正比例函数练习题1

合集下载

2017050正比例函数练习题(带详解答案)

2017050正比例函数练习题(带详解答案)

2017050正比例函数练习题一.选择题(共16小题)1.已知函数y=x+k+1是正比例函数,则k的值为()A.1 B.﹣1 C.0 D.±12.下列问题中,是正比例函数的是()A.矩形面积固定,长和宽的关系B.正方形面积和边长之间的关系C.三角形的面积一定,底边和底边上的高之间的关系D.匀速运动中,速度固定时,路程和时间的关系3.已知函数y=(m+1)x是正比例函数,且图象在第二、四象限内,则m的值是()A.2 B.﹣2 C.±2 D.﹣4.已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m的取值范围是()A.m>B.m<C.m>1 D.m<15.下列式子中,表示y是x的正比例函数的是()A.y=x+5 B.y=3x C.y=3x2D.y2=3x6.正比例函数y=﹣2x的大致图象是()A.B.C.D.7.在下列各图象中,表示函数y=﹣kx(k<0)的图象的是()A.B.C.D.8.一次函数y=﹣x的图象平分()A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限9.如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A.k1<k2<k3<k4B.k2<k1<k4<k3C.k1<k2<k4<k3D.k2<k1<k3<k410.已知正比例函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是()A.m<1 B.m>1 C.m<2 D.m>011.已知正比例函数y=(m﹣3)x的图象过第二、四象限,则m的取值范围是()A.m≥3 B.m>3 C.m≤3 D.m<312.已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<﹣1 B.m>﹣1 C.m≥﹣1 D.m≤﹣113.已知正比例函数y=kx(k≠0),点(2,﹣3)在函数上,则y随x的增大而()A.增大B.减小C.不变D.不能确定14.若点A(﹣5,y1)和点B(﹣2,y2)都在y=﹣x上,则y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.y1≤y215.若正比例函数y=(1﹣2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m<D.m>16.已知正比例函数y=(2t﹣1)x的图象上一点(x1,y1),且x1y1<0,x1+y1>0,那么t的取值范围是()A.t<0.5 B.t>0.5 C.t<0.5或t>0.5 D.不确定二.填空题(共5小题)17.正比例函数的图象是,当k>0时,直线y=kx过第象限,y随x的增大而.18.已知正比例函数y=kx(k≠0)的图象经过点(﹣6,2),那么函数值y随自变量x的值的增大而.(填“增大”或“减小”)19.函数y=kx(k≠0)的图象过P(﹣3,3),则k=,图象过象限.20.已知点P1(x1,y1)和点P2(x2,y2)是正比例函数y=kx(k≠0)图象上的两点,且当x1<x2时,y1<y2,则k的取值范围是.21.正比例函数图象经过点(2,﹣4),且x的取值范围是﹣3≤x≤4,那么y的取值范围是.三.解答题(共6小题)22.(1)画出函数y=﹣x的图象;(2)判断点A(﹣,),B(0,0),C(,﹣)是否在函数y=﹣x的图象上.23.如图所示的平面直角坐标系中作出一次函数y=﹣2x的图象.思考:作一次函数y=﹣2x的图象,一般取几个点就可以了?为什么?24.已知关于x的正比例函数y=(5﹣2k)x.(1)当k取何值时,y随x的增大而增大;(2)当k取何值时,y随x的增大而减小.25.已知y﹣2与3x﹣4成正比例函数关系,且当x=2时,y=3.(1)写出y与x之间的函数解析式;(2)若点P(a,﹣3)在这个函数的图象上,求a的值;(3)若y的取值范围为﹣1≤y≤1,求x的取值范围.26.若正比例函数y=(a﹣1)的图象经过点(﹣2,b2+5),求a,b的值.27.在平面直角坐标系中,点A坐标为(1,0),在直线y=x上取点P,使△OPA是等腰三角形,求所有满足条件的点P坐标.2017050正比例函数练习题参考答案与试题解析一.选择题(共16小题)1.(2017春•丛台区校级月考)已知函数y=x+k+1是正比例函数,则k的值为()A.1 B.﹣1 C.0 D.±1【分析】根据正比例函数的定义,可得答案.【解答】解:由题意,得k+1=0,解得k=﹣1,故选:B.【点评】本题考查了正比例函数的定义,理解正比例函数的定义是解题关键.2.(2016春•扶沟县期末)下列问题中,是正比例函数的是()A.矩形面积固定,长和宽的关系B.正方形面积和边长之间的关系C.三角形的面积一定,底边和底边上的高之间的关系D.匀速运动中,速度固定时,路程和时间的关系【分析】根据正比例函数的定义对各选项进行逐一分析即可.【解答】解:A、∵S=ab,∴矩形的长和宽成反比例,故本选项错误;B、∵S=a2,∴正方形面积和边长是二次函数,故本选项错误;C、∵S=ah,∴三角形的面积一定,底边和底边上的高是反比例关系,故本选项错误;D、∵S=vt,∴速度固定时,路程和时间是正比例关系,故本选项正确.故选D.【点评】本题考查的是正比例函数的定义,即一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数.3.(2016秋•林甸县期末)已知函数y=(m+1)x是正比例函数,且图象在第二、四象限内,则m的值是()A.2 B.﹣2 C.±2 D.﹣【分析】根据正比例函数的定义,正比例函数的性质,可得答案.【解答】解:由题意,得m2﹣3=1,且m+1<0,解得m=﹣2,故选:B.【点评】本题考查了正比例函数,利用正比例函数的定义得出方程是解题关键,注意比例系数是负数.4.(2016春•乐亭县期末)已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m的取值范围是()A.m>B.m<C.m>1 D.m<1【分析】先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵正比例函数y=(1﹣3m)x中,y随x的增大而增大,∴1﹣3m>0,解得m<.故选:B.【点评】本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k>0时,y随x 的增大而增大.5.(2016春•厦门期末)下列式子中,表示y是x的正比例函数的是()A.y=x+5 B.y=3x C.y=3x2D.y2=3x【分析】根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,判断各选项,即可得出答案.【解答】解:A、y=x+5,是和的形式,故本选项错误;B、y=3x,符合正比例函数的含义,故本选项正确;C、y=3x2,自变量次数不为1,故本选项错误;D、y2=3x,函数次数不为1,故本选项错误,故选B.【点评】本题考查了正比例函数的定义,难度不大,注意基础概念的掌握.6.(2016春•曹县期末)正比例函数y=﹣2x的大致图象是()A.B.C.D.【分析】根据k=﹣2<0和正比例函数的性质即可得到答案.【解答】解:∵k=﹣2<0,∴正比例函数y=﹣2x的图象经过二、四象限.故选C【点评】本题主要考查对正比例函数的性质的理解和掌握,能熟练地运用正比例函数的性质进行说理是解此题的关键.7.(2015春•澧县期末)在下列各图象中,表示函数y=﹣kx(k<0)的图象的是()A.B.C.D.【分析】由于正比例函数的图象是一条经过原点的直线,由此即可确定选择项.【解答】解:∵k<0,∴﹣k>0,∴函数y=﹣kx(k<0)的值随自变量x的增大而增大,且函数为正比例函数,故选:C.【点评】此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.8.(2009秋•罗湖区期末)一次函数y=﹣x的图象平分()A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限【分析】根据一次函数的性质判断出一次函数y=﹣x的图象所经过的象限,进而可得出答案.【解答】解:∵k=﹣1<0,∴一次函数y=﹣x的图象经过二、四象限,∴一次函数y=﹣x的图象平分二、四象限.故选D.【点评】本题考查的是一次函数的图象,熟知一次函数的性质是解答此题的关键.9.(2005•滨州)如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A.k1<k2<k3<k4B.k2<k1<k4<k3C.k1<k2<k4<k3D.k2<k1<k3<k4【分析】首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.【解答】解:首先根据直线经过的象限,知:k2<0,k1<0,k4>0,k3>0,再根据直线越陡,|k|越大,知:|k2|>|k1|,|k4|<|k3|.则k2<k1<k4<k3故选B.【点评】此题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.10.(2016•碑林区校级四模)已知正比例函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是()A.m<1 B.m>1 C.m<2 D.m>0【分析】据正比例函数的增减性可得出(m﹣1)的范围,继而可得出m的取值范围.【解答】解:根据题意,知:y随x的增大而减小,则m﹣1<0,即m<1.故选A.【点评】能够根据两点坐标之间的大小关系,判断变化规律,再进一步根据正比例函数图象的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.列不等式求解集.11.(2016•贵港二模)已知正比例函数y=(m﹣3)x的图象过第二、四象限,则m的取值范围是()A.m≥3 B.m>3 C.m≤3 D.m<3【分析】直接利用正比例函数的定义得出m的取值范围即可.【解答】解:∵正比例函数y=(m﹣3)x的图象过第二、四象限,∴m﹣3<0,解得:m<3.故选:D.【点评】此题主要考查了正比例函数的性质,正确把握正比例函数的性质是解题关键.12.(2016•蓝田县一模)已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<﹣1 B.m>﹣1 C.m≥﹣1 D.m≤﹣1【分析】根据正比例函数图象与系数的关系列出关于k的不等式k+3<0,然后解不等式即可.【解答】解:∵正比例函数y=(m+1)x中,y的值随自变量x的值增大而减小,∴m+1<0,解得,m<﹣1;故选A.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.13.(2016•陕西校级三模)已知正比例函数y=kx(k≠0),点(2,﹣3)在函数上,则y随x 的增大而()A.增大B.减小C.不变D.不能确定【分析】首先根据函数的图象经过的点的坐标确定函数的图象经过的象限,然后确定其增减性即可.【解答】解:∵点(2,﹣3)在正比例函数y=kx(k≠0)上,∴函数图象经过二四象限,∴y随着x的增大而减小,故选B.【点评】本题考查了正比例函数的性质,解题的关键是牢记正比例函数的比例系数对函数图象的影响.14.(2007秋•绵阳期末)若点A(﹣5,y1)和点B(﹣2,y2)都在y=﹣x上,则y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.y1≤y2【分析】把点A和点B的横坐标分别代入y=﹣x,分别求出y1与y2的值,然后比较即可.【解答】解:把点A(﹣5,y1)和点B(﹣2,y2)分别代入y=﹣x,得y1=﹣×(﹣5)=;y2=﹣×(﹣2)=1,∵>1,∴y1>y2.故选A.【点评】本题较简单,可把点A(﹣5,y1)和点B(﹣2,y2)分别代入函数解析式进行比较,也可直接根据正比例函数的增减性进行比较.15.(2003•哈尔滨)若正比例函数y=(1﹣2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m<D.m>【分析】根据正比例函数的大小变化规律判断k的符号.【解答】解:根据题意,知:y随x的增大而减小,则k<0,即1﹣2m<0,m>.故选D.【点评】根据正比例函数的大小变化规律判断k的符号:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.16.已知正比例函数y=(2t﹣1)x的图象上一点(x1,y1),且x1y1<0,x1+y1>0,那么t的取值范围是()A.t<0.5 B.t>0.5 C.t<0.5或t>0.5 D.不确定【分析】根据正比例函数图象的性质可得出答案.【解答】解:因为x1y1<0,x1+y1>0,所以该点的横、纵坐标异号,即图象经过二、四象限,则2t﹣1<0,t<.故选A.【点评】了解正比例函数图象的性质:当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,y随x的增大而减小.能够根据实数的运算法则,判断字母的符号.二.填空题(共5小题)17.(2009秋•湛江校级期中)正比例函数的图象是一条直线,当k>0时,直线y=kx过第一、三象限,y随x的增大而增大.【分析】正比例函数的图象是一条过原点的直线,当k>0时,过一、三象限,y随x的增大而增大;当k<0时,过二、四象限,y随x的增大而减小.【解答】解:正比例函数的图象是一条直线,当k>0时,直线y=kx过第一、三象限,y随x 的增大而增大.故答案为:一条直线;一、三;增大.【点评】此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.18.(2016春•马山县期末)已知正比例函数y=kx(k≠0)的图象经过点(﹣6,2),那么函数值y随自变量x的值的增大而减小.(填“增大”或“减小”)【分析】把点(﹣6,2)代入函数解析式求得k的值,结合k的符号判定该函数图象的增减性.【解答】解:把点(﹣6,2)代入y=kx,得到:2=﹣6k,解得k=﹣<0,则函数值y随自变量x的值的增大而减小,故答案是:减小.【点评】此题主要考查了正比例函数的性质,关键是掌握凡是函数经过的点,必能使函数解析式左右相等.19.(2015春•伊春校级期末)函数y=kx(k≠0)的图象过P(﹣3,3),则k=﹣1,图象过二、四象限.【分析】首先把P点坐标代入y=kx可计算出k的值,然后再根据正比例函数的性质可得图象经过第二、四象限.【解答】解:∵函数y=kx(k≠0)的图象过P(﹣3,3),∴﹣3=3k,解得k=﹣1,∵k=﹣1<0,∴图象经过第二、四象限.故答案为:﹣1;二、四.【点评】此题主要考查了待定系数法求一次函数解析式,以及正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x 的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.20.(2002•包头)已知点P1(x1,y1)和点P2(x2,y2)是正比例函数y=kx(k≠0)图象上的两点,且当x1<x2时,y1<y2,则k的取值范围是k>0.【分析】根据正比例函数的变化规律计算.【解答】解:由于x1<x2,y1<y2,说明y随x的减小而减小,∴k>0;也可计算:y1=kx1,y2=kx2,y1<y2,即kx1<kx2k(x1﹣x2)<0,∵x1<x2,∴x1﹣x2<0,∴k>0.【点评】此题主要考查了正比例函数的变化规律:当k>0时,图象经过一、三象限,y随x 的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.21.正比例函数图象经过点(2,﹣4),且x的取值范围是﹣3≤x≤4,那么y的取值范围是﹣8≤y≤6.【分析】先利用待定系数法求出正比例函数解析式,再分别计算出自变量为﹣3和4所对应的函数值,然后写出当﹣3≤x≤4时,y的取值范围.【解答】解:设正比例函数解析式为y=kx,把(2,﹣4)代入得2k=﹣4,解得k=﹣2,所以正比例函数解析式为y=﹣2x,当x=﹣3时,y=﹣2x=6;当x=4时,y=﹣2x=﹣8,所以当﹣3≤x≤4时,y的取值范围为﹣8≤y≤6.故答案为﹣8≤y≤6.【点评】本题考查了正比例函数的性质:正比例函数y=kx的图象是过原点的一条直线.当k >0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.三.解答题(共6小题)22.(1)画出函数y=﹣x的图象;(2)判断点A(﹣,),B(0,0),C(,﹣)是否在函数y=﹣x的图象上.【分析】(1)画出函数图象即可;(2)把各点坐标代入解析式判断即可.【解答】解:(1)图象如图:(2)把x=﹣代入y=﹣x=,所以A在图象上;把x=0代入y=﹣x=0,所以B在图象上;把x=代入y=﹣x=﹣,所以C在图象上.【点评】此题考查正比例函数问题,关键是把各点坐标代入解析式判断.23.如图所示的平面直角坐标系中作出一次函数y=﹣2x的图象.思考:作一次函数y=﹣2x的图象,一般取几个点就可以了?为什么?【分析】首先计算出当x=﹣2,﹣1,0,1,2时,y的值,然后再描点,连线可得一次函数y=﹣2x的图象是直线,根据两点确定一条直线可得作一次函数y=﹣2x的图象,取2个点就可以了.【解答】解:如图所示:作一次函数y=﹣2x的图象,取2个点就可以了,因为两点确定一条直线.【点评】此题主要考查了正比例函数的图象,关键是掌握五点作图法画图象.24.已知关于x的正比例函数y=(5﹣2k)x.(1)当k取何值时,y随x的增大而增大;(2)当k取何值时,y随x的增大而减小.【分析】根据正比例函数的性质解答.【解答】解:根据正比例函数的性质,(1)正比例函数y=(5﹣2k)x,当5﹣2k>0时,y随x的增大而增大.所以k<,故当k<时,y随x的增大而增大.(2)正比例函数y=(5﹣2k)x,当5﹣2k<0时,y随x的增大而增减小,所以k>,故当k>时,y随x的增大而减小.【点评】此题主要考查了正比例函数的性质,对于正比例函数y=kx,当k大于0时,y随x的增大而大;当k小于0时,y随x的增大而减小.25.已知y﹣2与3x﹣4成正比例函数关系,且当x=2时,y=3.(1)写出y与x之间的函数解析式;(2)若点P(a,﹣3)在这个函数的图象上,求a的值;(3)若y的取值范围为﹣1≤y≤1,求x的取值范围.【分析】(1)根据正比例的定义设y﹣2=k(3x﹣4),然后把x=2时,y=3代入计算求出k值,再整理即可得解;(2)将点(a,﹣3)代入(1)中所求的函数的解析式求a的值;(3)分别代入y=﹣1和y=1,分别求出所对应的x的值,即可求得x的取值范围.【解答】解:(1)设y﹣2=k(3x﹣4),将x=2、y=3代入,得:2k=1,解得k=,∴y﹣2=(3x﹣4),即y=x;(2)将点P(a,﹣3)代入y=x,得:a=﹣3,解得:a=﹣2;(3)当y=﹣1时,x=﹣1,解得:x=﹣,当y=1时,x=1,解得:x=,故﹣≤x≤.【点评】本题综合考查了一次函数的性质、待定系数法求一次函数的解析式、一次函数图象上点的坐标特征.一次函数图象上的点的坐标都满足该函数的解析式.26.若正比例函数y=(a﹣1)的图象经过点(﹣2,b2+5),求a,b的值.【分析】首先利用正比例函数的定义求得a的值,从而确定解析式,然后将点的坐标代入求得b值即可.【解答】解:∵y=(a﹣1)是正比例函数,∴a2﹣3=1且a﹣1≠0,解得:a=2或﹣2(舍),∴解析式为y=x或y=﹣3x,∵图象经过点(﹣2,b2+5),∴b2+5=1×(﹣2)或b2+5=﹣3×(﹣2),解得:b=±1,∴a=2,b=±1.【点评】本题考查了正比例函数的性质,正比例函数y=kx(k≠0),k>0时,图象在一三象限,呈上升趋势,当k<0时,图象在二四象限,呈下降趋势.27.在平面直角坐标系中,点A坐标为(1,0),在直线y=x上取点P,使△OPA是等腰三角形,求所有满足条件的点P坐标.【分析】根据等腰三角形的腰长不明确,所以分①OP=OA,②AP=OA,③线段OA的垂直平分线与直线的交点,三种情况进行讨论求解.【解答】解:如图所示:①在直线y=x上作OP=OA,可得符合条件的P1、P2点,P1坐标为(﹣,﹣),P2(,),②以A为圆心,1为半径作弧交直线y=x于点P3,点P3符合条件,P3坐标为(,),③线段OA的垂直平分线交直线y=x于点P4,点P4符合条件,P4点坐标为(,).故答案为:P1(﹣,﹣),P2(,),P3(,),P4(,).【点评】本题考查了正比例函数图形的性质与等腰三角形的判定,根据腰长的不确定性,注意分情况进行讨论.。

八年级数学-正比例函数练习题(含解析)

八年级数学-正比例函数练习题(含解析)

八年级数学-正比例函数练习题(含解析)一、单选题1.下列函数中,y 是x 的正比例函数的是( )A .3xy = B .21y x =- C .22y x = D .21y x =-+2.经过以下一组点可以画出函数2y x =图象的是( )A .(0,0)和(2,1)B .(1,2)和(1,2)--C .(1,2)和(2,1)D .(1,2)-和(1,2)3.对于正比例函数2y x =-,当自变量x 的值增加1时,函数y 的值增加( )A .12 B .12- C .2 D .-24.已知长方体的高是1,长和宽分别是a 、b ,体积是V ,则下列说法正确的是()A .V 是b 的正比例函数B .V 是a 的正比例函数C .V 是a 或b 的正比例函数D .V 是ab 的正比例函数5.某正比例函数的图象如图所示,则此正比例函数的表达式为()A .y=12-x B .y=12x C .y=-2x D .y=2x6.函数y=(2﹣a )x+b ﹣1是正比例函数的条件是( )A .a≠2B .b=1C .a≠2且b=1 D .a,b 可取任意实数7.已知y =(m +3)x m2−8是正比例函数,则m 的值是( ) A .8 B .4 C .±3D .3 8.关于x 的正比例函数,y=(m+1)23mx -若y 随x 的增大而减小,则m 的值为 ( )A .2B .-2C .±2D .-129.若函数y=(k-1)x |k|+b+1是正比例函数,则k 和b 的值为( )A .k=±1,b=-1B .k=±1,b=0C .k=1,b=-1D .k=-1,b=-110.如图,三个正比例函数的图像分别对应的解析式是:①y ax =;②y bx =;③y cx =,则a 、b 、c 的大小关系是( ).A .a b c >>B .c b a <<C .b a c >>D .b c a >>二、填空题 11.正比例函数的图像一定经过的点的坐标为______.12.已知y 与x 成正比例,并且x =-3时,y =6,则y 与x 的函数关系式为________.13.若点(1,)b 和点(2,1)-都在同一个正比例函数的图象上,则b=________.14.已知函数y =(m ﹣1)x+m 2﹣1是正比例函数,则m =_____.15.如果函数()1y ax a =+-是正比例函数,那么这个函数的解析式是______.16.若2(1)(2)a y a x b =++-是正比例函数,则2020()a b -的值是________.三、解答题 17.在同一平面直角坐标系中画出函数2y x =,13y x =-,0.6y x =-的图象18.写出下列各题中x 与y 之间的关系式,并判断y 是否为x 的一次函数?是否为正比列函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x (时)之间的关系;(2)圆的面积y (平方厘米)与它的半径x (厘米)之间的关系;(3)一棵树现在高50厘米,每个月长高2厘米,x 月后这棵树的高度为y (厘米)19.已知关于x 的函数y =(m +3)x |m +2|是正比例函数,求m 的值.20.已知正比例函数()231k y k x -=-,当k 为何值时,y 随x 的增大而减小?21.已知正比例函数图象上一个点A 到x 轴的距离为4,点A 的横坐标为-2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数图象经过哪几个象限?(3)这个正比例函数的函数值y是随着x的增大而增大?还是随着x的增大而减小?22.如今餐馆常用一次性筷子,有人说这是浪费资源,破坏生态环境. 已知用来生产一次性筷子的大树的数量(万棵)与加工成一次性筷子的数量(亿双)成正比例关系,且100万棵大树能加工成18亿双一次性筷子.(1)求用来生产一次性筷子的大树的数量y(万棵)与加工成一次性筷子的数量x(亿双)的函数解析式;(2)据统计,我国一年要耗费一次性筷子约450亿双,生产这些一次性筷子约需要多少万棵大树?每1万棵大树占地面积为0.08平方千米,照这样计算,我国的森林面积每年因此将会减少大约多少平方千米?开放探究提优参考答案1.A【解析】 A. 3x y =是正比例函数,故A 符合题意; B. 21y x =-不是正比例函数,故B 不符合题意;C. 22y x =不是正比例函数,故C 不符合题意;D. 21y x =-+不是正比例函数,故D 不符合题意.故选A.2.B【解析】解:A 项,当2x =时,41y =≠,∴点(2,1)不符合,故本选项错误;B 项,当1x =时,2y =;当1x =-时,2y =-,∴两组数据均符合,故本选项正确;C 项,当2x =时,41y =≠,∴点(2,1)不符合,故本选项错误D 项,当1x =-时,22y =-≠,∴点(1,2)-不符合,故本选项错误.故选B.3.D【解析】解:令x a =,则2y a =-令1x a =+,则2(1)22y a a =-+=--,所以y 减少2.故选D.4.D【解析】解:∵长方体的高是1,长和宽分别是a 、b ,体积是V∴1V ab ab ==∴V 是ab 的正比例函数故选D.5.A【解析】解:正比例函数的图象过点M(−2,1),∴将点(−2,1)代入y=kx,得:1=−2k, ∴k=﹣12, ∴y=﹣12x, 故选A .6.C【解析】解:根据正比例函数的定义得:2﹣a ≠0,b ﹣1=0,∴a ≠2,b =1.故选C .7.D【解析】∵y =(m +3)x m 2﹣8是正比例函数,∴m 2﹣8=1且m +3≠0,解得m =3.故选:D .8.B【解析】由题意得:m 2-3=1,且m+1<0,解得:m=-2,故选:B .9.D【解析】形如(0)y kx k k =≠为常数, 的函数,叫做正比例函数,由此可知若函数y =(k ﹣1)x |k |+b +1是正比例函数,则满足:10{110k k b -≠=+=解得,k =﹣1,b =﹣1故选D.10.C【解析】解:根据图像可知,①与②经过一、三象限,③经过二、四象限,∴0a >,0b >,0c <,∵②越靠近y 轴,则b a >,∴大小关系为:b a c >>;故选择:C.11.()0,0【解析】解:∵正比例函数的一般形式为y=kx,∴当x=0时,y=0,∴正比例函数的图象一定经过原点.故答案为:(0,0).12.2y x =-【解析】设y=kx ,6=-3k ,解得k =-2.所以y =-2x .13.12- 【解析】设正比例函数解析式为y=kx,将点(-2,1)代入y=kx 中,得:1=-2k,解得:k=-12,∴正比例函数解析式为y=-12x . ∵点(1,b )在正比例函数y=-12x 的图象上, ∴b=-12, 故答案为-12. 14.-1【解析】解:由正比例函数的定义可得:m 2﹣1=0,且m ﹣1≠0, 解得:m =﹣1,故答案为:﹣1.15.y x =【解析】解:∵函数()1y ax a =+-是正比例函数∴10a -=解得:1a =∴这个函数的解析式是y x =.故答案为:y x =.16.1【解析】解:由2(1)(2)a y a x b =++-是正比例函数,得211020a a b ⎧=⎪+≠⎨⎪-=⎩,解得12a b =⎧⎨=⎩. ∴20202020()(1)1a b -=-=,故答案为:1.17.见解析【解析】解:列表:描点、画图:18.(1)一次函数,正比例函数;(2)不是x的一次函数,不是正比例函数;(3)是x的一次函数,不是正比例函数.【解析】解:(1)行驶路程y(千米)与行驶时间x(时)之间的关系为:y=60x,是x的一次函数,是正比例函数;(2)圆的面积y(平方厘米)与它的半径r(厘米)之间的关系为:y=πx2,不是x的一次函数,不是正比例函数;(3)x月后这棵树的高度为y(厘米)之间的关系为:y=50+2x,是x的一次函数,不是正比例函数.19.m=-1【解析】解:若关于x的函数y=(m+3)x|m+2|是正比例函数,需满足m+3≠0且|m+2|=1,解得m=-1故m的值为-1.k=-.20.2【解析】解:因为函数()231k y k x -=-是正比例函数,所以231k -=且10k -≠,所以2k =±,又因为y 随x 的增大而减小,所以2k =-.21.(1)2y x =或2y x =-;(2)当2y x =时,图象经过第一、三象限;当2y x =-时,图象经过第二、四象限;(3)当2y x =时,函数值y 是随着x 的增大而增大;当2y x =-时,函数值y 是随着x 的增大而减小.【解析】解:(1)正比例函数图象上一个点A 到x 轴的距离为4,点A 的横坐标为-2, ∴点A 的坐标为(2,4)-或(2,4)--.设这个正比例函数为(0)y kx k =≠,则42k =-或42k -=-,解得2k =-或2k =,故正比例函数为2y x =或2y x =-.(2)当2y x =时,图象经过第一、三象限;当2y x =-时,图象经过第二、四象限.(3)当2y x =时,函数值y 是随着x 的增大而增大;当2y x =-时,函数值y 是随着x 的增大而减小.22.(1)509y x =;(2)生产这些一次性筷子约需要2500万棵大树,照这样计算,我国的森林面积每年因此将减少大约200平方千米.【解析】解:(1)设y kx =,由题意,得10018k =,解得509k =. 所以用来加工一次性筷子的大树的数量y (万棵)与加工成筷子的数量x (亿双)的函数解析式为509y x =. (2)当450x =时,5045025009y =⨯=,25000.08200⨯=(平方米). 所以生产这些一次性筷子约需要2500万棵大树,照这样计算,我国的森林面积每年因此将减少大约200平方千米.。

初二正比例函数基础练习题

初二正比例函数基础练习题

初二正比例函数基础练习题1. 已知 y 与 x 成正比例关系,且当 x = 3 时,y = 5。

求当 x = 9 时,y 的值。

解析:根据正比例关系,可设 y = kx,其中 k 为比例常数。

已知当x = 3 时,y = 5,代入可得 5 = k * 3,解得 k = 5/3。

因此,当 x = 9 时,y = (5/3) * 9 = 15。

答案:当 x = 9 时,y 的值为 15。

2. 某小店的柠檬汁售价与所购买的数量成正比。

当买 4 杯柠檬汁时,需要支付 16 元。

若要购买 10 杯柠檬汁,需要支付多少元?解析:设柠檬汁售价为 y 元/杯,购买数量为 x 杯。

根据正比例关系,可得 y = kx,其中 k 为比例常数。

已知当 x = 4 时,y = 16,代入可得16 = 4k,解得 k = 4。

因此,当 x = 10 时,y = 4 * 10 = 40。

答案:购买 10 杯柠檬汁需要支付 40 元。

3. 一架飞机以每小时 800 公里的速度飞行,已经飞行了 3 小时。

根据速度与时间的正比例关系,求此时飞机已经飞行了多少公里?解析:设飞机已飞行的距离为 y 公里,飞行时间为 x 小时。

根据正比例关系,可得 y = kx,其中 k 为比例常数。

已知当 x = 3 时,y = 800 * 3 = 2400。

因此,飞机已经飞行了 2400 公里。

答案:飞机已经飞行了 2400 公里。

4. 一种药物按剂量与体重成正比,已知一个 50 公斤的人需要服用200 毫克的该药物。

若一个 60 公斤的人需要服用多少毫克的该药物?解析:设药物剂量为 y 毫克,体重为 x 公斤。

根据正比例关系,可得 y = kx,其中 k 为比例常数。

已知当 x = 50 时,y = 200,代入可得200 = 50k,解得 k = 4。

因此,当 x = 60 时,y = 4 * 60 = 240。

答案:一个 60 公斤的人需要服用 240 毫克的该药物。

(完整版)第1课时正比例函数的图象和性质练习题(含答案)

(完整版)第1课时正比例函数的图象和性质练习题(含答案)

第1课时正比例函数的图象和性质一.选择题(共10小题)1.下列函数表达式中,y是x的正比例函数的是()A.y=﹣2x2B.y=C.y=D.y=x﹣22.若y=x+2﹣b是正比例函数,则b的值是()A.0B.﹣2 C.2D.﹣0.53.若函数是关于x的正比例函数,则常数m的值等于()A.±2B.﹣2 C.D.4.下列说法正确的是()A.圆面积公式S=πr2中,S与r成正比例关系B.三角形面积公式S=ah中,当S是常量时,a与h成反比例关系C.y=中,y与x成反比例关系D.y=中,y与x成正比例关系5.下列各选项中的y与x的关系为正比例函数的是()A.正方形周长y(厘米)和它的边长x(厘米)的关系B.圆的面积y(平方厘米)与半径x(厘米)的关系C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米6.若函数y=(m﹣3)x|m|﹣2是正比例函数,则m值为()A.3B.﹣3 C.±3D.不能确定7.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是()A.k=2 B.k≠2C.k=﹣2 D.k≠﹣28.已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()A.1B.2C.3D.48题图 9题图9.如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A.k1<k2<k3<k4B.k2<k1<k4<k3C.k1<k2<k4<k3D.k2<k1<k3<k410.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A.B.C.D.二.填空题(共9小题)11.若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为_________ .12.已知y=(k﹣1)x+k2﹣1是正比例函数,则k= _________ .14.请写出直线y=6x 上的一个点的坐标: _________ . 15.已知正比例函数y=kx (k≠0),且y 随x 的增大而增大,请写出符合上述条件的k 的一个值: _________ .16.已知正比例函数y=(m ﹣1)的图象在第二、第四象限,则m 的值为 _________ .17.若p 1(x 1,y 1) p 2(x 2,y 2)是正比例函数y=﹣6x 的图象上的两点,且x 1<x 2,则y 1,y 2的大小关系是:y 1 _________ y 2.点A (-5,y 1)和点B (-6,y 2)都在直线y= -9x 的图像上则y 1__________ y 218.正比例函数y=(m ﹣2)x m 的图象的经过第 _________ 象限,y 随着x 的增大而 _________ .19.函数y=﹣7x 的图象在第 _________ 象限内,经过点(1, _________ ),y 随x 的增大而 _________ .三.解答题(共3小题)20.已知:如图,正比例函数的图象经过点P 和点Q (﹣m ,m+3),求m 的值.21.已知y+2与x ﹣1成正比例,且x=3时y=4.(1)求y 与x 之间的函数关系式;(2)当y=1时,求x 的值.22.已知y=y 1+y 2,y 1与x 2成正比例,y 2与x ﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y 与x 之间的函数表达式,并求当x=2时y 的值.23. 为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量()x kW h 与应付饱费y (元)的关系如图所示。

正比例函数经典例题

正比例函数经典例题

正比例函数经典例题正比例函数是一种特殊的线性函数,其图像是一条直线且通过原点。

下面是一些正比例函数的经典例题:例题1:某商品的价格与销量成正比。

已知当销量为10件时,价格为100元,当销量为15件时,价格为150元。

问销量为20件时,价格是多少元?解答:设销量为x件,价格为y元。

由于价格与销量成正比,可以列出方程:y = kx,其中k为比例常数。

根据已知条件可得到两个方程:100 = 10k 和150 = 15k。

解这两个方程可以求得k的值。

然后,将k的值代入y = kx中,计算出x为20时的y值,即为销量为20件时的价格。

例题2:小明骑自行车去兜风,已知他的速度与行驶的距离成正比。

当他骑行10公里时,速度为20公里/小时;当他骑行15公里时,速度为30公里/小时。

问他骑行20公里时的速度是多少公里/小时?解答:设速度为v公里/小时,行驶的距离为d公里。

由于速度与距离成正比,可以列出方程:v = kd,其中k为比例常数。

根据已知条件可得到两个方程:20 = 10k 和30 = 15k。

解这两个方程可以求得k的值。

然后,将k的值代入v = kd 中,计算出d为20公里时的v值,即为小明骑行20公里时的速度。

例题3:某工厂生产零件,生产的速度与生产的时间成正比。

已知工厂在5小时内生产了60个零件,在8小时内生产了96个零件。

问工厂在10小时内能生产多少个零件?解答:设生产速度为v个零件/小时,生产的时间为t小时。

由于生产速度与时间成正比,可以列出方程:v = kt,其中k为比例常数。

根据已知条件可得到两个方程:60 = 5k 和96 = 8k。

解这两个方程可以求得k的值。

然后,将k的值代入v = kt中,计算出t为10小时时的v值,即为工厂在10小时内能生产的零件数量。

这些是一些典型的正比例函数例题,通过解这些例题可以帮助加深对正比例函数的理解和掌握。

19.2.1 《正比例函数》测试题练习题常考题试卷及答案

19.2.1 《正比例函数》测试题练习题常考题试卷及答案

19.2.1 正比例函数一、单选题(共20题;共40分)1.已知正比例函数y=kx(k≠0)的图象经过点(2,−3),则k的值为()A. 32B. −23C. −32D. 232.若y与x成正比,y与z的倒数成反比,则z是x的()A. 正比例函数B. 反比例函数C. 二次函数D. z随x增大而增大3.下列各关系中,符合正比例关系的是()A. 正方形的周长P和它的一边长aB. 距离s一定时,速度v和时间tC. 圆的面积S和圆的半径rD. 正方体的体积V和棱长a4.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A. a>b>cB. c>b>aC. b>a>cD. b>c>a5.下列函数中,表示y是x的正比例函数的是()A. y=2x2B. y=2x C. y=2(x-3) D. y=12x6.正比例函数 y=(k-2)x 中,y 随 x 的增大而减小,则 k 的取值范围是( )A. k≥2B. k≤2C. k>2D. k<27.已知正比例函数y=(k+4)x,且y随x的增大而减小,则k的取值范围()A. k>4B. k<4C. k>−4D. k<−48.一个正比例函数的图象经过点(−2,4),它的表达式为()A. y=−2xB. y=2xC. y=−12x D. y=12x9.在下列四组点中,可以在同一个正比例函数图象上的一组点是( )A. (2,5),(−4,10)B. (−2,5),(4,10)C. (−2,−5),(4,−10)D. (2,5),(−4,−10)10.下列函数中是正比例函数的是()A. y=8x B. y=82 C. y=2(x﹣1) D. y=−(√2+1)x311.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正比例函数的解析式为()A. y=2xB. y=﹣2xC. y=12x D. y=−12x12.下列正比例函数中,y随x的值增大而增大的是()A. y=﹣2014xB. y=(√3﹣1)xC. y=(﹣π﹣3)xD. y=(1﹣π2)x13.已知函数y=(m+1)x m2−3是正比例函数,且图像在第二、四象限内,则m的值是()A. 2B. -2C. ±2D. −1214.关于函数y=2x ,下列结论中正确的是()A. 函数图象都经过点(2,1)B. 函数图象都经过第二、四象限C. y随x的增大而增大D. 不论x取何值,总有y>015.当x>0时,y与x的函数解析式为y=2x,当x≤0时,y与x的函数解析式为y=﹣2x,则在同一直角坐标系中的图象大致为()A. B. C. D.16.正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx-k 的图象大致是().A. B. C. D.17.若点A(x1, y1)和点B(x2, y2)在正比例函数y=-3x的图象上,当x 1<x2时,y1与y2的大小关系为()A. y1>y2B. y1<y2C. y1=y2D. y1与y2的大小不一定18.若正比例函数的图像经过点(-1,2),则这个图像必经过点()A. (1,2)B. (-1,-2)C. (2,-1)D. (1,-2)19.如图,某正比例函数的图象过点M(﹣2,1),则此正比例函数表达式为()A. y=﹣xB. y= xC. y=﹣2xD. y=2x20.下列说法中不成立的是()A. 在y=3x﹣1中y+1与x成正比例B. 在y=﹣x2中y与x成正比例C. 在y=2(x+1)中y与x+1成正比例D. 在y=x+3中y与x成正比例二、填空题(共18题;共18分)21.已知正比例函数y=(k+1)x,且y值随x值增大而增大,则k的取值范围是________.22.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=________.23.已知a是整数,一次函数y=10x+a的图象与两坐标轴所围成的三角形的面积数为质数,则这个质数等于________.24.已知正比例函数图象经过点(1,3),则该函数的解析式是________.25.将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第________象限.26.已知正比例函数y=(4m+6)x,当m________ 时,函数图象经过第二、四象限.27.若正比例函数y=kx的图象经过点(2,4),则该函数的解析式是________.28.若直线y=kx(k≠0)经过点(-2,6),则y随x的增大而 ________29.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是________.30.正比例函数y=﹣5x中,y随着x的增大而________.31.关于x的正比例函数y=(m+2)x,若y随x的增大而增大,则m的取值范围是________.32.已知函数y=(k+1)x|k|﹣3是反比例函数,且正比例函数y=kx的图象经过第一、三象限,则k的值为________ .33.在平面直角坐标系xOy中,直线y=x与双曲线y=m交于A,B两点.若x点A,B的纵坐标分别为y1,y2,则y1+y2的值为________.34.在正比例函数y=(m-8)x中,如果y的值随自变量x的增大而减小。

正比例函数同步练习及答案

正比例函数知识库1.形如y=kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫比例系数. 正比例函数都是常数与自变量的乘积的形式.2.正比例函数y=kx (k 是常数,k ≠0)的图象是一条经过原点的直线,我们通常称之为直线y=kx .当k>0时,直线y=kx 依次经过第三、一象限,从左向右上升,y 随x•的增大而增大; 当k<0时,直线y=kx 依次经过第二、四象限,从左向右下降,y 随x•的增大而减小.3.根据两点确定一条直线,可以确定两个点(两点法)画正比例函数的图象.魔法师例1:已知y=(k+1)x+k-1是正比例函数,求k 的值.分析:由正比例函数的定义可知k+1≠0且k-1=0即可解:根据题意得:k+1≠0且k-1=0,解得:k=1 ∴k=1例2:根据下列条件求函数的解析式①y 与x 2成正比例,且x=-2时y=12.②函数y=(k 2-4)x 2+(k+1)x 是正比例函数,且y 随x 的增大而减小. 分析:①根据正比例函数的定义,可设y=kx 2,然后由x=-2、y=12求得k 的值.• ②函数y=(k 2-4)x 2+(k+1)x 是正比例函数;则k 2-4=0,y 随x 的增大而减小,则k+1<0.解:①设y=k x 2 (k ≠0)∵x=-2时y=12 ∴(-2)2k=12 ∴k=3 ∴y=3x 2②由题意得:k 2-4=0 ∴k=2或k=-2∵y 随x 的增大而减小, ∴k+1<0 ∴k=-2 ∴y 与x 的函数关系式是:y=-x演兵场☆我能选1.下列关系中的两个量成正比例的是( )A .从甲地到乙地,所用的时间和速度;B .正方形的面积与边长C .买同样的作业本所要的钱数和作业本的数量;D .人的体重与身高2.下列函数中,y 是x 的正比例函数的是( )A .y=4x+1B .y=2x 2C ..3.下列说法中不成立的是( )A .在y=3x-1中y+1与x 成正比例;B .在y=-2x 中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例4.若函数y=(2m+6)x2+(1-m)x是正比例函数,则m的值是()A.m=-3 B.m=1 C.m=3 D.m>-35.已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,且x1>x2,则y1与y2•的大小关系是()A.y1>y2B.y1<y2C.y1=y2 D.以上都有可能☆我能填6.形如___________的函数是正比例函数.7.若x、y是变量,且函数y=(k+1)x k2是正比例函数,则k=_________.8.正比例函数y=kx(k为常数,k<0)的图象依次经过第________象限,函数值随自变量的增大而_________.9.已知y与x成正比例,且x=2时y=-6,则y=9时x=________.☆我能答10.写出下列各题中x与y的关系式,并判断y是否是x的正比例函数?(1)电报收费标准是每个字0.1元,电报费y(元)与字数x(个)之间的函数关系;(2)地面气温是28℃,如果每升高1km,气温下降5℃,则气温x(•℃)•与高度y (km)的关系;(3)圆面积y(cm2)与半径x(cm)的关系.探究园11.在函数y=-3x的图象上取一点P,过P点作PA⊥x轴,已知P点的横坐标为-•2,求△POA的面积(O为坐标原点).答案:1.C 2.C 3.D 4.A 5.B 6.y=kx(k是常数,k≠0)7.+1 8.三、一;增大 9.-310.①y=0.1x,y是x的正比例函数;②y=28-5x,y不是x的正比例函数;③y= x2,y不是x的正比例函数.11.6.。

正比例函数的练习题

正比例函数的练习题正比例函数的练习题正比例函数是数学中的一种重要概念,它在解决实际问题中起着重要的作用。

通过练习正比例函数的题目,我们可以更好地理解和掌握这一概念。

下面,让我们来看一些关于正比例函数的练习题。

练习题一:小明每天骑自行车上学,他发现骑行的时间和距离成正比。

如果他骑行1小时可以骑行15公里,那么他骑行2小时可以骑行多少公里?解答:根据题目中给出的条件,我们可以得到骑行时间和距离的比例关系为1:15。

即骑行时间和距离的比值为1/15。

因此,当骑行时间为2小时时,他可以骑行的距离为2*15=30公里。

练习题二:某种商品的价格与销量成正比,当价格为10元时,销量为100个。

那么价格为15元时,销量为多少个?解答:根据题目中给出的条件,我们可以得到价格和销量的比例关系为10:100。

即价格和销量的比值为10/100。

因此,当价格为15元时,销量为15*100/10=150个。

练习题三:某个城市的人口数量与年份成正比,已知2000年时人口为100万人,2020年时人口为150万人。

那么2025年时人口为多少?解答:根据题目中给出的条件,我们可以得到人口数量和年份的比例关系为2000:100。

即人口数量和年份的比值为2000/100。

因此,当年份为2025年时,人口数量为2025*100/2000=101.25万人。

练习题四:某个物体的质量与体积成正比,已知质量为5千克时,体积为10立方米。

那么质量为8千克时,体积为多少?解答:根据题目中给出的条件,我们可以得到质量和体积的比例关系为5:10。

即质量和体积的比值为5/10。

因此,当质量为8千克时,体积为8*10/5=16立方米。

练习题五:某个公司的销售额与广告投入成正比,已知广告投入为5000元时,销售额为10000元。

那么广告投入为8000元时,销售额为多少?解答:根据题目中给出的条件,我们可以得到销售额和广告投入的比例关系为10000:5000。

正比例函数的练习题

正比例函数的练习题正比例函数是数学中一种重要的函数类型,它表示两个变量之间的关系成正比。

在本篇文章中,我们将介绍一些与正比例函数相关的练习题,帮助读者更好地理解和应用正比例函数。

练习题一:已知正比例函数y与x的关系式为y=kx(其中k为比例常数),且当x=2时,y=8。

求解该正比例函数的比例常数k,并在此基础上求出当x=5时,y的值。

解答:根据已知条件,我们可以得到下面的等式:8 = k * 2通过简单的计算,我们可以求得k的值:k = 8 / 2 = 4接下来,代入求得的k值计算y的值:y = 4 * 5 = 20因此,当x=5时,y的值为20。

练习题二:设某公司用电量与所生产产品数量成正比,已知当生产100个产品时,用电量为800度。

求解该正比例函数的表达式,并根据该表达式回答以下问题:1) 生产200个产品所需要的电量是多少度?2) 电量为1200度时,可以生产多少个产品?解答:根据已知条件,我们可以得到等式:800 = k * 100通过简单计算,我们可以求得k的值:k = 800 / 100 = 8因此,该正比例函数的表达式为y=8x。

接下来,我们可以根据表达式回答问题:1) 当生产200个产品时,所需电量可以通过代入x=200计算得出:y = 8 * 200 = 1600度因此,生产200个产品所需要的电量为1600度。

2) 当电量为1200度时,可以通过代入y=1200计算得出:1200 = 8x解方程可得:x = 1200 / 8 = 150因此,电量为1200度时,可以生产150个产品。

练习题三:某自行车商店售卖的自行车和销售数量呈正比。

已知当销售15辆自行车时,利润为3000元。

求解该正比例函数的比例常数,进而求解当销售20辆自行车时的利润。

解答:根据已知条件,我们可以得到等式:3000 = k * 15通过简单计算,我们可以求得k的值:k = 3000 / 15 = 200因此,该正比例函数的表达式为y=200x。

一次函数之正比例函数的习题

一次函数之正比例函数的习题一.选择题(共13小题)1.(2016•蓝田县一模)已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<﹣1 B.m>﹣1 C.m≥﹣1 D.m≤﹣12.(2016春•龙海市期中)下列图形中的图象不表示y是x的函数的是()A.B.C.D.3.(2016春•武城县校级月考)函数y=(a+1)x a﹣1是正比例函数,则a的值是()A.2 B.﹣1 C.2或﹣1 D.﹣24.(2015•内江)函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠15.(2015•百色)已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.86.(2015•上海)下列y关于x的函数中,是正比例函数的为()A.y=x2 B.y=C.y=D.y=7.(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣48.(2015•北海)正比例函数y=kx的图象如图所示,则k的取值范围是()A.k>0 B.k<0 C.k>1 D.k<19.(2015•伊宁市校级一模)下列关于正比例函数y=﹣5x的说法中,正确的是()A.当x=1时,y=5B.它的图象是一条经过原点的直线C.y随x的增大而增大D.它的图象经过第一、三象限10.(2015•江西校级模拟)关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>011.(2015•杭州模拟)若正比例函数的图象经过点(2,﹣3),则这个图象必经过点()A.(﹣3,﹣2)B.(2,3)C.(3,﹣2)D.(﹣2,3)12.(2015•陕西模拟)若正比例函数y=kx的图象经过点(2,1),则k的值为()A.﹣2 B.2 C.﹣D.13.(2015•苏州校级二模)将直线y=﹣2x向下平移两个单位,所得到的直线为()A.y=﹣2(x+2) B.y=﹣2(x﹣2)C.y=﹣2x﹣2 D.y=﹣2x+2二.填空题(共8小题)14.(2016春•安定区校级月考)在函数y=+(x﹣1)0中,自变量x的取值范围是.15.(2016春•丰台区校级月考)一个正比例函数的图象经过点(2,﹣4),则这个正比例函数的表达式是.16.(2015•凉山州)已知函数y=2x2a+b+a+2b是正比例函数,则a=,b=.17.(2015•大庆模拟)写出一个函数,使得满足下列两个条件:①经过点(﹣1,1);②在x>0时,y随x的增大而增大.你写出的函数是.18.(2015•铁力市二模)函数中,自变量x的取值范围是.19.(2015•梅列区校级质检)已知,函数y=(k﹣1)x+k2﹣1,当k时,它是一次函数.20.(2015•路北区一模)已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1y2(填“>”或“<”或“=”).21.(2015•武汉模拟)点P(3,1﹣a)在y=2x﹣1上,点Q(b+2,3)在y=2﹣x上,则a+b=.三.解答题(共9小题)22.(2016春•武城县校级月考)如图反映的是小刚从家里跑步去体育馆,在哪里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小刚离家的距离.根据图象回答下列问题:(1)体育场离陈欢家千米,小刚在体育场锻炼了分钟.(2)体育场离文具店千米,小刚在文具店停留了分钟.(3)小刚从家跑步到体育场、从体育场走到文具店、从文具店散步回家的速度分别是多少?23.(2016春•南京校级月考)小明同学骑自行车去郊外春游,如图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需小时,(2)小明出发两个半小时离家千米.(3)小明出发小时离家12千米.24.(2016春•石家庄校级月考)如图,在靠墙(墙长为18m)的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m,(1)鸡场的长y(m)与宽x(m)的函数关系式为.(2)并求自变量的取值范围为.25.(2016•黄冈校级自主招生)如图,直线OB是一次函数y=2x的图象,点A的坐标是(0,2),点C在直线OB上且△ACO为等腰三角形,求C点坐标.26.(2016•无锡一模)某酒厂生产A、B两种品牌的酒,每天两种酒共生产600瓶,每种酒y元,每天生产A种品牌的酒x瓶.(2)如果该厂每天至少投入成本25000元,且生产B种品牌的酒不少于全天产量的55%,那么共有几种生产方案?并求出每天至少获利多少元?27.(2016•长春模拟)甲、乙两名自行车运动员在同一条直线公路上进行骑自行车训练,他们同时同地同向出发,乙在行驶过程中改变了一次速度,甲、乙两人各自在公路上训练时行驶路程y(千米)与行驶时间x(时)(0≤x≤4)之间的函数图象如图所示.(1)求甲行驶的速度.(2)求直线AB所对应的函数表达式.(3)直接写出甲、乙相距5千米时x的值.28.(2016春•南江县校级月考)在如图平面直角坐标系中画出函数y=﹣x+3的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)若此图象向上平移三个单位长度,得到的函数是.29.(2016春•武城县校级月考)已知,函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象过原点?(2)k为何值时,y随x增大而增大?30.(2015•义乌市)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?一次函数之正比例函数的习题参考答案与试题解析一.选择题(共13小题)1.(2016•蓝田县一模)已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<﹣1 B.m>﹣1 C.m≥﹣1 D.m≤﹣1【解答】解:∵正比例函数y=(m+1)x中,y的值随自变量x的值增大而减小,∴m+1<0,解得,m<﹣1;故选A.2.(2016春•龙海市期中)下列图形中的图象不表示y是x的函数的是()A.B.C.D.【解答】解:A、根据图象知给自变量一个值,有且只有一个函数值与其对应,故A是函数,B、根据图象知给自变量一个值,有且只有1个函数值与其对应,故B是函数,C、根据图象知给自变量一个值,有的有3个函数值与其对应,故C不是函数,D、根据图象知给自变量一个值,有且只有1个函数值与其对应,故D是函数,故选C.3.(2016春•武城县校级月考)函数y=(a+1)x a﹣1是正比例函数,则a的值是()A.2 B.﹣1 C.2或﹣1 D.﹣2【解答】解:∵函数y=(a+1)x a﹣1是正比例函数,∴a﹣1=1,且a+1≠0.解得a=2.故选:A.4.(2015•内江)函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠1【解答】解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.5.(2015•百色)已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.8【解答】解:∵x≥0时,y=2x+1,∴当x=2时,y=2×2+1=5.故选:A.6.(2015•上海)下列y关于x的函数中,是正比例函数的为()A.y=x2 B.y=C.y=D.y=【解答】解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选C.7.(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣4【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选B8.(2015•北海)正比例函数y=kx的图象如图所示,则k的取值范围是()A.k>0 B.k<0 C.k>1 D.k<1【解答】解:由图象知:∵函数y=kx的图象经过第一、三象限,∴k>0.故选A.9.(2015•伊宁市校级一模)下列关于正比例函数y=﹣5x的说法中,正确的是()A.当x=1时,y=5B.它的图象是一条经过原点的直线C.y随x的增大而增大D.它的图象经过第一、三象限【解答】解:A、当x=1时,y=﹣5,错误;B、正比例函数的图象是一条经过原点的直线,正确;C、根据k<0,得图象经过二、四象限,y随x的增大而减小,错误;D、图象经过二四象限,错误;故选B.10.(2015•江西校级模拟)关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【解答】解:A、函数图象经过点(2,4),错误;B、函数图象经过第一、三象限,错误;C、y随x的增大而增大,正确;D、当x>0时,才有y>0,错误;故选C.11.(2015•杭州模拟)若正比例函数的图象经过点(2,﹣3),则这个图象必经过点()A.(﹣3,﹣2)B.(2,3)C.(3,﹣2)D.(﹣2,3)【解答】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(2,﹣3),所以﹣3=2k,解得:k=﹣,所以y=﹣x,把这四个选项中的点的坐标分别代入y=﹣x中,等号成立的点就在正比例函数y=﹣x的图象上,所以这个图象必经过点(﹣2,3).故选D.12.(2015•陕西模拟)若正比例函数y=kx的图象经过点(2,1),则k的值为()A.﹣2 B.2 C.﹣D.【解答】解:∵函数y=kx的图象过点(2,1),∴把点的坐标代入函数解析式可得1=2k,解得k=,故选D.13.(2015•苏州校级二模)将直线y=﹣2x向下平移两个单位,所得到的直线为()A.y=﹣2(x+2) B.y=﹣2(x﹣2)C.y=﹣2x﹣2 D.y=﹣2x+2【解答】解:由“上加下减”的原则可知,直线y=﹣2x向下平移2个单位,得到直线是:y=﹣2x﹣2.故选C.二.填空题(共8小题)14.(2016春•安定区校级月考)在函数y=+(x﹣1)0中,自变量x的取值范围是x >﹣2且x≠1.【解答】解:根据题意得:x+2≥0且x﹣1≠0,解得:x>﹣2且x≠1.故答案是:x>﹣2且x≠1.15.(2016春•丰台区校级月考)一个正比例函数的图象经过点(2,﹣4),则这个正比例函数的表达式是y=﹣2x.【解答】解:设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(2,﹣4),∴﹣4=2k,解得k=﹣2,∴这个正比例函数的表达式是y=﹣2x.故答案为:y=﹣2x.16.(2015•凉山州)已知函数y=2x2a+b+a+2b是正比例函数,则a=,b=﹣.【解答】解:根据题意可得:2a+b=1,a+2b=0,解得:a=,b=﹣.故答案为:;﹣.17.(2015•大庆模拟)写出一个函数,使得满足下列两个条件:①经过点(﹣1,1);②在x>0时,y随x的增大而增大.你写出的函数是y=x2.【解答】解:y=x2经过点(﹣1,1);在x>0时,y随x的增大而增大,故答案为:y=x2.18.(2015•铁力市二模)函数中,自变量x的取值范围是3≤x≤5.【解答】解:根据题意,得,解得3≤x≤5.19.(2015•梅列区校级质检)已知,函数y=(k﹣1)x+k2﹣1,当k≠1时,它是一次函数.【解答】解:根据一次函数定义得,k﹣1≠0,解得k≠1.故答案为:≠1.20.(2015•路北区一模)已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1<y2(填“>”或“<”或“=”).【解答】解:当x=1时,y1=x=1;当x=2时,y2=x=2,所以y1<y2.故答案为<.21.(2015•武汉模拟)点P(3,1﹣a)在y=2x﹣1上,点Q(b+2,3)在y=2﹣x上,则a+b=﹣7.【解答】解:∵点P(3,1﹣a)在y=2x﹣1上,点Q(b+2,3)在y=2﹣x上,∴1﹣a=6﹣1,3=2﹣(b+2),∴a=﹣4,b=﹣3,∴a+b=﹣7.故答案为:﹣7.三.解答题(共9小题)22.(2016春•武城县校级月考)如图反映的是小刚从家里跑步去体育馆,在哪里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小刚离家的距离.根据图象回答下列问题:(1)体育场离陈欢家 2.5千米,小刚在体育场锻炼了15分钟.(2)体育场离文具店1千米,小刚在文具店停留了20分钟.(3)小刚从家跑步到体育场、从体育场走到文具店、从文具店散步回家的速度分别是多少?【解答】解:(1)由纵坐标看出体育场离陈欢家2.5千米,由横坐标看出小刚在体育场锻炼了15分钟;(2)由纵坐标看出体育场离文具店2.5﹣1.5=1(千米),由横坐标看出小刚在文具店停留了65﹣45=20(分).故答案为:2.5,15,1,20;(3)由纵坐标看出文具店距张强家1.5千米,由横坐标看出从文具店回家用了100﹣65=35(分钟),张强从文具店回家的平均速度是1.5÷35=(千米/分).答:张强从文具店回家的平均速度是千米/分钟.23.(2016春•南京校级月考)小明同学骑自行车去郊外春游,如图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需3小时,(2)小明出发两个半小时离家22.5千米.(3)小明出发小时或小时小时离家12千米.【解答】解:(1)由图象可知小明到达离家最远的地方需3小时;(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x﹣15,(2≤x≤3)当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米;(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30)、F(6,0),代入得y=﹣15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15)∴y=15x(0≤x≤1)分别令y=12,得x=(小时),x=(小时)答:小明出发小时或小时距家12千米.故答案为:3;22.5;小时或小时.24.(2016春•石家庄校级月考)如图,在靠墙(墙长为18m)的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m,(1)鸡场的长y(m)与宽x(m)的函数关系式为y=﹣2x+35.(2)并求自变量的取值范围为8.5≤x<.【解答】解:(1)根据题意得:鸡场的长y(m)与宽x(m)有y+2x=35,即y=﹣2x+35;(2)题中有18≥y>0,∴﹣2x+35≤18,∴x≥8.5,又y>x,∴﹣2x+35>x,解得x<,则自变量的取值范围为8.5≤x<;故答案为:(1)y=﹣2x+35;(2)8.5≤x<.25.(2016•黄冈校级自主招生)如图,直线OB是一次函数y=2x的图象,点A的坐标是(0,2),点C在直线OB上且△ACO为等腰三角形,求C点坐标.【解答】解:若此等腰三角形以OA为一腰,且以A为顶点,则AO=AC1=2.设C1(x,2x),则得x2+(2x﹣2)2=22,解得,得C1(),若此等腰三角形以OA为一腰,且以O为顶点,则OC2=OC3=OA=2,设C2(x′,2x′),则得x′2+(2x′)2=22,解得=,∴C2(),又由点C3与点C2关于原点对称,得C3(),若此等腰三角形以OA为底边,则C4的纵坐标为1,从而其横坐标为,得C4(),(),(),(),所以,满足题意的点C有4个,坐标分别为:C4().26.(2016•无锡一模)某酒厂生产A、B两种品牌的酒,每天两种酒共生产600瓶,每种酒y元,每天生产A种品牌的酒x瓶.(2)如果该厂每天至少投入成本25000元,且生产B种品牌的酒不少于全天产量的55%,那么共有几种生产方案?并求出每天至少获利多少元?【解答】解:(1)由题意,每天生产A种品牌的酒x瓶,则每天生产B种品牌的酒(600﹣x)瓶,∴y=20x+15(600﹣x)=9000+5x.(2)根据题意得:,解得:266≤x≤270,∵x为整数,∴x=267、268、269、270,该酒厂共有4种生产方案:①生产A种品牌的酒267瓶,B种品牌的酒333瓶;②生产A种品牌的酒268瓶,B种品牌的酒332瓶;③生产A种品牌的酒269瓶,B种品牌的酒331瓶;④生产A种品牌的酒270瓶,B种品牌的酒330瓶;∵每天获利y=9000+5x,y是关于x的一次函数,且随x的增大而增大,∴当x=267时,y有最小值,y最小=9000+5×267=10335元.27.(2016•长春模拟)甲、乙两名自行车运动员在同一条直线公路上进行骑自行车训练,他们同时同地同向出发,乙在行驶过程中改变了一次速度,甲、乙两人各自在公路上训练时行驶路程y(千米)与行驶时间x(时)(0≤x≤4)之间的函数图象如图所示.(1)求甲行驶的速度.(2)求直线AB所对应的函数表达式.(3)直接写出甲、乙相距5千米时x的值.【解答】解:(1)120÷3=40(千米/时).∴甲行驶的速度为40千米/时.(2)设直线AB所对应的函数表达式为y=kx+b,把A(1,50)、B(3,120)代入,得,解得:.故直线AB所对应的函数表达式为y=35x+15(1<x≤4).(3)设直线OA所对应的函数表达式为y=k1x,把A(1,50)代入,得50=k1,故直线OA所对应的函数表达式为y=50x(0≤x≤1),设直线OB所对应的函数表达式为y=k2x,把B(3,120)代入,得120=3k2,解得:k2=40.故直线OB所对应的函数表达式为y=40x(0≤x≤4).当0≤x≤4时,令50x﹣40x=5,解得x=0.5;当1<x≤3时,令35x+15﹣40x=5,解得x=2;当3<x≤4时,令40x﹣(35x+15)=5,解得x=4.综上可知:甲、乙相距5千米时x的值为0.5,2和4.28.(2016春•南江县校级月考)在如图平面直角坐标系中画出函数y=﹣x+3的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)若此图象向上平移三个单位长度,得到的函数是y=﹣x+6.【解答】解:函数y=﹣x+3与坐标轴的交点的坐标为(6,0),(0,3),经过点(6,0),(0,3)画直线,得到函数y=﹣x+3的图象,如图所示:(1)点A的坐标是(﹣4,5);(2)将y=﹣x+3向上平移三个单位后即可得到y=﹣x+6.故答案为y=﹣x+6.29.(2016春•武城县校级月考)已知,函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象过原点?(2)k为何值时,y随x增大而增大?【解答】解:(1)∵函数y=(1﹣3k)x+2k﹣1的图象过原点,∴,解得k=;(2)∵y随x增大而增大,∴1﹣3k>0,解得k<.30.(2015•义乌市)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?【解答】解:(1)小敏去超市途中的速度是:3000÷10=300(米/分),在超市逗留了的时间为:40﹣10=30(分).(2)设返回家时,y与x的函数解析式为y=kx+b,把(40,3000),(45,2000)代入得:,解得:,∴函数解析式为y=﹣200x+11000,当y=0时,x=55,∴返回到家的时间为:8:55.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、.若y=(m-1)xm2是关于x的正比例函数,则m=()
2、已知正比例函数的比例系数是-5,则它的解析式为:()
3、y=-3x 由于两点确定一条直线,画正比例函数图象时我们只需描点(0,0)和点(1,k),连线即可,所以,可以取()和()点来画
4、函数y =-4x的图象在第( ) 象限,经过点(0,)与点(1, ), y 随x的增大而;
5、如果函数y =(m-2)x 的图象经过第一、三象限,那么m的取值范围是;
6、正比例函数y=kx(1) 当k>0时,正比例函数的图像经过第一、三象限,自变量x逐渐增大时,y 的值也随着逐渐增大。

(2)当k<0时,正比例函数的图像经过第二、四象限,自变量x逐渐增大时,y的值则随着逐渐减小。

7、函数y=4x 经过象限,y 随x 的减小而.
8、如果函数y= - kx 的图像经过一、三象限,那么y = kx 的图像经过
9、已知ab<0,则函数y=b/a 的图像经过第()象限。

10、下列图像哪个可能是函数y=-8x的图像()
11、如果正比例函数y=(8-2a)x的图像经过二、四象限,求a的取值范围。

12、已知正比例函数y=(m+1)xm2 ,它的图像经过第几象限?
13、.已知:正比例函数y= (2-k)x 的图像经过第二.四象限,则函数y=-kx的图像经过哪些象限?
14、如果(1-m)x m2-2是正比例函数,且y随x的增大而减小,试求m的值
15、如图是甲、乙两人的行程函数图,
根据图像回答:
⑴谁走得快?
⑵求甲、乙两个函数解析式,并写出自变量的取值范围
⑶当t = 4时,甲、乙两人行程相差多少?
16、已知正比例函数y=(m+√2)x m2-1 它的图像除原点外在二、四
象限内,求m值.
17、若正比例函数图像又y=(3k-6)x的图像经过点A(x1,x2)和B(y1,y2),当x1<x2时,y1>y2,则k的取值范围是()
A.k>2
B.k<2
C.k=2
D.无法确定
18、正比例函数y=(3m-1)x的图像经过点A(x1,x2)和B(y1,y2),且该图像经过第二、四象限. (1)求m的取值范围(2)当x1>x2时,比较y1与y2的大小,并说明理由.
19、已知某种小汽车的耗油量是每100km耗油15升.所使用的90#汽油今日涨价到5元/升.(1)写出汽车行驶途中所耗油费y(元)与行程x(km)之间的函数关系式;
(2)在平面直角坐标系内描出大致的函数关系图;
(3)计算娄底到长沙220 km所需油费是多少?
20、正比例函数的图象如图,请写出它的解析式. 21、已知正比例函数图像经过点(2,-6),求出
此函数解析式。

相关文档
最新文档