2020年高考·教育部考试中心·理科数学样卷(十)(含答案和解析)

合集下载

2020年全国统一高考数学试卷(理科)(新课标I)(有详细解析)

2020年全国统一高考数学试卷(理科)(新课标I)(有详细解析)

2020年全国统一高考数学试卷(理科)(新课标I)班级:___________姓名:___________得分:___________一、选择题(本大题共12小题,共60.0分)1.若z=1+i,则−2z|=()A. 0B. 1C.D. 22.设集合A={−40},B={x|2x+a0},且A B={x|−2x1},则a=()A. −4B. −2C. 2D. 43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. B. C. D.4.已知A为抛物线C:=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A. 2B. 3C. 6D. 95.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(i=1,2,,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A. y=a+bxB. y=a+C. y=a+D. y=a+b x6.函数f(x)=−的图像在点(1,f(1))处的切线方程为()A. y=−2x−1B. y=−2x+1C. y=2x−3D. y=2x+17.设函数f(x)=(x+)在[−,]的图像大致如下图,则f(x)的最小正周期为()A. B. C. D.8.(x+y2)(x+y)5的展开式中x3y3的系数为()xA. 5B. 10C. 15D. 209.已知(0,),且3cos2α−8cosα=5,则=()A. B. C. D.10.已知A,B,C为球O的球面上的三个点,为ABC的外接圆,若的面积为4,AB=BC=AC=,则球O的表面积为()A. 64B. 48C. 36D. 3211.已知M:+−2x−2y−2=0,直线l:2x+y+2=0,P为l上的动点,过点P作M的切线PA,PB,且切点为A,B,当|PM||AB|最小时,直线AB的方程为()A. 2x−y−1=0B. 2x+y−1=0C. 2x−y+1=0D. 2x+y+1=012.若2a+log2a=4b+2log4b,则()A. a>2bB. a<2bC. a>D. a<二、填空题(本大题共4小题,共20.0分)13.若x,y满足约束条件则z=x+7y的最大值为__________.14.设,为单位向量,且||=1,则||=__________.15.已知F为双曲线C:−=1(a>0,b>0)的右焦点,A为C的右顶点,B为C上的点且BF垂直于x轴.若AB的斜率为3,则C的离心率为__________.16.如图,在三棱锥P−ABC的平面展开图中,AC=1,AB=AD=,AB AC,AB AD,CAE=,则FCB=__________.三、解答题(本大题共7小题,共80.0分)17.设{}是公比不为1的等比数列,为,的等差中项.(1)求{}的公比;(2)若=1,求数列{}的前n项和.18.如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.ABC是底面的内接正三角形,P为DO上一点,PO=DO.(1)证明:PA平面PBC;(2)求二面角B−PC−E的余弦值.19.甲、乙、丙三位同学进行羽毛球比赛,预定赛制如下:累计负两场者被淘汰;比赛前抽签决定首次比赛的两个人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为.(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.20.已知A,B分别为椭圆E:+=1(a>1)的左、右顶点,G为E的上顶点,=8,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D,(1)求E的方程;(2)证明:直线CD过定点.21.已知函数f(x)=+−x.(1)当a=1时,讨论f(x)的单调性;(2)当x0时,f(x)+1,求a的取值范围.22.[选修4−4:坐标系与参数方程]在直角坐标系xOy中,曲线的参数方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为4−16+3=0.(1)当k=1时,是什么曲线?(2)当k=4时,求与的公共点的直角坐标.23.[选修4−4:坐标系与参数方程]已知函数f(x)=|3x+1|−2|x−1|.(1)画出y=f(x)的图像;(2)求不等式f(x)>f(x+1)的解集.答案和解析1. D解:由z =1+i 得z 2=2i ,2z =2+2i ,|z 2−2z |=|2i −(2+2i)|=2.2. B解:由已知可得A ={x|−2⩽x ⩽2},B ={x|x ⩽−a2}, 又因为A ∩B ={x|−2⩽x ⩽1}, 所以−a2=1,从而a =−2,3. C解:如图,设正四棱锥的高为h ,底面边长为a,侧面三角形底边上的高为ℎ′, 则由题意可得{ℎ2=12aℎ′ℎ2=(ℎ′)2−(a2)2,故(ℎ′)2−(a2)2=12aℎ′,化简可得4(ℎ′a )2−2(ℎ′a )−1=0,解得ℎ′a=1±√54.负值舍去可得ℎ′a=1+√544.C解:设点A的坐标为(x,y),由点A到y轴的距离为9,可得x=9,由点A到点C的焦点的距离为12,可得x+p2=12解得p=6.5.D解:用光滑的曲线把图中各点连接起来,由图象的走向判断,此函数应该是对数函数类型的,故应该选用的函数模型为y=a+bln x.6.B解:先求函数的导函数f′(x)=4x3−6x2,则由函数的几何意义可知在点(1,f(1))的切线斜率为k=f′(1)=−2.又因为f(1)=−1,则切线方程为y−(−1)=−2(x−1),则y=−2x+1.7.C解:由图可知f(−4π9)=cos(−4π9w+π6)=0,所以−4π9w+π6=π2+kπ(k∈Z),化简可得w=−3+9k4(k∈Z),又因为T<2π<2T,即2π|w|<2π<4π|w|,所以1<|ω|<2,当且仅当k=−1时1<|ω|<2,所以w=32,所以最小正周期T=2π|w|=4π3.8.C解:(x+y)5的展开式通项为C5r x5−r y r,r=0,1,2,3,4,5,则(x+y2x )(x+y)5的展开式有xC5r x5−r y r,y2xC5r x5−r y r,取r=3和r=1时可得10x3y3,5x3y3,合并后系数为15,9.A解:∵3cos2α−8cosα=5,∴3(2cos2α−1)−8cosα=5,即3cos2α−4cosα−4=0,(3cosα+2)(cosα−2)=0,α∈(0,π),即cosα=−23,又α∈(0,π),sinα>0,∴sinα=√1−cos2α=√53,10.A解:由圆O1的面积为4π=πr2,故圆O1的半径ρ=2,∵AB=BC=AC=OO1,则三角形ABC是正三角形,=2r=4,得AB=OO1=2√3,由正弦定理:ABsin60∘由R2=r2+OO12,得球O的半径R=4,表面积为4πR2=64π,11.D解:圆M方程化为:(x−1)2+(y−1)2=4,圆心M(1,1),半径r=2,根据切线的性质及圆的对称性可知,则|PM|⋅|AB|=4S△PAM=2|PA|⋅|AM|,要使其值最小,只需|PA|最小,即|PM|最小,此时,=√5,|PA|=√|PM|2−|AM|2=1,∴|PM|=√5(x−1),联立l的方程解得P(−1,0),过点M且垂直于l的方程为y−1=12以P为圆心,|PA|为半径的圆的方程为(x+1)2+y2=1,即x2+y2+2x=0,结合圆M的方程两式相减可得直线AB的方程为2x+y+1=0,12.B解:根据指数及对数的运算性质,4b+2log4b=22b+log2b,∵log2(2b)=log2b+1>log2b,∴22b+log2(2b)>22b+log2b=2a+log2a,根据函数f(x)=2x+log2x是定义域上的增函数,由f(2b)>f(a),得a<2b,13.1解:根据约束条件画出可行域为:由z=x+7y得y=−17x+17z,平移直线y=−17x,要使z最大,则y=−17x+17z在y轴上的截距最大,由图可知经过点A(1,0)时截距最大,此时z=1,14.√3解:|a⃗+b⃗ |2=a⃗2+b⃗ 2+2a⃗⋅b⃗ =2+2a⃗⋅b⃗ =1,a⃗⋅b⃗ =−12,|a⃗−b⃗ |2=a⃗2+b⃗ 2−2a⃗⋅b⃗ =2−2a⃗⋅b⃗ =3,∴|a⃗−b⃗ |=√3.15.2解:由题意可知,B在双曲线C的右支上,且在x轴上方,∵BF垂直于x轴,把x=c代入x2a2−y2b2=1,得y=b2a,∴B点坐标为(c,b2a),又A点坐标为(a,0),∴k AB=b2a−0c−a=3,化简得b2=3ac−3a2=c2−a2,即2a2−3ac+c2=0,解得c=2a或c=a(舍),故e=ca=2.16.−14解:由已知得BD=√2AB=√6,∵D、E、F重合于一点,∴AE=AD=√3,BF=BD=√6,∴△ACE中,由余弦定理得,∴CE=CF=1,BC²=AC²+AB²,BC=2,∴在△BCF中,由余弦定理得.17.解:⑴设等比数列{a n}的公比为q(q≠1),由题意知:2a1=a2+a3,即2a1=a1q+a1q2,所以q2+q−2=0,解得q=−2.(2)若a1=1,则a n=(−2)n−1,所以数列{na n}的前n项和为T n=1+2×(−2)+3×(−2)2+⋯+n(−2)n−1,则−2T n=−2+2×(−2)2+3×(−2)3+⋯+n(−2)n,两式相减得3T n=1+(−2)+(−2)2+(−2)3+(−2)n−1−n(−2)n=1−(−2)n1−(−2)−n(−2)n=1−(3n+1)(−2)n3,所以T n=1−(3n+1)(−2)n9.18.(1)证明:不妨设⊙O的半径为1,则AO=OB=OC=1,AE=AD=2,AB=BC=CA=√3,DO=√DA2−OA2=√3,PO=√66DO=√22,PA=PB=PC=√PO2+AO2=√62,在△PAC中,PA2+PC2=AC2,故PA⊥PC,同理可得PA⊥PB,PB∩PC=P,PB,PC⊂平面PBC,∴PA ⊥平面PBC .(2)解:以OE ,OD 所在直线分别为y ,z 轴,圆锥底面内垂直于OE 的直线为x 轴,建立如图所示的空间直角坐标系O −xyz ,则有B (√32,12,0),C (−√32,12,0),P (0,0,√22),E (0,1,0), BC ⃗⃗⃗⃗⃗ =(−√3,0,0),CE ⃗⃗⃗⃗⃗ =(√32,12,0),CP ⃗⃗⃗⃗⃗ =(√32,−12,√22), 设平面PBC 的法向量为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1),则{BC ⃗⃗⃗⃗⃗ ⋅n ⃗ =0CP ⃗⃗⃗⃗⃗ ⋅n ⃗ =0,解得n 1⃗⃗⃗⃗ =(0,√2,1), 同理可得平面PCE 的法向量n 2⃗⃗⃗⃗ =(√2,−√6,−2√3), 由图形可知二面角B −PC −E 为锐角,则cosθ=|n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ ||=2√55, 故二面角B −PC −E 的余弦值为2√55.19. 解:(1)甲连胜四场只能是前四场全胜,则P =(12)4=116.(2)设甲输掉一场比赛为事件A ,乙输掉一场比赛为事件B ,丙输掉一场比赛为事件C , 四场比赛能结束为事件N ,则P(N)=P(ABAB)+P(ACAC)+P(BABA)+P(BCBC)=116×4=14所以需要进行第五场比赛的概率为P =1−P(N)=1−14=34(3) 丙获胜的概率为:P =P (ABAB )+P(BABA)+P(ABACB)+P(BABCA)+P(ABCAB)+P(ABCBA) +P(BACAB)+P(BACBA)+P(ACABB)+P(ACBAB)+P(BCABA)+P(BCBAA) =(12)4×2+(12)5×10=716.20. 解:由题意A (−a,0),B (a,0),G (0,1),AG ⃗⃗⃗⃗⃗ =(a,1),GB ⃗⃗⃗⃗⃗ =(a,−1), AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =a 2−1=8⇒a 2=9⇒a =3, ∴椭圆E 的方程为x 29+y 2=1.(2)由(1)知A (−3,0),B (3,0),P (6,m ),则直线PA 的方程为y =m 9(x +3),联立{y =m 9(x +3)x 29+y 2=1⇒(9+m 2)x 2+6m 2x +9m 2−81=0,由韦达定理−3x C =9m 2−819+m 2⇒x C =−3m 2+279+m 2,代入直线PA 的方程y =m 9(x +3)得,y C =6m9+m 2,即C (−3m 2+279+m 2,6m9+m 2),直线PB的方程为y=m3(x−3),联立{y=m3(x−3)x29+y2=1⇒(1+m2)x2−6m2x+9m2−9=0,由韦达定理3x D=9m2−91+m2⇒x D=3m2−31+m2,代入直线PA的方程y=m3(x−3)得,y D=−2m1+m2,即D(3m2−31+m2,−2m1+m2),∴直线CD的斜率k CD=6m9+m2−−2m1+m2−3m2+279+m2−3m2−31+m2=4m3(3−m2),∴直线CD的方程为y−−2m1+m2=4m3(3−m2)(x−3m2−31+m2),整理得y=4m3(3−m2)(x−32),∴直线CD过定点(32,0).21.解:(1)当a=1时,f(x)=e x+x2−x,f′(x)=e x+2x−1,记g(x)=f′(x),因为g′(x)=e x+2>0,所以g(x)=f′(x)=e x+2x−1在R上单调递增,又f′(0)=0,得当x>0时f′(x)>0,即f(x)=e x+x2−x在(0,+∞)上单调递增;当x<0时f′(x)<0,即f(x)=e x+x2−x在(−∞,0)上单调递减.所以f(x)=e x+x2−x在(−∞,0)上单调递减,在(0,+∞)上单调递增.(2)①当x=0时,a∈R;②当x>0时,f(x)≥12x3+1即a≥12x3+x+1−e xx2,令ℎ(x)=12x3+x+1−e xx2,ℎ′(x)=(2−x)(e x−12x2−x−1)x3记m(x)=e x−12x2−x−1,m′(x)=e x−x−1令q(x)=e x−x−1,因为x>0,所以q′(x)=e x−1>0,所以m′(x)=q(x)=e x−x−1在(0,+∞)上单调递增,即m′(x)=e x−x−1> m′(0)=0所以m(x)=e x−12x2−x−1在(0,+∞)上单调递增,即m(x)=e x−12x2−x−1>m(0)=0,故当x∈(0,2)时,ℎ′(x)>0,ℎ(x)=12x3+x+1−e xx2在(0,2)上单调递增;当x∈(2,+∞)时,ℎ′(x)<0,ℎ(x)=12x3+x+1−e xx2在(2,+∞)上单调递减;所以[ℎ(x)]max=ℎ(2)=7−e24,所以a≥7−e24,综上可知,实数a的取值范围是[7−e24,+∞).22.解:(1)当k=1时,曲线C1的参数方程为{x=costy=sint,化为直角坐标方程为x2+y2=1,表示以原点为圆心,半径为1的圆.(2)k=4时,曲线C1的参数方程为{x=cos 4ty=sin4t,化为直角坐标方程为√x+√y=1,曲线C2化为直角坐标方程为4x−16y+3=0,联立{√x+√y=14x−16y+3=0,解得{x=14y=14,所以曲线C1与曲线C2的公共点的直角坐标为(14,14 ).23.解:(1)函数f(x)=|3x+1|−2|x−1|=,图像如图所示:(2)函数f(x+1)的图像即为将f(x)的图像向左平移一个单位所得,如图,联立y=−x−3和y=5x+4解得交点横坐标为x=−,原不等式的解集为.。

2020年全国普通高等学校招生统一考试(新课标Ⅰ卷)理科数学+答案+全解全析纯word版(2020.6.15)

2020年全国普通高等学校招生统一考试(新课标Ⅰ卷)理科数学+答案+全解全析纯word版(2020.6.15)

2020年全国普通高等学校招生统一考试(新课标Ⅰ卷)理科数学本卷满分150分,考试时间120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{|||2}P x x =>,2{|230}Q x x x =--≤,则P Q =I A .(2,)+∞B .(1,)+∞C .(2,3]D .[1,2)-2.已知i 为虚数单位,(2i)67i z -=+,则复平面内与z 对应的点在 A .第一象限B .第二象限C .第三象限D .第四象限3.若26cos 2cos21αα+=-,则tan α= A .2±B .3±C .2D .3-4.已知实数,,a b c 满足lg 222,log ,sin a b a c b ===,则,,a b c 的大小关系是 A .a b c >>B .b c a >>C .a c b >>D .b a c >>5.已知函数()sin 3cos f x x x ωω=-(0ω>)的图象与x 轴的交点中,两个相邻交点的距离为π,把函数()f x 的图象上每一点的横坐标缩小到原来的一半,再沿x 轴向左平移3π个单位长度,然后纵坐标扩大到原来的2倍得到函数()g x 的图象,则下列命题中正确的是 A .()g x 是奇函数B .()g x 的图象关于直线6x π=对称 C .()g x 在[,]312π-π上是增函数D .当[,]66x π-π∈时,()g x 的值域是[0,2]6.函数2()cos sin(1)31x f x x =⋅-+的图象大致为7.在ABC △中,已知1()2AD AB AC =+u u u r u u u r u u u r ,13AE AD =u u u r u u u r ,若以,AD BE u u u r u u u r 为基底,则DC u u u r可表示为A .2133AD BE +u u ur u u u rB .23AD BE +u u ur u u u rC .13AD BE +u u u r u u u rD .1233AD BE +u u ur u u u r8.记不等式组21312y x x y y y kx ≤-⎧⎪+≤⎪⎨≥-⎪⎪≥-⎩表示的平面区域为D ,若平面区域D 为四边形,则实数k 的取值范围是A .11144k << B .11144k <≤ C .11133k <<D .11133k ≤≤9.1872年,戴德金出版了著作《连续性与无理数》,在这部著作中以有理数为基础,用崭新的方法定义了无理数,建立起了完整的实数理论.我们借助划分数轴的思想划分有理数,可以把数轴上的点划分为两类,使得一类的点在另一类点的左边.同样的道理把有理数集划分为两个没有共同元素的集合A 和B ,使得集合A 中的任意元素都小于集合B 中的任意元素,称这样的划分为分割,记为A /B .以下对有理数集的分割不会出现的类型为 A .A 中有最大值,B 中无最小值 B .A 中无最大值,B 中有最小值 C .A 中无最大值,B 中无最小值D .A 中有最大值,B 中有最小值10.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,O 为坐标原点,A 为OM 的中点,若C 的渐近线与以AM 为直径的圆相切,则双曲线C 的离心率等于 A 32 B 23C 3D 211.已知函数()|2|2f x x =-+,()ln g x ax x =-,若0(0,e)x ∀∈,12,(0,e)x x ∃∈满足0()f x = 12()()g x g x =,其中12x x ≠,则实数a 的取值范围是 A .5[,e)eB .1(,e)eC .1[1,e)e+D .15[1,]e e+12.如图,已知平面四边形P'CAB 中,AC BC ⊥,且6AC =,27BC =,214P'C P'B ==BC 将P'BC △折起到PBC △的位置,构成一个四面体,当四面体PABC 的体积最大时,四面体PABC 的外接球的体积等于 A .5003πB .2563πC .50πD .96π二、填空题:本题共4小题,每小题5分,共20分。

(全国III卷)2020年普通高等学校招生全国统一考试理科数学试题参考答案

(全国III卷)2020年普通高等学校招生全国统一考试理科数学试题参考答案

(3) 2 2 列联表如下:
人次 400
空气质量不好
33
空气质量好
22
人次 400 37 8
K2
100 338 37 222
5.820 3.841 ,
55 45 70 30
因此,有 95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.
【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考
根据题意画出图形,如图
理科数学参考答案 7
| BP || BQ | , BP BQ , PMB QNB 90 ,
又 PBM QBN 90 , BQN QBN 90 ,
PBM BQN , 根据三角形全等条件“ AAS ”, 可得:△PMB △BNQ ,
x2 16 y2 1 , 25 25
【解析】 【分析】
(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、 2 、 3 、 4 的概率; (2)利用每组的中点值乘以频数,相加后除以100 可得结果;
(3)根据表格中的数据完善 2 2 列联表,计算出 K2 的观测值,再结合临界值表可得结论.
【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为 2 16 25 0.43 , 100
(2)由错位相减法求解即可.
【详解】(1)由题意可得 a2 3a1 4 9 4 5 , a3 3a2 8 15 8 7 ,
由数列an 的前三项可猜想数列an 是以 3 为首项,2 为公差的等差数列,即 an 2n 1,
证明如下:
当 n 1 时, a1 3成立;
假设 n k 时, ak 2k 1 成立.
机密★启用前
2020 年普通高等学校招生全国统一考试

2020年全国一卷理科数学(解析版)

2020年全国一卷理科数学(解析版)

2绝密★启用前2020 年普通高等学校招生全国统一考试理科数学本试卷共 5 页,23 题(含选考题),全卷满分 150 分。

考试用时 120 分钟。

注意事项: ★祝考试顺利★1.答题前,先将自己的姓名,准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用 2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效。

5.考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本题共 12 小题。

每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若 z = 1+ i ,则 |z 2- 2z |=A.0B.1C. D.22.设集合 A = {x | x 2- 4 ≤ 0}, B = {x| 2x + a ≤ 0},且 A ∩B = {x - 2 ≤ x ≤ 1},则 a =A. - 4B. - 2C.2D.43.埃及胡夫金字塔是古代世界建筑奇迹之一,它们的形状可视为一个正四棱锥。

以该正四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为4.已知 A 为抛物线C : y 2= 2 px (p > 0)上一点,点 A 到C 的焦点的距离为 12,到 y轴的距离为 9,则 p =A.2B.3C.6D.95.某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x (单位:℃)的关系,在 20 个不同的温度条件下进行种子发芽实验,由实验数据(x i , y i )(i = 1,2, ····,20)得到下面的散点图:100% 80% 60% 40% 20% 0 010203040温度/℃由此散点图,在 10℃至 40℃之间,下面四个回归方程类型中最适宜作为发芽率 y 和温 度 x 的回归方程类型的是A.y = a + bxB.y = a + bx 2C.y = a + be xD.y = a + b ln x6.函数 f (x ) = x 4- 2x 3的图像在点(1, f (1))处的切线方程为A.y = -2x -1B.y = -2x +1C.y = 2x - 3D.y = 2x +17. 设函数在[-π,π]的图像大致如下图。

2020年全国统一高考数学理科试卷(附答案解析)

2020年全国统一高考数学理科试卷(附答案解析)
【详解】圆的方程可化为 ,点 到直线 的距离为 ,所以直线 与圆相离.
依圆的知识可知,四点 四点共圆,且 ,所以 ,而 ,
A. 2B. 3C. 6D. 9
【答案】C
【解析】
【分析】
利用抛物线的定义建立方程即可得到答案.
【详解】设抛物线的焦点为F,由抛物线的定义知 ,即 ,解得 .
故选:C.
【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.
5.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据 得到下面的散点图:
【答案】C
【解析】
【分析】
求得 展开式的通项公式为 ( 且 ),即可求得 与 展开式的乘积为 或 形式,对 分别赋值为3,1即可求得 的系数,问题得解.
【详解】 展开式的通项公式为 ( 且 )
所以 与 展开式的乘积可表示为:

在 中,令 ,可得: ,该项中 的系数为 ,
在 中,令 ,可得: ,该项中 的系数为
由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是( )
A. B.
C. D.
【答案】D
【解析】
【分析】
根据散点图的分布可选择合适的函数模型.
【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,
因此,最适合作为发芽率 和温度 的回归方程类型的是 .
【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题
7.设函数 在 的图像大致如下图,则f(x)的最小正周期为( )
A. B.
C. D.
【答案】C

2020年全国卷数学(理科)高考试题及答案

2020年全国卷数学(理科)高考试题及答案

2020年全国卷数学(理科)高考试题及答案2020年普通高等学校招生全国统一考试-理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若 $z=1+i$,则 $z^2-2z=$A。

0B。

1C。

2D。

22.设集合 $A=\{x|x^2-4\leq 0\}$,$B=\{x|x^2+ax\leq 0\}$,且 $AB=\{x|-2\leq x\leq 1\}$,则 $a=$A。

$-4$B。

$-2$C。

2D。

43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A。

$\frac{5-\sqrt{5}}{4}$B。

$\frac{5+\sqrt{5}}{4}$C。

$\frac{5-\sqrt{5}}{2}$D。

$\frac{5+\sqrt{5}}{2}$4.已知 $A$ 为抛物线 $C:y^2=2px(p>0)$ 上一点,点$A$ 到 $C$ 的焦点的距离为 $12$,到 $y$ 轴的距离为 $9$,则 $p=$A。

2B。

3C。

6D。

95.某校一个课外研究小组为研究某作物种子的发芽率$y$ 和温度 $x$(单位:℃)的关系,在 $20$ 个不同的温度条件下进行种子发芽实验,由实验数据 $(x_i,y_i)(i=1,2.20)$ 得到下面的散点图:由此散点图,在 $10℃$ 至 $40℃$ 之间,下面四个回归方程类型中最适宜作为发芽率 $y$ 和温度 $x$ 的回归方程类型的是A。

$y=a+bx$B。

$y=a+bx^2$C。

$y=a+be^x$D。

$y=a+b\ln x$6.函数 $f(x)=x^4-2x^3$ 的图像在点 $(1,f(1))$ 处的切线方程为A。

$y=-2x-1$B。

$y=-2x+1$C。

$y=2x-3$D。

2020年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2020年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2020年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.62.(5分)复数的虚部是()A .﹣B .﹣C .D .3.(5分)在一组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且p i=1,则下面四种情形中,对应样本的标准差最大的一组是()A.p1=p4=0.1,p2=p3=0.4B.p1=p4=0.4,p2=p3=0.1C.p1=p4=0.2,p2=p3=0.3D.p1=p4=0.3,p2=p3=0.24.(5分)Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t )=,其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.695.(5分)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)6.(5分)已知向量,满足||=5,||=6,•=﹣6,则cos <,+>=()A .﹣B .﹣C .D .7.(5分)在△ABC中,cos C =,AC=4,BC=3,则cos B=()A .B .C .D .8.(5分)如图为某几何体的三视图,则该几何体的表面积是()A.6+4B.4+4C.6+2D.4+29.(5分)已知2tanθ﹣tan(θ+)=7,则tanθ=()A.﹣2B.﹣1C.1D.210.(5分)若直线l与曲线y =和圆x2+y2=都相切,则l的方程为()A.y=2x+1B.y=2x +C.y =x+1D.y =x +11.(5分)设双曲线C :﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=()A.1B.2C.4D.812.(5分)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b二、填空题:本题共4小题,每小题5分,共20分。

2020年全国II卷理科数学高考试卷(原卷答案)

2020年全国II卷理科数学高考试卷(原卷答案)

绝密★启用前2020年普通高等学校招生全国统一考试(新课标全国II 卷)(适用地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆)理科数学注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上。

本试卷满分150分。

2.作答时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U AB =ðA .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3} 2.若α为第四象限角,则 A .cos2α>0 B .cos2α<0 C .sin2α>0 D .sin2α<0 3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A .10名 B .18名 C .24名 D .32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石) A .3699块 B .3474块 C .3402块 D .3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y −−=的距离为A .55B .255C .355D .4556.数列{}n a 中,12a =,m n m n a a a +=.若155121022k k k a a a ++++++=−,则k =A .2B .3C .4D .57.下图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b −=>>的两条渐近线分别交于,D E 两点,若ODE △的面积为8,则C 的焦距的最小值为A .4B .8C .16D .329.设函数()ln |21|ln |21|f x x x =+−−,则f (x ) A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22−单调递减C .是偶函数,且在1(,)2−∞−单调递增D .是奇函数,且在1(,)2−∞−单调递减10.已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为 A .3B .32C .1D .3211.若2x -2y <3−x -3−y ,则A .ln(y -x +1)>0B .ln(y -x +1)<0C .ln ∣x -y ∣>0D .ln ∣x -y ∣<012.0-1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)mi i k i C k a a k m m +===−∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是A .11010 B .11011 C .10001 D .11001 二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档