土壤有效性铜-锌-铁-锰简易测定方法
土壤有效态铜、锌、铁、锰的测定

土壤有效态铜、锌、铁、锰的测定DTPA浸提-原子吸收分光光度法1 方法提要用pH7.3的DTPA-TEA-CaCl2缓冲溶液作为浸提剂,螯合浸提出土壤中有效态锌、锰、铜、铁,用原子吸收分光光度法直接测定。
其中DTPA为螯合剂;氯化钙能防止石灰性土壤中游离碳酸钙的溶解,避免因碳酸钙所包蔽的锌、铁等元素释放而产生的影响;三乙醇胺作为缓冲剂,能使溶液pH保持7.3左右,对碳酸钙溶解也有抑止作用。
2 应用范围本方法适用于pH大于6的土壤中有效态铜、锌、铁、锰的测定,其他土壤也可参照使用。
3 主要仪器设备1)原子吸收分光光度计(包括铜、锌、铁、锰元素空心阴极灯);2)酸度计;3)恒温往复式或旋转式振荡机,或普通振荡器及恒温室,满足180r/min±20r/min的振荡频率或达到相同效果;4)带盖塑料瓶:200 mL。
4 试剂4.1 DTPA浸提剂[c(DTPA)=0.005mol·L-1,c(CaCl2)=0.01mol·L-1,c(TEA)=0.1mol·L-1,pH7.30]:称取1.967g二乙三胺五乙酸(DTPA),溶于14.92g(约13.3mL)三乙醇胺(TEA)和少量水中;再将1.47g氯化钙(CaCl2·2H2O)溶于水后,一并转入1L容量瓶中,加水至约950mL;在酸度计上用1:1盐酸溶液或1:1氨水调节pH至7.3,用水定容,贮于塑料瓶中。
此溶液可保存几个月,但用前需校准pH值。
4.2 铜标准贮备液[ρ(Cu)=1000μg·mL-1]:称取1.0000g金属铜(优级纯),溶解于20mL 1:1 硝酸溶液,移入1L容量瓶中,用水定容;或用硫酸铜配制:称取3.928g硫酸铜(CuSO4·5H2O,未风化),溶于水中,移入1L 容量瓶中,加5mL1:5硫酸溶液,稀释至刻度,混匀;4.3 铜标准溶液[ρ(Cu)=50μg·mL-1]:吸取铜标准贮备液5.00mL于100mL容量瓶中,用水定容;4.4 锌标准贮备液[ρ(Zn)=1000μg·mL-1]:称取1.0000g金属锌(优级纯),用40mL 1:2盐酸溶液溶解,移入1L容量瓶中,用水定容;或用硫酸锌配制:称取4.398g硫酸锌(ZnSO4·7H2O),溶于水中,移入1L容量瓶中,加5mL1:5硫酸溶液,稀释至刻度,混匀;4.5 锌标准溶液[ρ(Zn)=50μg·mL-1]:吸取锌标准贮备液5.00mL于100mL容量瓶中,用水定容;4.6 铁标准贮备液[ρ(Fe)=1000μg·mL-1]:称取1.0000g金属铁(优级纯),溶解于40mL 1:2盐酸溶液中(加热溶解),移入1L容量瓶中,用水定容;或用硫酸铁铵配制:称取8.634g硫酸铁铵[NH4Fe(SO4)2·12H2O],溶于水,移入1L 容量瓶中,加10mL1:5硫酸溶液,稀释至刻度,混匀;4.7 铁标准溶液[ρ(Fe)=50μg·mL-1]:吸取铁标准贮备液5.00mL于100mL容量瓶中,用水定容,即为含50μg·mL-1铁标准溶液;4.8 锰标准贮备液[ρ(Mn)=1000μg·mL-1]:称取1.0000g金属锰(优级纯),用20mL 1:1硝酸溶液溶解,移入1L容量瓶中,用水定容;或用硫酸锰配制:称取2.749g已于4005o C~500o C灼烧至恒重的无水硫酸锰(MnSO4)溶于水中,移入1L容量瓶中,加5mL1:5硫酸溶液,稀释至刻度,混匀;4.9 锰标准溶液[ρ(Mn)=50μg·mL-1]:吸取锰标准贮备液5.00mL于100mL容量瓶中,用水定容。
土壤中重金属全量测定方法

版本1:土壤中铜锌镉铬镍铅六中重金属全量一次消解.用氢氟酸-高氯酸-硝酸消解法,物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取克土壤样品过筛于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜不过夜效果同,上高温档加热数显的控制温度300~350度1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升高氯酸+5毫升氢氟酸,高温档继续加热到完全排除各种酸,既高氯酸白烟冒尽,加1毫升1+1盐酸溶解残渣,完全转移到25毫升容量瓶中,加毫升的100g/L的氯化铵溶液,定容,然后检测,含量低用石墨炉,注意定容完尽快检测锌,且锌估计需要适当的稀释.其实放置几天没有问题,相对比较稳定拉.版本2:1)称量样品放入PTFE聚四氟乙烯烧杯中先称量样品,后称量标样,用少量去离子水润湿;2)缓缓加入和如果在开始加热蒸发前先把样品在混合酸中静置几个小时,酸溶效果会更好一些,加盖后在电热板上200℃下蒸发蒸发至样品近消化完后打开坩埚盖至形成粘稠状结晶为止2~3小时;3)视情况而定,若有未消化完的样品则需要重新加入HF和HClO,每次加入都需要蒸4发至尽干;若消化完全则直接进行下一步;4)加入,蒸发至近干,以除尽残留的HF;5)加入的5mol/L HNO,微热至溶液清亮为止;检查溶液中有无被分解的物料;如有,3蒸发至近干,执行步骤4此时可以酌情减半加酸;6)待清亮的溶液冷却后,转入容量瓶,用去离子水定容至50mL此时所得溶液中硝酸含量为1mol/L,然后立即转移到新聚丙烯瓶中储存;附:现在一般做法是,砷汞用1+1的王水在沸水煮2小时,加固定剂含5g/l重铬酸钾的5%硝酸溶液,在50毫升比色管中,固定,然后用原子荧光光谱仪测定砷汞.1 土壤消化王水+HClO4法称取风干土壤过100目筛0.1 g精确到0.0001 g于消化管中,加数滴水湿润,再或加入配好的王水4~5mL,盖上小漏斗置于通风橱中浸泡加入3 ml HCl和1 ml HNO3过夜;第二天放入消化炉中,80~90℃消解30 min、100~110℃消解30 min、120~130℃消解1 h,取下置于通风处冷却;加入1 ml HClO于100~110℃条件下继续消解304min,120~130℃消解1 h;冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测;注:最高温度不可超过130℃;消化管底部只残留少许浅黄色或白色固体残渣时,说明消化已完全;如果还有较多土壤色固体存在,说明消化未完全,应继续120~130℃消化直至完全;2植物消化HNO3+H2O2法称取待测植物1~2g具体根据该植物对重金属吸收能力的强弱而定于消化管中,加入5ml HNO3,盖上小漏斗置于通风橱中浸泡过夜;第二天放入消化炉中,80~90℃消解30 min、100~110℃消解30 min、120~130℃消解1 h,取下置于通风处冷却;加入1 ml H2O2,于100~110℃条件下继续消解30 min,120~130℃消解1 h;冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测;注:植物消化完全为透明液体,无残留;植物消化前是否需要干燥根据实验要求而定;。
土壤有效磷、钾、铜、铁、锰、锌的测定

第五章土壤全氮的测定(凯氏蒸馏法)5.1 方法提要样品在加速剂的参与下,用浓硫酸消煮时,各种含氮有机化合物,经过复杂的高温分解反应,转化为铵态氮。
碱化后蒸馏出来的氨用硼酸吸收,以酸标准溶液滴定,计算土壤全氮含量(不包括硝态氮)。
包括硝态和亚硝态氮的全氮测定,在样品消煮前,需先用高锰酸钾将样品中的亚硝态氮氧化为硝态氮后,再用还原铁粉使全部硝态氮还原,转化成铵态氮。
5.2 适用范围本方法适用于各类土壤全氮含量的测定。
5.3 主要仪器设备5.3.1 消化管(与消煮炉、定氮仪配套),容积250mL。
5.3.2 定氮仪。
5.3.3 可控温铝锭消煮炉(升温不低于400℃)。
5.3.4 半微量滴定管,10mL。
5.3.5 分析天平(精确到0.0001g)。
5.4 试剂5.4.1 硫酸[ρ(H2SO4)=1.84g•mL-1];5.4.2 硫酸标准溶液[c(1/2H2SO4)=0.01mol•L-1]或盐酸标准溶液[c(HCl)=0.01mol•L-1]:配制及标定参见附录1。
5.4.3 氢氧化钠溶液[ρ(NaOH)=400g•L-1 ]:称取400g氢氧化钠溶于水中,稀释至1L。
5.4.4 硼酸—指示剂混合液。
硼酸溶液[ρ(H3BO3)=20g•L-1]:称取硼酸20.00g溶于水中,稀释至1L。
混合指示剂:称取0.5g溴甲酚绿和0.1g甲基红于专用玻璃研钵中,加入少量95%乙醇,研磨至指示剂全部溶解后,加95%乙醇至100mL。
使用前,每升硼酸溶液中加5mL混合指示剂,并用稀酸或稀碱调节至红紫色(PH约4.5)。
此液放置时间不宜过长,如在使用过程中PH有变化,需随时用稀酸或稀碱调节。
5.4.5 加速剂:称取100g硫酸钾,10g硫酸铜(Cu SO4•5H2O),1g硒粉于研钵中研细,必须充分混合均匀。
5.4.6 高锰酸钾溶液[ρ(KMnO4)=50g•L-1 ]:称取25g高锰酸钾溶于500mL水,贮于棕色瓶中。
现代农业分析与测试8土壤有效铜、锌、铁、锰的测定2

植物所需微量元素包括铜、锌、铁、锰、硼、钼 等,其主要生理作用有参与体内碳氮代谢、与叶绿素 合成及稳定性有关、参与体内氧化还原反应、促进生 物固氮、促进生殖器官的发育等。总之,尽管作物对 微量元素的需求很少,但其对植物的生理作用却是必 不可少的。目前,全国缺乏微量元素的农田面积逐年 增加,但微肥的重要性还未引起农民的足够重视。因 此,推广测土配方施肥,大力宣传植物所需微量元素的 重要性以及测定土壤微量元素的含量迫在眉睫。
评价指数(等级):
轻壤土 粘重土
不足 0-0.25
0-0.4 mg kg-1
适度 0.25-0.50 0.4-0.8 mg kg-1
充足 0.50
0.8 mg kg-1
不同作物也不同,豆科0.1mg kg-1,
甜菜0.75-1mg kg-1。
(二)浸出液中B的定量: 1、方法简介: (1) 仪器分析:ICP (2) 化学方法: A、四羟蒽醌法: 在浓H2SO4作用下,H3BO3与四羟蒽醌反应形成 兰色络合物。 条件:浓H2SO4;温度
B、次甲基蓝吸光光度法(三元络合物法):
成络:H3BO3 + 4 F- + 3 H+ BF4 - + 3 H2O
缔合: MCl
M+ + Cl-
MBF4 -(缔合物) 萃取:二氯乙烷萃取缔合物,而次甲基蓝不被萃取。 C、甲亚胺法: D、姜黄素法:
2、甲亚胺-H吸光光度法: 方法原理:在微酸性介质中,甲亚胺与H3BO3形成葡萄葡萄 Nhomakorabea白菜
症状:玉米缺铜时,顶部和心叶变黄,生长受阻, 植株矮小丛生,叶脉间失绿一直发展到基部,叶尖严 重失绿或坏死,果穗很小。
土壤有效微量元素的测定
土壤速效钾,缓效钾,有效铜、锌、铁、锰的测定

1、土壤有效养分 1-1 养分的有效性 土壤的有效养分是针对植物吸收而言。通常是指在一生长 季里,土壤中可供植物吸收和利用的那部分养分。 可供当季作物吸收的养分称为速效养分。
缓慢释放可供作物吸收的养分称缓效养分。
它们都是有效养分。
土壤中各种形态的养分并无界限,也不是绝对的。各形态 养分之间处在动态平衡中。
土壤有效Mo的测定
一、土壤中的Mo及其有效性: 土壤全Mo:我国0.1-6 mg kg-1,平均1.7 mg kg-1
世界平均2.3 mg kg-1
土壤中的Mo可为+4、+5、+6价,以+6价为有效Mo。
通常是在室温下反应,样品应与工作曲线在 相同温度下测定。
(5) 干扰物:
A、Al3+、Fe3+、Ca2+等:用EDTA掩蔽,但对Fe3+
不好;也可加氨三乙醇(NTA)。
B、NH4+:可使结果偏高。NH4+少时有正干扰,多
时干扰固定, 因此加入氨缓冲液, 使其干扰恒定。
C、H2O2:加热除去
D、有机质黄色的干扰:
1-2土壤养分有效性的因素:
强度因素(Q):土壤溶液中的养分浓度。是植物直接吸收 的养分形态。是决定植物吸收养分的难易程度。 容量因素(I):指固相上能够转移到土壤溶液中的有效养分 量,也叫数量因素。它决定了植物吸收养分量的多少。
缓冲能力:当土壤溶液中的养分浓度降低时,土壤固相养 分补充到土壤溶液中的能力称为土壤缓冲能力。用容 量指标与强度指标的比表示(Q/I )有的也叫供应速度。 缓冲能力大的土壤,土壤溶液中养分被作物吸收,溶 液中的养分马上可以得到补充。这样植物能不断地从 土壤溶液中吸取养分。
ICP—AES法测定土壤中的有效铜、锌、铁、锰

ICP—AES法测定土壤中的有效铜、锌、铁、锰ICP—AES法测定土壤中的有效铜、锌、铁、锰76广东农业科学2009年第4期ICP—AES法测定土壤中的有效铜,锌,铁,锰李海锋,林日强,谢小玲,黎汉强(广东省土壤肥料总站,广东广州510500)摘要:采用DTPA浸提剂提取土壤中有效铜,锌,铁,锰,然后用电感耦合等离子体一原子发射光谱法(ICP—AES)快速测定,铜,锌,铁,锰的检出限依次为O.O11,0.017,0.006,0.013,~g/L,通过对国家标准土壤样品GBW07415和GBW07417进行检测,其结果和标准值基本一致,相对标准偏差小于3.9%,该方法快速简便,准确度高,精密度好,可用于测土配方施肥项目土壤中铜,锌,铁,锰的测定.关键词:ICP—AES;土壤;有效铜;有效锌;有效铁;有效锰;测定中图分类号:S151.9+2文献标识码:B文章编号:1004—874X(2009)04—0076—02 测土配方施肥项目土壤样品采集数量多,每个土壤样品检测项目多,样品分析检测工作量大,耗时长.如何加快样品分析检测速度,提高工作效率,是测土配方施肥项目迫切需要解决的难题.本研究采用电感耦合等离子体一原子发射光谱法(ICP—AES)测定土壤中的有效铜,锌,铁,锰的含量,为测土配方施肥项目的土壤样品,快速检测提供科学依据.1材料与方法1.1标准溶液分别从1000I~g/mL铜,锌,铁,锰的标准溶液中吸取10mL于100mL容量瓶中,配制成100Ixg/mL混合标准溶液作为储备液.根据试验需要,再从储备液中取出部分溶液稀释成混合标准工作溶液. 称取DTPA浸提剂(pH7.3)1.967g溶于13.3mL 三乙醇胺和少量水中,再将1.47g氯化钙(CaC1- 2H20)溶于水中,一并转入1L容量瓶中,加水至约 950mL,在酸度计上用稀盐酸(1:1)或氨水(1:1)调节 pH值至7.3.最后用水定容,贮于塑料瓶中. 试验使用的DTPA,三乙醇胺,氯化钙(CaC12? 2H.O)均为分析纯,实验用水为实验室二级用水. 1.2主要仪器试验使用的主要仪器有:美国利曼公司生产的 Prodigy电感耦合等离子体发射光谱仪(ICP—AES)和全自动恒温振荡器.1.3样品处理称取10.0g风干样品置于200mL塑料瓶中.加入(25~2)oC的DTPA浸提剂20.0mL,盖好瓶盖,摇匀, 在(25?2)?恒温状态下以180r/rain的频率振荡2h, 立即干过滤,收集滤液,待测.2结果与分析2.1仪器工作参数ICP—AES测定土壤中有效铜,锌,铁,锰时的工作参数见表1.表1ICP—AES仪器主要工作参数2.2检出限在上述仪器工作参数条件下,用5%HNO,空白溶液连续测定l1次.测定结果的3倍标准偏差对应的浓度值即为各元素的检出限(表2).表2分析线波长和检出限测定结果收稿日期:20o9—02—27作者简介:李海锋(1977一),男,农艺师2.3精密度由表3可以看出.按上述土壤样品的处理方法,对 1个土壤样品进行8次平行测定,各元素测定结果的相对标准偏差在1.9%,3.9%之间,可见该方法精密度较高.772.4准确度由表4可以看出.按上述样品处理方法分别对土壤标准物质GBW07415和GBW07417进行前处理.然后上机测定,各元素的测定值都在标准值规定的范围内.可见该方法具有较高的准确度.表3ICP—AES法对土壤样品的测定结果3结语.,本试验结果表明,电感耦合等离子体一原子发射元素的快速准确的检测方法.光谱法(ICP—AES)能同时测定土壤中有效态的铜,锌, ;亭夸夸r夸jIlerj譬窜窜k一夸j=k.j;}j一;t窜夸r夸-一夸譬窜r?夸r窜r夸r一r业壹kr窜;tr;}j夸j妊rj夸譬窜r广东省2006年国家级测土配方施肥项目县通过省级验收 2月25日,广东省农业厅根据农业部《测土配方施肥补贴项目验收暂行办法》和省农业厅《关于认真做好 2006年国家测土配方施肥补贴项目县省级验收工作的通知》(粤农函f2008]726号)的要求,组织对我省8个 2006年国家级测土配方施肥项目县进行省级验收.成立了由省农业厅财务处林沛杰调研员担任组长,省农业厅种植业管理处梁权副处长,省农科院土肥所徐培智研究员,省生态环境与土壤研究所李淑仪研究员,华南农业大学资环学院张新明副教授等领导和专家组成的省级验收组.验收会上,广东省土壤肥料总站站长,省测办主任梁友强致辞,他指出,省农业厅对此次省级验收高度重视, 厅有关领导专门作出批示,严格按照农业部《测土配方施肥补贴项目验收暂行办法》高标准做好验收工作,为下一步做好项目的进一步实施打好基础.省级验收组各位专家认真听取了8个测土配方施肥补贴项目县2006,2008年3年执行情况汇报,审查了有关资料,并就项目实施过程中的有关问题进行了提问.经过充分讨论,对8个项目县的项目执行情况逐项进行了综合考评,一致认为8个项目县实施测土配方施肥补贴项目工作扎实,措施得力,较好地完成了项目要求的各项工作任务,项目资金使用规范合理,取得了明显的经济效益,社会效益和生态效益,验收结果均为合格,同意通过省级验收(510500广东省土壤肥料总站张育灿)。
土壤重金属有效态测定方法

土壤重金属有效态测定方法
嘿,你知道吗?土壤重金属有效态测定那可是相当重要呢!测定方法第一步,采集土壤样本,这就好比去菜市场挑菜,得挑新鲜有代表性的。
采样的时候可得仔细喽,别马马虎虎的。
要是采得不好,后面的结果能准吗?
接着呢,对样本进行处理。
把土壤弄碎、过筛,就像给面粉过筛一样,得弄得匀匀的。
这一步可不能偷懒,要不然数据就不靠谱啦。
然后就是关键的测定环节啦。
可以用化学提取法,就像从一堆宝藏里把宝贝找出来一样。
不同的重金属可能需要不同的提取剂哦,可不能瞎用。
在这个过程中,安全性那是必须要考虑的。
毕竟涉及到化学试剂啥的,万一不小心弄洒了,那可不得了。
所以操作的时候一定要小心谨慎,戴手套、护目镜,这就跟战士上战场要穿铠甲一样重要。
稳定性也很关键呀,每次操作都得尽量保持一致,不然结果一会儿一个样,那还得了?
那这个方法都能用在啥地方呢?比如说农田土壤检测,要是土壤里重金属超标了,种出来的粮食还能吃吗?还有工业场地周边的土壤,那可是重点关注对象。
这方法的优势可不少呢!能准确地知道土壤中重金属的有效态含量,为土壤治理提供科学依据。
就像医生给病人看病,得先知道病情有多严重才能对症下药呀。
给你举个实际案例吧。
有个地方的工厂附近土壤被怀疑重金属污染,用这个方法一测,果然超标。
然后就可以采取措施进行治理啦。
总之,土壤重金属有效态测定方法很重要,能让我们更好地了解土壤状况,保护我们的环境和健康。
测定土壤有效性铁锰铜锌的影响因素及优化方法

测定土壤有效性铁锰铜锌的影响因素及优化方法
影响有效性铁锰铜锌的因素及优化方法
一、影响因素
1.土壤组分:有效性铁锰铜锌的分布主要受到土壤含量中元素的影响,如钙、镁、钾和长次生有机物等,这些元素会影响有效性铁锰铜锌的
分布。
2.土壤酸度:土壤酸度也是影响铁锰铜锌含量的重要因素,随着土壤酸度的增加,铁含量逐渐减少而锰、铜和锌的含量则增加。
3.位置关系:元素在土壤中的分布也受到地形位置等因素的影响,山谷地区一般有效性金属元素含量比较多,而河谷地区则相对较少。
4.植物对矿物质元素的吸收:植物会从土壤中吸收矿物质元素,吸收的量和植物的类型、生长状况有关;这样一来,缺水和养分是会影响有
效性铁锰铜锌的。
二、优化方法
1.土壤处理:以磷肥、钾肥等来优化土壤中的有效养分容积,改善土壤的结构和质量,防止土壤中的重金属污染。
2.水土保持:通过开垦、灌溉等提高水分的循环和利用效率,防止土壤产生脱水性,有利于有效金属元素的吸收。
3.施肥:施用腐殖质、硝酸钙等有机肥可以改善土壤中有效元素的含量,从而提高作物的养分吸收作用,减少重金属的污染。
4.选择植物:选择较耐铁锰铜锌的植物栽种,以减少作物对这些金属的吸收,降低金属元素的污染。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土壤有效性铜\锌\铁\锰简易测定方法
植物所需微量元素包括铜、锌、铁、锰、硼、钼等,其主要生理作用有参与体内碳氮代谢、与叶绿素合成及稳定性有关、参与体内氧化还原反应、促进生物固氮、促进生殖器官的发育等。
总之,尽管作物对微量元素的需求很少,但其对植物的生理作用却是必不可少的。
目前,全国缺乏微量元素的农田面积逐年增加,但微肥的重要性还未引起农民的足够重视。
因此,推广测土配方施肥,大力宣传植物所需微量元素的重要性以及测定土壤微量元素的含量迫在眉睫。
现就土壤微量元素铜、锌、铁、锰简易测定方法介绍如下:
1基本方法
土壤样品经DTPA-TEA-CaCl2提取后,用原子光谱法直接测定溶液中的锌、锌、铁、锰。
2主要仪器、设备
①原子吸收分光光度计;②酸度计;③往复式振荡机;④带盖塑料瓶。
3试剂
3.1DTPA浸提剂其成分为0.005mol/L DTPA、0.01mol/ L CaCl2和0.10mol /L TEA。
称取1.967g二乙酸胺五乙酸(DTPA),溶于1
4.92g三乙醇胺(TEA)和少量水中;再将 1.47g氯化钙(CaCl2.H2O)溶于水后,一并转入1L容量瓶中,加水至约950mL;在酸度计上用6mol/ L盐酸溶液调节pH至7.30,用水定容,贮于塑料瓶中。
3.2标准贮备液
3.2.1铜标准贮备液称取1.00g金属铜(优级纯),溶解于20mL 1:1硝酸溶液,移入1L容量瓶中,用水定容,即为1 000ug /mL铜标准贮备液。
分取此液5mL于100mL容量瓶中,用水定容,即为含50 ug/ mL铜标准溶液。
3.2.2锌标准贮备液称取1.00g金属锌(优级纯),用40mL 1:2盐酸溶液溶解,移入1L容量瓶中,用水定容,即为1 000ug/ mL锌标准贮备液。
分取此液5mL于100mL容量瓶中,用水定容,即为含50 ug/ mL锌标准溶液。
3.2.3铁标准贮备液称取1.00g金属铁(优级纯),溶解于40mL 1:2盐酸溶液中(加热溶解),移入1L容量瓶中,用水定容,即为1 000ug/ mL铁标准贮备液。
分取此液5mL于100mL容量瓶中,用水定容,即为含50 ug/ mL铁标准溶液。
3.2.4锰标准贮备液称取1.00g金属锰(优级纯),用20mL 1:1硝酸溶液溶解,移
入1L容量瓶中,用水定容,即为1 000ug /mL锰标准贮备液。
分取此液5mL于100mL容量瓶中,用水定容,即为含50 ug/ mL锰标准溶液。
4实验步骤
称取过2mm孔径尼龙筛的风干试样10g(精确至0.01g)于200mL塑料瓶中,加入DTPA浸提剂20mL,盖好瓶盖,在25±2℃下,以180r/min的速度振荡2h,过滤。
滤液直接上原子吸收分光光度计测定。
同时做空白实验。
标准曲线的绘制:分别吸取50ug/ mL铜、锌、铁、锰标准溶液一定体积于6个100mL容量瓶中,用DTPA 浸提剂定容,即为铜、锌、铁、锰混合标准系列溶液(分取体积及系列浓度见下表)。
与样品同条件上机测定,读取吸光值和浓度值,分元素绘制标准曲线。
5结果计算
有效铜(锌、铁、锰)mg/ kg=c*V*1000/(m*103)
式中:c-直接读取或由标准曲线查出样品测定液中元素的浓度,ug/mL;
V-浸提液体积,mL;
103和1 000-换算系数;
m-试样质量,g。
平行测定结果允许相对误差≤10%。
6注意事项
DTPA提取是一个非平衡体系提取,因而提取条件必须标准化。
包括土样的粉碎程度、振荡强度、提取液的酸度、提取温度等,DTPA提取液的pH值应控制在7.30,为了准确控制提取液的酸度,在调节溶液pH时使用酸度计校准。
浸提时的温度应保持在25±2 ℃,以免影响各元素的测定结果。
测试时若需稀释,应用DTPA 浸提液稀释,并在计算时乘上倍数。