第10章 离散系统的频率响应
求解离散系统全响应的基本方法和过程

求解离散系统全响应的基本方法和过程离散系统是指系统的输入和输出都是以离散时间点为基准的系统。
在离散系统中,我们常常需要求解其全响应,即系统在时域上的完整响应。
在本文中,我们将介绍求解离散系统全响应的基本方法和过程。
我们需要了解离散系统的模型。
离散系统可以用差分方程表示。
一个简单的离散系统模型可以写作:y(n) = b(0)x(n) + b(1)x(n-1) + ... + b(M)x(n-M) - a(1)y(n-1) - ... - a(N)y(n-N)其中,x(n)为输入信号,y(n)为输出信号,b(0)、b(1)、...、b(M)为输入信号的系数,a(1)、...、a(N)为输出信号的系数。
根据差分方程的形式,我们可以使用递推的方式求解离散系统的全响应。
求解离散系统全响应的基本方法之一是使用差分方程的递推关系。
对于一个一阶差分方程,我们可以通过递推关系来求解其全响应。
递推关系可以写作:y(n) = b(0)x(n) - a(1)y(n-1)其中,y(n)为当前时刻的输出信号,y(n-1)为上一时刻的输出信号,x(n)为当前时刻的输入信号,b(0)为输入信号的系数,a(1)为输出信号的系数。
通过递推关系,我们可以根据已知的初始条件和输入信号,逐步求解出系统的全响应。
对于高阶差分方程,我们可以通过多次使用递推关系来求解其全响应。
假设我们要求解一个二阶差分方程的全响应,可以写作:y(n) = b(0)x(n) + b(1)x(n-1) - a(1)y(n-1) - a(2)y(n-2)我们可以使用递推关系求解出第一个时刻的输出信号y(0),然后再通过递推关系求解出第二个时刻的输出信号y(1),以此类推,直到求解出所有时刻的输出信号。
这样,我们就可以得到离散系统的全响应。
除了使用递推关系,我们还可以使用离散系统的传递函数来求解全响应。
离散系统的传递函数可以通过离散系统的差分方程得到。
传递函数是输入信号和输出信号的关系,它可以用来描述系统的频率响应特性。
课件:离散时间系统的频率响应

则系统的幅频特性为
M
ej z j
H (e j )
k
j 1 N
ej pi
H (e j ) e j
i 1
ej pi Bieji 相频特性为
M
Aj
H (ej )
k
j1 N
Bi
i 1
M
N
() j i
j 1
i 1
信号与系统
§7.9 离散时间系统的频率响应
北京航空航天大学电子信息学院 2021/7/20
一、离散时间系统频响的定义
离散时间系统的频率响应: h(n) 的傅里叶变换 条件:稳定系统
H ej F h n H z zej
从系统激励与相应的零状态响应的傅里叶变换关系来看,
H
e j
Y
z
Y zej
e j
X z zej
X ej
H ej H ej ej
幅频特性: H ej ~
相频特性: ~
二、离散时间系统频响的物理意义
观察复指数序列 xn e u j0n n
X
z
z
z e j0
则系统响应的z变换为
Y
z
z z e j0
H z
由于系统为因果稳定系统, 极点均位于单位圆内,不会
与X(z) 的极点 ej0相重合。
Y
z
az z ej0
M
Am z
m1 z zm
其中常数 a H e j0 ,则稳态响应为
二、离散时间系统频响的物理意义
y n H ej0 ej0nu n
序列 e u j0n n经过一离散时间系统H(ejω) ,所得稳态响
应依然是 e u j0n n,但受到该系统频率响应 H e j0的加
数字信号处理第10章习题

第十章习题10-1. 试证明随即过程统计平均量的下列性质: (a) ][][][m n m n y E x E y x E +=+ (b)][][n n x aE ax E =【解题思路】从定义去证明。
证明:(a)][][),(),(),(),(),,,(),,,(),,,(),,,(),,,(),,,()(][22m n y x x x y y x y x y x y x y x y x m n y E x E dy m y yp dx n x xp n x p xn x P yx m y n x P dyy x m y n x P dy m y n x p dxdym y n x yp dxdy m y n x xp dxdym y n x p y x y x E m n n n m n m n m n m n m n m n +=+∴=∂∂=∂∂∂=∂∂∂=+=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-∞+-∞=∞+∞-∞+∞-∞+∞-∞+∞-∞+∞-∞+∞-+∞∞-+∞∞-上式=(b)][),(),(][n x x n x aE dx n x xp a dx n x axp ax E n n ===⎰⎰+∞∞-+∞∞-10-2. 设x(n)和y(n)是两不相关的随机序列,试证: 如果w(n)=x(n)+y(n),则y x μμμω+=和222y x σσσω+=【解题思路】从定义去证明。
证明:yx w y x n y E n x E n y n x E n w E n y E u n x E μμμμ+=+=+==∴==)]([)]([)]()([)]([)]([)]([用上题结论])()))(()((2))()([(])))()([(]))([(]))([(]))([(222222222y x y x y x w w y y x x n y n x n y n x E n y n x E n w E n y E n x E μμμμμμμσμσμσ++++-+=--+=-=∴-=-= 又证明:2)()]}([)]([){()]()([)()]))(()([(y x y x y x y x n y E n x E n y n x E n y n x E μμμμμμμμ+=++=++=++222222222222222222])([])([])(2)()([)]([)]([)]()([)()()]()([2)]([)]([]))()([()(]))()([(])())()([(yx y x y x y x w yx y x y x w n y E n x E n y n x E n y E n x E n y n x E n y n x n y n x E n y E n x E n y n x E n y n x E n y n x E σσμμμμμμσμμμμμμσ+=-+-=+-++=∴=⋅∴++++-+=+-+=∴=不相关与由于=其中10-3. 某一个随机过程的取样序列x(n)的形式为)cos()(0θω+=n n x式中θ是一个均匀分布的随机变量,其概率密度如图。
系统的频率响应函数

系统的频率响应函数
频率响应函数通常用H(ω)表示,其中ω为角频率。
频率响应函数
可以分为振幅响应和相位响应两个部分。
振幅响应函数H(ω)的模值,H(ω),表示系统对不同频率的输入信
号的放大或衰减程度。
振幅响应函数通常使用分贝(dB)单位表示。
若,
H(ω),为0dB,则表示系统对该频率的信号不进行放大或衰减;若,
H(ω),为正值,则表示系统对该频率的信号进行放大;若,H(ω),为负值,则表示系统对该频率的信号进行衰减。
相位响应函数H(ω)的角度表示系统对不同频率的输入信号的相位差。
相位响应函数通常使用角度(°)单位表示。
相位响应可以告诉我们系统
对不同频率信号的相位差,尤其对于时域信号的传输和滤波具有重要的意义。
系统的频率响应函数可以通过多种方法来得到,比如频率域采样、离
散傅里叶变换、Z变换等。
对于线性时不变系统,频率响应函数H(ω)可
以通过系统的冲激响应函数h(t)和冲激函数δ(t)之间的关系求得,即
H(ω) = ∫h(t)e^(-jωt)dt。
频率响应函数对于系统分析和设计具有重要的意义。
在系统控制和滤
波方面,我们可以通过频率响应函数对系统的频率特性进行评估和优化。
在通信系统中,频率响应函数可以帮助我们了解系统对不同频率的信号的
传输特性,从而对系统进行调整和改进。
总结起来,系统的频率响应函数是系统对不同频率信号的放大或衰减
程度以及相位差的表征。
通过频率响应函数,我们可以对系统的频率特性
进行评估和优化,从而在系统分析和设计中起到重要的作用。
系统函数系统频率响应系统单位冲激响应三者之间的关系

系统函数系统频率响应系统单位冲激响应三者之间的关系
系统函数、系统频率响应和系统单位冲激响应是数字信号处理中描述离散系统的重要概念。
三者之间的关系如下:
1. 系统函数(Transfer Function):系统函数是描述离散系统
的一个复数函数,通常表示为H(z)或H(e^(jω))。
它将输入信
号的频谱与输出信号的频谱之间的关系联系起来。
系统函数是系统频率响应和系统单位冲激响应的拉普拉斯或Z变换。
2. 系统频率响应(Frequency Response):系统频率响应是系
统函数H(z)在复平面上的取值。
它描述了系统对不同频率的
输入信号的响应情况。
系统频率响应可以通过将系统函数H(z)的变量变为单位复指数来得到,即H(e^(jω))。
3. 系统单位冲激响应(Unit Impulse Response):系统单位冲
激响应是指当输入信号为单位冲激函数(单位脉冲函数)时,系统的输出响应。
它是系统函数H(z)在z=1处的取值,通常
表示为h[n]。
系统单位冲激响应是系统函数的离散时间反变换。
综上所述,系统函数H(z)是系统频率响应H(e^(jω))和系统单
位冲激响应h[n]]之间的关系。
系统频率响应描述了系统对不
同频率的输入信号的响应情况,而系统单位冲激响应描述了系统对单位冲激函数的响应情况。
系统函数则将这两者联系起来,通过对系统频率响应进行频域拉普拉斯变换或Z变换得到系
统函数,并通过对系统函数进行逆变换得到系统单位冲激响应。
期末考试《信号与系统课程要点(吴大正)》

信号与线性系统复习提纲第一章信号与系统1.信号、系统的基本概念2.信号的分类,表示方法(表达式或波形)连续与离散;周期与非周期;实与复信号;能量信号与功率信号3.信号的基本运算:加、乘、反转和平移、尺度变换.图解时应注意仅对变量t作变换,且结果可由值域的非零区间验证。
4.阶跃函数和冲激函数极限形式的定义;关系;冲激的Dirac定义阶跃函数和冲激函数的微积分关系冲激函数的取样性质(注意积分区间);;5.系统的描述方法数学模型的建立:微分或差分方程系统的时域框图,基本单元:乘法器,加法器,积分器(连),延时单元(离)由时域框图列方程的步骤。
6.系统的性质线性:齐次性和可加性;分解特性、零状态线性、零输入线性.时不变性:常参量LTI系统的数学模型:线性常系数微分(差分)方程(以后都针对LTI系统)LTI系统零状态响应的微积分特性因果性、稳定性(可结合第7章极点分布判定)第二章连续系统的时域分析1.微分方程的经典解法:齐次解+特解(代入初始条件求系数)自由响应、强迫响应、瞬态响应、稳态响应的概念0—~0+初值(由初始状态求初始条件):目的,方法(冲激函数系数平衡法)全响应=零输入响应+零状态响应;注意应用LTI系统零状态响应的微积分特性特别说明:特解由激励在t>0时或t〉=0+的形式确定2.冲激响应定义,求解(经典法),注意应用LTI系统零状态响应的微积分特性阶跃响应与的关系3.卷积积分定义及物理意义激励、零状态响应、冲激响应之间关系卷积的图示解法(了解)函数与冲激函数的卷积(与乘积不同);卷积的微分与积分复合系统冲激响应的求解(了解)第三章离散系统的时域分析1.离散系统的响应差分方程的迭代法求解差分方程的经典法求解:齐次解+特解(代入初始条件求系数)全响应=零输入响应+ 零状态响应初始状态(是),而初始条件(指的是)2.单位序列响应的定义,的定义,求解(经典法);若方程右侧是激励及其移位序列时,注意应用线性时不变性质求解阶跃响应与的关系3.卷积和定义及物理意义激励、零状态响应、冲激响应之间关系卷积和的作图解与的卷积和;结合前面卷积积分和卷积和,知道零状态响应除经典解法外的另一方法。
离散时间系统的频率响应特性

差分方程的Z 域解序言描述离散时间系统的数学模型为差分方程。
求解差分方程是我们分析离散时间系统的一个重要途径。
求解线性时不变离散系统的差分方程有两种方法:• 时域方法——第七章中介绍,烦琐 • z 变换方法• 差分方程经z 变换→代数方程; • 可以将时域卷积→频域(z 域)乘积; • 部分分式分解后将求解过程变为查表;• 求解过程自动包含了初始状态(相当于0-的条件)。
一.应用z 变换求解差分方程步骤一.步骤(1)对差分方程进行单边z 变换(移位性质 );(2)由z 变换方程求出响应Y (z ) ; (3) 求Y (z ) 的反变换,得到y (n ) 。
例8-7-1(原教材例7-10(2))解:方程两端取z 变换()0.9(1)0.05()(1)1,y n y n u n y --=-=已知系统的差分方程表达式为若边界条件求系统的完全响应。
()()()10.910.051zY z z Y z y z -⎡⎤-+-=⎣⎦-例8-7-2 已知系统框图列出系统的差分方程。
求系统的响应 y (n )。
解:(1) 列差分方程,从加法器入手(2)(3)差分方程两端取z 变换,利用右移位性质()()()()20.910.0510.90.9y z z Y z z z z -=+---()1210.9Y z A z A zz z z =+--()1210.9Y z A z A z zz z =+--120.5 0.45A A ==()0.50.4510.9Y z z z z z z =+--()()()0.50.450.9 0n y n n =+⨯≥()()()()⎩⎨⎧==<≥-=010,0002y y n n n x n ()()()()()13122x n x n y n y n y n +-----=()()()()()12213 -+=-+-+n x n x n y n y n y 所以()()151,224y y -=--=()()()()1,2,1,0z y y y y --用变换求解需要用由方程迭代出()()()()()()12131212Y z z Y z y z Y z z y y ---⎡⎤⎡⎤++-++-+-⎣⎦⎣⎦a.由激励引起的零状态响应即零状态响应为b.由储能引起的零输入响应即零输入响应为c.整理(1)式得全响应注意()()()1 01221=-+++=-x z z z z z ()[]2123121zs ++=++--z z zz z Y ()()2zs 22z Y z z =+()()()()()n u n n y z Y n21zs zs-+=↔2n ≥-(对都成立)()[]()()()221312231121zi ------=++---y y y z z z z Y ()()()()1223121zi +++-=++--=z zz z z z z z z Y ()()()()1223zi zi ≥-+--=↔n n y z Y nn()()()()22112221212+++++=++=z B z B z A z z z z Y ()()()()222122d d !121221-=-=⎥⎦⎤⎢⎣⎡+++⋅-=z z z z z B ()()2222212 +-++-++=z z z z z Y 所以()()2222212+-+-+=z zz z z z z Y ()()()()()0 22212≥-+---=n n n y n n n 122,2A B ==-()()()2212zY z z z =++2(),2()n azna u n a z a ↔=--验证 由方程解y (n )表达式可以得出y (0)=0, y (1)=0,和已知条件一致。
离散系统的频率响应分析

离散系统的频率响应分析实验课程:数字信号处理实验内容:实验4离散系统的频率响应分析和零、极点分布院(系则):计算机学院专业:通信工程班级:111班2021年6月7日一、实验目的:增进对离散系统的频率响应分析和零、极点原产的概念认知。
二、实验原理:离散系统的时域方程为y(n-k)=∑pkx(n-k)其变换域分析方法如下:时频域变换y[n]=x[n]*h[n]=系统的频率响应为jωjωjωx[m]h[n-m]⇔y(e)=x(e)h(e)∑p(ejω)p0+p1e-jω+...+pme-jmωh(e)==jωd(e)d0+d1e-jω+...+dne-jnω时域z域变换y[n]=x[n]*h[n]=系统的转移函数为∑x[m]h[n-m]⇔y(z)=x(z)h(z)p(z)p0+p1z-1+...+pmz-mh(z)==d(z)d0+d1z-1+...+dnz-nh(z)=∑pkz∑dkz(1-ξz)∏i-1(1-λz)∏ii=1i=1nξλi上式中的和i称为零、极点。
在matlab中,可以用函数[z,p,k]=tf2zp(num,den)求出有理分式形式的系统迁移函数的零、极点,用函数zplane(z,p)绘制零、极点分布图;也可以用函数zplane (num,den)轻易绘制有理分式形式的系统迁移函数的零、极点分布图。
另外,在matlab中,可以用函数[r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos(z,p,k)完成将高阶系统分解为2阶系统的级联。
三、实验内容及步骤:实验内容:求系统0.0528+0.0797z-1+0.1295z-2+0.1295z-3+0.797z-4+0.0528z-5h(z)=1-1.8107z-1+2.4947z-2-1.8801z-3+0.9537z-4-0.2336z-5的零、极点和幅度频率响应。
程序代码:num=[0.05280.07970.12950.12950.7970.0528];den=[1-1.87072.4947-1.88010.9537-0.2336];freqz(num,den);%0~π中抽样,抽样点缺省(512点)ζnum=[0.05280.07970.12950.12950.7970.0528];den=[1-1.87072.4947-1.88010.9537-0.2336];w=[0pi/8pi/4pi*3/8pi/2pi*5/8pi*3/4];%自己定8个点θh=freqz(num,den,w);subplot(2,2,1);stem(w/pi,abs(h));title('幅度五音')xlabel('数字频率');ylabel('振幅');[h,w]=freqz(num,den,8);%系统在0~π之间均分8份,与“θ”处效果一样wsubplot(2,2,2);stem(w/pi,abs(h));title('幅度五音')xlabel('数字频率');ylabel('振幅');h=freqz(num,den);%系统在0~π之间均分512份,与“ζ”处效果一样subplot(2,2,3);z=10*log(abs(h))plot(z);%与“ζ”处幅度五音效果一样title('分贝幅度五音')xlabel('数字频率');ylabel('振幅');num=[0.05280.07970.12950.12950.7970.0528];den=[1-1.87072.4947-1.88010.9537-0.2336];[z,p,k]=tf2zp(num,den);%谋零极点z%零点p%极点subplot(2,2,4);zplane(z,p);%zplane(num,den)也可以[sos,g]=zp2sos(z,p,k);%二阶系统分解sosg [r,p,k]=residuez(num,den);%部分分式进行rp四、实验总结与分析:本次实验晓得了函数zplane()、freqz()、angle()的用法,原来就是绘制零极点图形和排序数字滤波器h(z)的频率响应以及谋复数的相角。