怎样进行设计失效模式及后果分析?•12 怎样进行设计失效模式及后果分析?•13 怎样进行设计失效模式及后果分析?•14 DFMEA的案例分析[1]o14.1 实施DFMEA存在的困难o14.2 实施DFMEA的准备工作o14.3 实施DFMEA的流程•15 相关条目•16 参考文献[编辑]什么是DFMEADFMEA是指设计阶段的潜在失效模式分析,是从设计阶段把握产品质量预防的一种手段,是如何在设计研发阶段保证产品在正式生产过程中交付客户过程中如何满足产品质量的一种控制工具。

因为同类型产品的相似性的特点,所以的DFMEA阶段经常后借鉴以前量产过或正在生产中的产品相关设计上的优缺点评估后再针对新产品进行的改进与改善。

[编辑]DFMEA基本原则DFMEA是在最初生产阶段之前,确定潜在的或已知的故障模式,并提供进一步纠正措施的一种规范化分析方法;通常是通过部件、子系统/部件、系统/组件等一系列步骤来完成的。

最初生产阶段是明确为用户生产产品或提供服务的阶段,该阶段的定义非常重要,在该阶段开始之前对设计的修改和更正都不会引起严重的后果,而之后对设计的任何变更都可能造成产品成本的大幅提高。

DFMEA应当由一个以设计责任工程师为组长的跨职能小组来进行,这个小组的成员不仅应当包括可能对设计产生影响的各个部门的代表,还要包括外部顾客或内部顾客在内。

整车设计失效模式分析-DFMEA

整车设计失效模式分析-DFMEA

(修订)
措施结果

R险 P顺 N序
建议措施
责任及目标完成 日期
采取的措施
S
O
D
RPN

42
54
54
42 56 56
105
54 54 54 36 36 72 54
60 60 81 72 72 72 72 72 54
81
112 54 81
120
60
80 60 90 90
90
54
72
81 81 36 72 72 72 81 81 81
潜在失效模式及后果分析 (设计FMEA)
项目名称:
车型年度/车
辆:
MPV
设计责任: 关键日期:
核心小组: 过程功能

潜在失效模 式
潜在失效后果 S 严 )重
分 类

潜在失效起因/
机理P


现行设计控制
预防
探测

D探 )测

动力性(1、最
最高车速低 顾客抱怨最高
<170Km/h
车速低
7
I
3
2
高车速≥
170Km/h,2、一 加速时间长
高温动力性


动力系配匹配不
参考样车对比

3
启动系统设计不
参考样车对比
合理
3
I
动力系统设计不 当
参考样车对比
3
2
2
标定试验(整
车高温、低温
、高原)
2
高温整车散 热差
参考样车对比
动力系统设计不 当
3
2
车身系统材料选

DFMEA(设计失效模式与效应分析)-20121123

DFMEA(设计失效模式与效应分析)-20121123

※ RPN(風險順序數):計算並記錄糾正後的RPN值的結果。
14
設計FMEA分析步驟
15
設計FMEA嚴重度評估標準
16
設計FMEA發生率評估標準
17
設計FMEA難檢度評估標準
18
設計FMEA改善對策提出時機
The timing to provide solution / 提出改善對策之時機
以利追蹤
※ Planning Stage(設計階段):填上依據目前所進行分析標的物所處之開發階段 ※ Design Responsibility (設計責任):填入負責的設計與開發之工程師全名
※ Prepared By(編制者):填入負責編制DFMEA的工程師的姓名
※ Part Name/Program(系統、子系統或零部件的名稱及編號):填入適當的分析級別並
12
設計FMEA分析表說明(Ⅲ)
※ POTENTIAL CAUSE(S) / MECHANISM(S) OF FAILURE(失效的潛在原因或機理) :填入每一
個失效模式的所有可以想到的失效原因或失效機理。
※ DESIGN CONTROLS(現行設計管制):填入已經完成或承諾要完成的預防措施、設計確認
DFMEA(設計失效模式與效應分析)
Design Failure Mode and Effect Analysis
1
什麽是FMEA ?

FMEA是一種系統方法,使用制式表格及問題解決
方法以確認潛在失效模式及其效應,並評估其嚴重度、 發生度、難檢度(探測/偵測)及目前管制方法,從而計算
風險優先指數(RPN),最後採取進一步改善方法,如此
持續進行,以達防患失效模式及效應發生於未然

(DFMEA)汽车行业设计失效模式分析

(DFMEA)汽车行业设计失效模式分析

性能下降
随着使用时间的增加,发动机性能可能会逐渐下 降,导致汽车动力不足、加速缓慢等问题。这可 能是由于发动机内部零件磨损、燃油系统堵塞或 点火系统故障等原因引起的。
振动过大
发动机振动过大可能会对车辆的舒适性和稳定性 产生不良影响,同时也会增加零部件的磨损和疲 劳破坏。振动过大的原因可能包括发动机平衡性 差、零部件松动或损坏等。
不断更新表格,以反 映产品设计的更改和 改进。
确保表格内容完整、 准确,为后续分析提 供基础数据。
绘制设计流程图
01 详细绘制产品设计的流程图,包括各个组件的相 互关系和作用。
02 明确各个设计阶段的输入和输出,以便更好地理 解设计的整体流程。
03 分析流程图,找出可能存在的设计缺陷和失效模 式。
优化方法
采用先进的优化算法和仿真技术,对设计方案进行多目标优化。
优化过程
充分考虑制造工艺、材料特性等因素,确保优化方案的可行性。
提高制造质量
制造工艺
采用先进的制造工艺,提高零部件和整车的制造 精度和质量。
质量控制
建立严格的质量控制体系,确保每个环节的制造 质量符合要求。
质量检测
采用多种质量检测手段,如无损检测、功能检测 等,确保产品合格率。
03
基于影响评估,为每个故障模式制定相应的改进措施
和优先级。
03 汽车行业中的设计失效模 式
发动机系统
总结词
发动机系统是汽车的核心部分,其设计失效模式 主要表现在性能下降、过热、振动过大等方面。
过热
发动机过热是常见的失效模式之一,可能导致拉 缸、润滑油变质等严重后果。过热的原因可能包 括冷却系统故障、发动机负荷过大、散热器堵塞 等。
传动系统

设计失效分析DFMEA经典案例剖析

设计失效分析DFMEA经典案例剖析
DFMEA理论与实战 DFMEA理论与实战
——六步搞定DFMEA表格
纲要 一:重大质量问题实例 二:DFMEA的重大作用 DFMEA的重大作用 三:DFMEA基本概念相关 DFMEA基本概念相关 四:DFMEA表格标准格式 DFMEA表格标准格式 五:DFMEA应用与表格制作实战 DFMEA应用与表格制作实战 六:趣例分享 七:豆浆机常见失效点分组讨论并作DFMEA练习 豆浆机常见失效点分组讨论并作DFMEA练习 分组讨论并作DFMEA
DFMEA •Design Failure Mode Effect Analysis: : 设计失效模式及后果分析 •失效模式 指设计(制造)过程无法达到预定或规 失效模式: 失效模式 指设计(制造) 定的要求所表现出的特征; 坏品、 定的要求所表现出的特征;如:坏品、不良设备状 况等; 况等 •后果 指失效模式对客户 包括下工序 所造成的影响 后果: 包括下工序)所造成的影响 后果 指失效模式对客户(包括下工序 所造成的影响;
•设计之前预先进行风险分析,确保设计水平。 设计之前预先进行风险分析,确保设计水平。
是正文内容部分,这里是正文 内容部分,这里是正文内容部分, 这里是正文内容部分,这 里是正文内容部分,这里是正 文内容部分,这里是正文内 容部分,这里是正文内:重大质量问题实例
一:重大质量问题实例
这里是正文内容部分, 这里是正文内容部分,这里 是正文内容部分,这里是正文 内容部分,这里是正文内容部分, 这里是正文内容部分,这 里是正文内容部分,这里是正 文内容部分,这里是正文内 容部分,这里是正文内 容部分,这里是正文
如果DFMEA得到有效应用与执行: 得到有效应用与执行: 如果 得到有效应用与执行
三:DFMEA基本概念相关 基本概念相关

设计失效分析DFMEA经典案例剖析通用课件

设计失效分析DFMEA经典案例剖析通用课件
扩展应用范围
将DFMEA的应用范围从汽车行业 扩展到其他制造业领域,为更多产 品的可靠性设计和改进提供支持。
引入新技术
随着技术的不断发展,DFMEA 可引入新的工具和方法,提高 分析的效率和准确性。
加强培训与意识提升
通过培训和宣传活动,提高企业员 工对DFMEA的认识和应用能力, 促进其在产品设计和管理中的广泛 应用。
01
确定产品或系统的研究范围,明确分析对象和目标 。
02
考虑产品或系统的生命周期,包括研发、生产、使 用和维修等阶段。
03
确定研究的重点,如关键功能、高风险区域或特定 设计领域。
构建功能、性能、可靠性和安全性清单
01
列出产品或系统的所有功能和性能要求。
02 分析各功能和性能对可靠性、安全性的需求和影 响。
评估失效模式对设备操作准确性和安全性的影响程度。
改进措施
提出针对失效模式的改进措施,如优化按钮设计、改善 显示效果等。
04
案例剖析与启示
案例一剖析与启示
案例名称
某汽车刹车系统设计失效
案例描述
某汽车在行驶过程中突然出现刹车失灵,导致严重事故。经过调查发 现,设计阶段未充分考虑高温环境下刹车油膨胀问题。
提出改进措施和建议,降 低设计失效风险,提高产 品或系统的可靠性、安全 性。
03
经典案例选择与介绍
案例选择标准
案例的典型性
选择具有代表性的案例,能够体现DFMEA分析的基本原则和方 法。
案例的实用性
案例应具有实际应用价值,能够帮助企业解决实际问题。
案例的完整性
案例应包含完整的DFMEA分析过程,包括功能定义、功能分析 、失效模式分析、失效影响分析和改进措施等。

DFMEA - 产品设计失效模式及后果分析

DFMEA - 产品设计失效模式及后果分析

文件编号作成部门文件作成批核序号No.项目/功能/要求Item/Functions/Requirements潜在的失效模式PotentialFailure Mode潜在的失效后果Potential Effectsof Failure Modeon End Product*严重度数SEV级别Class潜在失效原因/机理PotentialCause/Mechanism ofFailure频度O潜在失效控制/预防Precaution ofPotential Failure控测度数D风险顺序指数RPN建议的措施Rec.负责部门Dep.与其它部件无法组装9产品过长,整体较为单薄,受外力易变形2CAE分析,结构合理化236建议机壳厚度≥2mm研发部供应商与主体内部机身无法组装使用10产品过长,整体较为单薄,受外力易变形2CAE分析,结构合理化240建议设计机壳厚度均匀.增加加强筋.研发部供应商与手柄组立松手柄使用手感差2与后柄配合圆柱及槽位过松1CAE分析,结构合理化24与内部机身无法组立生产作业困难8壳体变形2CAE分析,结构合理化464建议设计考虑内部空间足够位,组装不被干涉研发部生产部本体外观不良(夹线,气纹等)影响外观4模具进料口设计不良4改良模具进料口及MF模流分析232螺丝柱裂使用寿命短6螺丝柱过细及成型不良4优化结构及控制成型条件,进料监控248建议螺丝柱厚度足够,螺丝与孔配合适当研发部供应商本体变形xxxxxx科技有限公司产品名称/型号编制日期最新修订日期版本本体(设计)DFMEA 设计失效模式及后果分析1*严重度数SEV高于或等于5的需要填写后面的建议措施。

设计失效模式及后果分析(DFMEA)

设计失效模式及后果分析(DFMEA)

(设计FMEA)X 系统FEMA编号:A11-3510010AC001 子系统页码:第 1 页共37 页零部件A11-3510010AC 设计责任:技质部编制者:王勇——技质部车型年/车辆类型:A11奇瑞关键日期:2002.02.14FMEA日期:2002.02.14(设计FMEA)X 系统FEMA编号:A11-3510010AC002 子系统页码:第 2 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇——技质部车型年/车辆类型:A11奇瑞关键日期:2002.02.14FMEA日期:2002.02.14潜在失效模式及后果分析(设计FMEA)X 系统FEMA编号:A11-3510010AC003 子系统页码:第 3 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇——技质部车型年/车辆类型:A11奇瑞关键日期:2002.02.14FEMA日期:2002.02.14在失效模式及后果分析(设计FMEA)X 系统FEMA编号:A11-3510010AC003 子系统页码:第 4 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇——技质部车型年/车辆类型:A11奇瑞关键日期:2002.02.14FEMA日期:2002.02.14潜在失效模式及后果分析(设计FMEA)X 系统FEMA编号:A11-3510010AC004 子系统页码:第 5 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇——技质部车型年/车辆类型:A11奇瑞关键日期:2002.02.14FEMA日期:2002.02.14(设计FMEA)X 系统FEMA编号:A11-3510010AC004 子系统页码:第 5 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇——技质部车型年/车辆类型:A11奇瑞关键日期:2002.02.14FEMA日期:2002.02.14核心小组:张平、王国强——厂务部/王勇、王小龙、夏根生、王玮、张延云——技质部(设计FMEA)X 系统FEMA编号:A11-3510010AC005 子系统页码:第7 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇——技质部车型年/车辆类型:A11奇瑞关键日期:2002.02.14FEMA日期:2002.02.14(设计FMEA)X 系统FEMA编号:A11-3510010AC005 子系统页码:第8 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇——技质部车型年/车辆类型:A11奇瑞关键日期:2002.02.14FEMA日期:2002.02.14(设计FMEA)X 系统FEMA编号:A11-3510010AC006 子系统页码:第9 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇——技质部车型年/车辆类型:A11奇瑞关键日期:2002.02.14FEMA日期:2002.02.14(设计FMEA)X 系统FEMA编号:A11-3510010AC006 子系统页码:第10 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇——技质部车型年/车辆类型:A11奇瑞关键日期:2002.02.14FEMA日期:2002.02.14潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC006 子系统第11 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002.02.14 FMEA日期:2002.02.14潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC006 子系统第12 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC 子系统第13 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC007 子系统第14 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC007 子系统第15 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC008 子系统第16 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC008 子系统第17 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC008 子系统第18 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC008 子系统第19 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC008 子系统第20 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC009 子系统第21 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC009 子系统第22 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC009 子系统第23 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC009 子系统第24 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC009 子系统第25 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC009 子系统第26 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC009 子系统第27 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC010 子系统第28 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC011 子系统第29 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC012 子系统第30 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC013 子系统第31 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC013 子系统第32 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC013 子系统第33 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC013 子系统第34 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC013 子系统第35 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC014 子系统第36 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日潜在失效模式及后果分析(设计FMEA)X 系统FMEA编号:A11-3510010AC015 子系统第37 页共37 页零部件:A11-3510010AC 设计责任:技质部编制者:王勇—技质部车型年/车辆类型:A11-奇瑞关键日期:2002年2月14日FMEA日期:2002年2月14日芜湖华亨汽车部件有限公司A11-3510010AC真空助力器带主缸总成DFMEA顾客名称:上汽奇瑞公司产品名称:真空助力器带主缸总成件号:A11-3510010AC编制部门:技术部门编制人/日期:夏根生/2002.02.14 审核人/日期:王小龙/2002.02.14。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SC(重要特性) 5-8级
(5级以上均要措施对策,5级以下可以考虑。)
五:DFMEA应用与表格制作实战第3步
——失效原因及发生的可能性(频度O)
所谓潜在失效原因是指一个设计薄弱部分的迹象,其作用结果就是失 效模式。在尽可能广的范围内,列出每个失效模式的所有可以想到的失效 起因和/或机理。尽可能简明扼要、完整地将起因/机理列出来,使得对相 应的起因能采取适当的纠正措施。 典型的失效起因可能包括但不限于下列情况:规定的材料不对、设计 寿命估计不当、应力过大、润滑不足、维修保养说明不当、环境保护不够、 计算错误。 典型的失效机理可能包括但不限于:屈服、疲劳、材料不稳定性、蠕 变、磨损和腐蚀。
1. 类似零部件或子系统的维修档案及维修服务经验? 2. 零部件是否为以前使用的的零部件或子系统、还是与其相似? 3. 相对先前水平的零部件或子系统所作的变化有多显着? 4. 零部件是否与原来的有根本不同? 5. 零部件是否是全新的? 6. 零部件的用途有无变化? 7. 有哪些环境改变? 8. 针对该用途,是否作了工程分析来估计其预期的可比较的频度数? • 应运用一致的频度分级规则,以保证连续性。所谓的“设计寿命的可能失效率”是根据零部件、子系统或 系统在设计的寿命过程中预计发生的失效(故障)数确定的。频度数的取值与失效率范围有关,但关不反应 实际出现的可能性。
1
什么叫失效?
五:DFMEA应用与表格制作实战第2步
——找失效点之2-失效模式
失效的定义 在失效分析中,首先要明确产品的失效是什么,否则产品的数据分析和可靠度评估结果将不 一样,一般而言,失效是指:
a)在规定条件下(环境、操作、时间)不能完成既定功能。 b)在规定条件下,产品参数值不能维持在规定的 上下限之间。 c)产品在工作范围内,导致零组件的破裂、断裂、卡死等损坏现象。
•只可能在特定的运行环境条件下(如热、冷、干燥、灰尘等)
以及特定的使用条件下(如超过平均里程、不平的路段、仅
2
在城市行驶等)发生的潜在失效模式也应当考虑。
•(考虑这个例子中的失效模式描述是否妥当?)
五:DFMEA应用与表格制作实战第2步
——找失效点之3-失效后果
•就是失效模式对系统功能的影响,就如顾客感受的一样。 • 要根据顾客可能发现或经历的情况来描述失效的后果,要记住顾客可 能是内部的顾客,也能是外部最终的顾客。要清楚地说明该功能是否会 影响到安全性或与法规不符。失效的后果必须依据分析的具体系统、子 系统或零部件来说明。还应记住不同级别系统、子系统和零件之间还存 在着系统层次上的关系。比如,一个零件的断裂可能引起总成的振动, 从而导致系统间歇性的运行。这种间歇性的运动会引起性能下降,最终 导致顾客的不满。因此就需要集体的智能尽可能预见失效的后果。 3 • 典型的失效后果可能是但不限于下列情况:噪声、工作不正常、不良 外观、不稳定、间歇性工作、粗糙、不起作用、异味、工作减弱等。 •(本例中描述妥当与否讨论?)
首要审核项目 • 09年8月,三合一外审正式提出对九阳的“DFMEA”应用要求,对我们目前的FMEA状况较为不满;以后
可能会作为一个主要内容进行审核。
三:DFMEA基本概念相关——FMEA的类型
DFMEA PFMEA SFMEA AFMEA PFMEA SFMEA MFMEA
设计失效模式及后果分析 过程失效模式及后果分析 服务失效模式及后果分析 应用失效模式及后果分析 采购失效模式及后果分析 子系统失效模式及后果分析 机器失效模式及后果分析
五:DFMEA应用与表格制作实战第2步 ——找失效点之5-重要程度分级
级别(重要程度)
✓ 本栏目可用于对零件、子系统或系统的产品特性分级(如关键、
主要、重要、重点等),它们可能需要附加的过程控制。
✓ 任何需要特殊过程控制的对象应用适当的字母或符号在设计
FMEA表格中的“分级”栏中注明,并应“建议措施”栏中记录。
这里是正文内容部分,这里 是正文内容部分,这里是正
文 内容部分,这里是正文内容 部分,这里是正文内容部分,
这 里是正文内容部分,这里是
正 文内容部分,这里是正文内
容部分,这里是正文内 容部分,这里是正文
四:DFMEA表格标准格式
四:DFMEA标准格式
这里是正文内容部分, 这里是正文内容部分,这里 是正文内容部分,这里是正
三:DFMEA基本概念相关
三:DFMEA基本概念相关-FMEA 的开发与发展
• 20世纪 60年代,美国宇航界首次研究开发 FMEA; • 1974年,美国海军建立第一个 FMEA 标准; • 1976年,美国国防部首次采用 FMEA 标准; • 70年代后期,美国汽车工业开始运用 FMEA; • 80年代中期,美国汽车工业将 FMEA 运用于生產过程中; • 90年代,美国汽车工业将 FMEA 纳入 QS9000 标准;在 TQS9000体系中,是4.20统计技术这个要素中的
三:DFMEA基本概念相关——定义
•FMEA 是一种用来确认风险的分析方法,它包含: •确认潜在的失效模式并评价其產生的效应; •确认失效模式对客户所產生的影响; •确认潜在的產品/过程失效原因; •确认现有控制產品/过程失效的方法; •确定排除或降低失效改善方案; •设计之前预先进行风险分析,确保设计水平。 这里是正文内容部分,
三:DFMEA基本概念相关——定义
DFMEA
•Design Failure Mode Effect Analysis: 设计失效模式及后果分析
•失效模式: 指设计(制造)过程无法达到预定或规定的要求所表现出的特征;如:坏品、 不良设备状况等; •后果: 指失效模式对客户(包括下工序)所造成的影响;
* 检测失效的能力?
Detection
* 风险优先指数?
Risk Priority Number (RPN)
* 改善方案?
Recommended action
3.推行DFMEA的理由
•FMEA是一种用来评估系统、设计、过程或服务等所有可能会发生的故障的方法,所以,推行它的 理由往往有:
•产品责任法的要求---谁对产品的缺陷而造成的损害负责? •ISO/TS 16949 等质量体系的要求 •提高产品或服务的质量、可靠性和安全性 •提高企业的形象和竞争力 •减少产品的开发时间和成本 •协助对新的生产和组装过程进行分析 •确定和预防故障 •加强通过团队合作解决问题的文化 •形成企业内持续改进文化的有力工具
五:DFMEA应用与表格制作实战第2步 ——找失效点之4-严重度
•严重度是潜在失效模式发生时对下序零件、子系统、系 统或顾客影响后果的严重程度的评价指标。严重度仅适 用于后果。要减少失效的严重度级别数值,只能通过修 改设计来实现,严重度的评估分为1到10级,详见下页。
4
五:DFMEA应用与表格制作实战第2步 ——DFMEA严重度(S)评价准则
五:DFMEA应用与表格制作实战第2步 ——找失效点之2-失效模式
•是指系统、子系统或零部件有可能未达到设计意图的形式。 它可能引起更高一级子系统、系统的潜在失效,也可能是它 低一级的零部件潜在失效的影响后果。
•对一个特定项目及其功能,列出每个潜在失效模式。前提是 这种失效可能发生,但不是一定发生。可以将以往运行不良 的研究、问题报告以及小组的集思广益的评审作为出发点。
2.制作DFMEA
1. 明确功能(预期功能) 考虑非预期功能,失效模式是针对功能而言: Ⅰ型失效模式:不能完成规定的功能 Ⅱ型失效模式:产生了非预期的、有害的 考虑后果:站在用户将来使用产品的立场:
2.严重度分级: a) 确定级别要根据经验、要小组讨论,大家形成共识. b) 对整车的影响,假设零件(分析)装入整 体运行 c) 可依FMEA手册参考制作自己的FMEA中严重度分级,
设计失效分析DFMEA 经典案例剖析
纲要 一:重大质量问题实例 二:DFMEA的重大作用 三:DFMEA基本概念相关 四:DFMEA表格标准格式 五:DFMEA应用与表格制作实战 六:趣例分享 七:豆浆机常见失效点分组讨论并作DFMEA练习
一:重大质量问题实例
一:重大质量问题实例
这里是正文内容部分, 这里是正文内容部分,这里 是正文内容部分,这里是正
五:DFMEA应用与表格制作实战第3步 ——失效原因及可能性(频度O)
五:DFMEA应用与表格制作实战第3步 ——失效原因及可能性(频度O)
五:DFMEA应用与表格制作实战第4步 ——现行控制及探测度
现行设计控制 列出预防措施,设计确认/验证(DV)或其它活动,这些活动将保证该设计对于所考虑的失效模式和/或机理来 说是恰当的。现行的控制方法指的是那些已经用于或正在用于相同或相似设计中的那些方法(比如道路试验、设计 评审、失效与安全(减压阀)、计算研究、台架/试验室试验、可行性评审,样件试验和使用试验等)。 有三种设计控制方法可考虑,它们是: ✓(1)防止起因/机理或失效模式/后果的出现,或减少它们出现率; ✓(2)查出起因/机理并导致找到纠正措施; ✓(3)查明失效模式 如有可能应优先运用第(1)种控制方法,然后再使用第(2)种,最后是第(3)种控制方法。如果把它们所 用作为设计意图的一部分,则最初的失效频次等级将受到第(1)种控制方法的影响。如果样件和车型代表设计意 图,则最初的探测度数有将取决于第(2)、(3)种现行控制方法。
✓ 每一个在设计FMEA中标明有特殊过程控制要求的对象在过程
FMEA当中也应标明那些特殊的过程控制。
严重度分级:
a) 确定级别要根据经验、要小组讨论,大家形成共识.
b) 对整车的影响,假设零件(分析)装入整体运行
c) 可依FMEA手册参考制作自己的FMEA中严重度分级,但要遵
5
守大原则: CC(关键性特性)9-10级
文 内容部分,这里是正文内容 部分,这里是正文内容部分,
这 里是正文内容部分,这里是
正 文内容部分,这里是正文内
相关文档
最新文档