02多维随机向量

合集下载

第三章 多维随机变量及其分布 第一节 二维随机变量及其分布函数 概率论课件

第三章 多维随机变量及其分布 第一节 二维随机变量及其分布函数 概率论课件

前面我们介绍了二维随机变量的概 念, 二维随机变量的分布函数及其性质。
二维随机变量也分为离散型和连续型, 下面我们分别讨论它们。
三、二维离散型随机变量 及其概率分布
如果二维随机变量(X,Y)的每个分 量都是离散型随机变量,则称(X,Y)是 二维离散型随机变量.
二维离散型随机变量(X,Y)所有可 能取的值也是有限个或可列无穷个.
求: 二维随机变量(X,Y)的概率分布和其边缘分 布.
解: (X,Y)所有可能取的值是
(0,0),(0,1),(1,0,),(1,1).
P{X=0,Y=0}
=P{第一次取到正品且第二次也取到正品},
利用古典概型,得: P{X=0,Y=0}=(76)/(109)=7/15
同理求得:
P{X=0,Y=1}=(73)/(109)=7/30
第三章
多维随机变量及其分布
一般地,我们称n个随机变量的整体
X=(X1, X2, …,Xn)为n维随机变量或随
机向量. 以下重点讨论二维随机变量.
请注意与一维情形的对照 .
第三章 第一节
二维随机变量及其分布函数
一、二维随机变量
设随机试验E的样本空间是Ω,X=X() 和Y=Y()是定义在Ω上的随机变量, 由它们 构成的向量(X,Y),称为二维随机变量(向量)。
而把F(x,y)称为X和Y的联合分布函数。
注意
X与Y的边缘分布函数,实质上就是一维随 机变量X或Y的分布函数。称其为边缘分布函数 的原因是相对于(X,Y)的联合分布而言的。
同样地,(X,Y)的联合分布函数F(x, y)是相 对于(X,Y)分量X与Y的分布而言的。
求法
FX(x)=P{X≤x}=P{X≤x,Y<∞}=F(x,∞) FY(y)=P{Y≤y}=P{X<∞,Y≤y}=F(∞,y)

第三章-多维随机向量的分布及数字特征

第三章-多维随机向量的分布及数字特征



xi x y j y
一般求概率函数 P ( X , Y ) ( xi , y j ) 采用以下公式: P ( X , Y ) ( xi , y j ) PX xi P Y y j X xi 例3.3 整数 X 等可能的取值1,2,3,4,整数Y 等可能的取值 1~ X,求随机向量( X , Y )的概率分布列。 解: 由题目条件随机向量( X , Y )所有可能取值点为 (1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4) 显然,当 y j xi时,P ( X , Y ) ( xi , y j ) 0 。 当 y j xi时,分别有 P ( X , Y ) (1,1) P X 1 P Y 1 X 1 1 1 1 4 4 P ( X , Y ) (2,1) P X 2 P Y 1 X 2
P x1 X x2 , y1 Y y2
X
pij
0 1
Y
0
1/4 1/4
1
1/4 1/4
0 x 0或y 0 1 / 4 0 x 1且0 y 1 F ( x, y ) PX x, Y y 1 / 2 0 x 1且y 1 1 / 2 x 1且0 y 1 1 x 1且y 1
表达随机试验结果的变量个数从一个增加到两个形成二 维随机向量,概率分布律的描述有了实质的变化,而二维推 广到多维只有形式上的变化并无实质性的困难,我们主要讨 论二维随机向量。 2. 二维随机向量的分布函数 Def 设( X , Y )为二维随机向量,( x, y )为平面内任意一点,则

多维随机变量

多维随机变量
y
F ( ,) x lim F ( x , y ) 1 .
y
2 单调性
o
F ( x, y ) 是变量 x 和 y 的不减函数,
即对于任意固定的 y, 当 x2 x1 时 F ( x2 , y ) F ( x1 , y ),
对于任意固定的 x ,当y2 y1时F ( x , y2 ) F ( x , y1 ).
i j
其中和式是对一切满足xi x , y j y 的 i , j 求和.
3.3 二维连续型随机变量
1.定义
对于二维随机变量( X ,Y ) 的分布函数 F ( x , y ), 如果存在非负的函数 f ( x , y ) 使对于任意 x , y 有 F ( x, y) f ( u, v ) d u d v ,
f ( x, y )dxdy.
A
f ( x) 0, f ( x)dx 1.
f ( x, y) 0, f ( x, y)dxdy 1.
2.性质
(1) f ( x , y ) 0.
( 2)
f ( x , y ) d x d y F (, ) 1.




j 1

P{ X xi } pij , i 1,2,;
P{Y y j } pij , j 1,2,.
i 1

例 在只有3个红球和4个黑球的袋子中逐次 抽取一球,令 1, 若第一次抽取红球 X , 0, 若第一次抽取黑球
1, 若第二次抽取红球 Y , 0, 若第二次抽取黑球 在有放回及无放回抽样的条件下求(X, Y) 的边缘分布律

理学概率统计随机向量

理学概率统计随机向量

P
(X
xi ,Y
y
j
)
P
X
xi ,
P(X xi
j
,Y
(Y
y yj)
j
)
j
j
pij (i 1, 2,...)
j
此为概率分布表中第i行的概率之和
Y的分布律为:
P(Y
yj)
P(,Y
yj)
P
(X
xi ),Y
yj
P
(X
xi ,Y
yj )
i
P(X xi ,Y y j )
i
i
例4 设二维随机变量(X,Y)的概率密度为
f(x,y)=
ke(2x3y) , x 0, y 0,
0,
其他.
(1) 确定常数k;(2)求(X,Y)的分布函数;
(3)求P{X<Y}.
解 (1) 1 =
f (x, y)dxdy
ke (2x 3y)dxdy
0
0
= k e2xdx e3ydy
X1
Y
1 0.1 20 3 0.1 40
2
3
0.3
0
0
0.2
0.1
0
0.2
0
求P{X>1,Y≥3}及P{X=1}. 解: P{X>1,Y≥3}=P{X=2,Y=3}+P{X=2,Y=4}
+P{X=3,Y=3}+P{X=3,Y=4} =0.3;
P{X=1}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}
解 (1)圆域x2+y2≤4的面积A=4π,故(X,Y)的概率
密度为
f(x,y)=

多维随机变量及其分布

多维随机变量及其分布

(1) F ( x, y)
y


x
f ( x , y) d x d y
y x ( 2 x y ) d x d y , x 0, y 0, 0 0 2e 其它. 0,
(1 e 2 x )(1 e y ), x 0, y 0. 得 F ( x , y) 其它. 0,
8 3 2 14 , 13/102
§3.1 二维随机变量
3 2 P{ X 1,Y 1} 1 1 8 3 2 14 ,
2 8 1 P{ X 0,Y 2} 2 2 28 , 3 3 8 9 P{ X 1,Y 0} 1 1 2 28 ,
y
先在图像上画出非0区
O x
20/102
§3.1 二维随机变量
(2) 将 ( X,Y )看作是平面上随机点的坐标
即有 {Y X } {( X ,Y ) G },
P{Y X } P{( X ,Y ) G }
y
f ( x , y ) d x d y

G
YX
2e 0 y


具有同二维类似的性质。
§3.1 二维随机变量

二维离散型的随机变量:

定义:若二维随机变量(X,Y)全部可能取到的不相同的值 是有限对或可列无限多对,则称(X,Y)是离散型随机变量

二维离散型随机变量的分布律:

设二维离散型随机变量(X,Y)所有可能取的值为(xi,yj),i, j=1,2,…, 记P{X=xi,Y=yj}=pij,i,j=1,2,…,则由概率的定义有: pij≥0,

多维随机变量的特征值

多维随机变量的特征值

多维随机变量的特征值多维随机变量的特征值是指通过特征分解得到的矩阵的特征值。

多维随机变量是由多个随机变量组成的向量,而特征值则是描述这个向量的性质和特点的重要指标之一、在统计学和线性代数中,特征值与特征向量是矩阵理论的基本内容,对于多维随机变量的研究具有重要意义。

A×v=λ×v其中,A是一个n×n的矩阵,v是一个n维列向量,λ是一个常数,称为A的特征值。

这个方程表示,矩阵A左乘一个向量v,结果等于右乘一个常数λ和向量v本身。

可以看出,特征值和特征向量是矩阵A与向量v之间的关系。

特征值具有如下性质:1.特征值是一个常数,不依赖于矩阵A左乘的向量v。

2.特征值有可能是复数也有可能是实数。

3.特征值可以是重复的,即可以有多个相同的特征值。

对于一个具体的n×n矩阵A,特征值和特征向量的求解可以通过以下步骤进行:1. 求解特征方程:det(A-λI) = 0,其中I是单位矩阵。

2.求解特征值:将特征方程中的λ作为未知数求解。

3.求解特征向量:将特征值代入原方程(A-λI)v=0,求解向量v。

特征值的重要性在于它能够描述多维随机变量的性质和规律。

通过特征值,我们可以得知矩阵A的特殊性质,例如矩阵的对称性、正定性和奇异性等。

特征值还可以用于解决多维随机变量相关问题,如方差分析、主成分分析、线性回归等。

在统计学中,特征值在多维数据分析和降维技术中起着重要的作用。

例如,在主成分分析中,我们通过求解协方差矩阵的特征值和特征向量,可以得到数据中最重要的主成分。

特征值还可以用于判断数据的相关性和相关结构。

总之,多维随机变量的特征值是描述随机向量性质的重要指标,能够反映矩阵的特殊性质和数据的相关性。

特征值在统计学和线性代数中具有广泛的应用价值。

概率论与数理统计第3章随机向量

概率论与数理统计第3章随机向量

解 (1)根据概率密度函数性质(2)知
f (x, y)dxdy
Ce(3x4 y) dxdy C e3xdx e4y dy C 1
00
0
0
12
从而 C 1
12
(2)由定义3.3.1知
xy
F(x, y)
f (u,v)dudv
(1 e3x )(1 e4y ), x 0, y 0,
3
7
7
1
3.4.1 二维离散型随机向量的边缘分布
(2) 采取无放回摸球时,与(1)的解法相同,(X,Y)的 联合分布与边缘分布由表3.4给出.
表3.4
Y X
0
1 P{Y=yj} p j
01Biblioteka 2277
2
1
7
7
4
3
7
7
P{X=xi} pi
4 7 3 7
1
3.4.2 二维连续型随机向量的边缘分布
设(X,Y)是二维连续型随机向量,其概率密度为f(x,y),

FX (x) F(x,)
x
f (x,y)dydx
知,X是一个连续型随机变量,且其概率密度为
f X (x)
dFX (x) dx
f (x,y)dy.
(3.4.5)
同样,Y也是一个连续型随机变量,其概率密度为
fY ( y)
= dFY(y)
dy
f (x,y)dx.
(3.4.6)
(X ,Y )
~
N (1,
2
,
2 1
,
2 2
,
)
称(X,Y)为二维正态随机向量.
3.4 边缘分布
1 二维离散型随机向量的边缘分布 2 二维连续型随机向量的边缘分布

多维随机变量的均值与方差

多维随机变量的均值与方差

多维随机变量的均值与方差介绍多维随机变量是统计学中重要的概念,它描述了多个随机变量的联合分布,其中包含了均值和方差等统计特征。

本文将介绍多维随机变量的定义、均值和方差的计算方法以及它们的性质和应用。

一、多维随机变量的定义多维随机变量是指由多个随机变量组成的向量。

设有n个随机变量X₁, X₂, …,Xₙ,则多维随机变量可以表示为向量X=(X₁, X₂, …, Xₙ)。

每个随机变量Xᵢ都有其可能的取值范围和相应的概率分布函数。

二、多维随机变量的均值多维随机变量的均值是研究其分布特征的重要指标。

对于一维随机变量X,其均值μ定义为E(X),表示所有可能取值的期望值。

而对于多维随机变量(X₁, X₂, …, Xₙ),其均值向量μ定义为μ = (E(X₁), E(X₂), …, E(Xₙ))均值向量μ可以通过计算每个随机变量的期望值得到。

对于离散型随机变量,均值的计算公式为E(X) = ∑(x P(X=x))对于连续型随机变量,均值的计算公式为E(X) = ∫(x f(x) dx)三、多维随机变量的方差除了均值之外,方差是描述多维随机变量分布特征的另一个重要指标。

方差描述了随机变量取值的离散程度,方差越大表示取值的离散程度越大,反之亦然。

对于一维随机变量X,其方差σ²定义为Var(X),表示所有可能取值的方差值。

而对于多维随机变量(X₁, X₂, …, Xₙ),其方差矩阵Σ定义为Σ = [Var(X₁)Cov(X₁, X₂) … Cov(X₁, Xₙ)] [Cov(X₂, X₁) Var(X₂) … Cov(X₂, Xₙ)] [… … … … ] [Cov(Xₙ, X₁) Cov(Xₙ, X₂) … Var(Xₙ)]方差矩阵Σ的对角线元素即为各个随机变量的方差,非对角线元素则为各个随机变量之间的协方差。

四、多维随机变量均值与方差的性质1.线性性质:对于常数a和b,在多维随机变量X和Y的情况下, E(aX + bY)= aE(X) + bE(Y) Var(aX + bY) = a²Var(X) + b²Var(Y) + 2abCov(X, Y)2.方差的非负性:对于多维随机变量X,Var(X) ≥ 03.方差的加法性:对于多维随机变量X₁, X₂, …, Xₙ, Var(X₁ + X₂ + … +Xₙ) = Var(X₁) + Var(X₂) + … + Var(Xₙ)4.相互独立性:如果多维随机变量的各个分量两两相互独立,则它们之间的协方差为0,即 Cov(Xᵢ, Xₙ) = 0, i ≠ j以上性质使得均值和方差成为研究多维随机变量分布特征的重要工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则存在非负可积函数 f (x1, x2, , xn ) ,使得
F(x1, x 2 ,
xn )
x1
xn
f
( y1,
y2 ,
, yn )dy1dy2
dyn.
这里的 f (x1, x2, , xn ) 称为联合密度函数,满足条件:
f (x1, x2, , xn ) 0,
f (x1, x2, , xn )dx1dx2
f1,2, ,k (x1, x2, , x k ) f (x1, x2, , xn )dxk1dxk2 dxn
如 果 F (x1, x 2 , xn ) 是 离 散 型 的 , 则
F (x1, x 2 , xk , , , ) 也是离散型的,其边缘
概率分布为
P( X1 x1, X 2 x2, , X k xk )
则称 X1, , X n 是相互独立的。
如果 Xi 的分布函数为Fi (x), 它们的联合分布函数为
F (x1, x 2 , xn ) ,则相互独立性等价于对一切 x1, x 2 , xn ,
成立
F (x1, x 2 , xn ) F1(x1)F2 (x2 ) Fn (xn ).
注意:在独立条件下,由随机变量的边缘分布可惟一确
( X ,Y ) ~ N ( μ1, μ2 ,σ12 ,σ22 , ρ)
9
二维正态分布的图形
10
二、边缘分布
设 F (x1, x 2 , xn ) 为 n 元分布函数,任意保留 k(0 k n)
个 xi , 例如 x1, x2 , xk ,而令其它的xj 都趋向于 ,即
lim F(x1, x 2 , xk ,, ,)
27
条件概率 链规则(Chain Rule)
f x
1
e
x 2
2 2
2
2 1 2
2
1
2
exp
1 2
x
2
1
x
,
x
例 2 设 (ij ) 为 n 阶正定对称矩阵, 表示 的行列 式的值, (1, 2, , n ) 为任意向量,则有密度函数
f (x1, x2,
, xn )
1
n
(2 )2
1
2
exp{ 1 (x )T 1(x )}
F (x1, x2, , xn )
xk 1
显然, F (x1, x 2 ,
数,称为 F (x1, x 2 ,
xn
xk , , , ) 是一 k 元分布函
xn ) 的 k 元边缘分布函数。
显然,共有 Cnk 个k维边缘分布函数
11
如果 F (x1, x 2 , xn ) 是连续型的,即有密度函数
f (x1, x2, , xn ) ,则 F (x1, x 2 , xk , , , ) 也是连续型 的,其密度函数为
3
4
pi · =
P { X = xi }
0
0
1/4
0
0
1/4
1/12 0
1/4
1/16 1/16
1/4
p·j = P {Y = yj }
25/48 13/48
7/48
3/48
1
13
注:边缘分布函数由联合分布函数惟一确定;反之不然,即 不同的分布函数可能有相同的边缘分布函数。
例 设有两个二元分布函数F(x,y)和G(x,y),密度函数分别为
exp
2
1
1
r
2
x
1 2
2 1
2rx
1 y
1 2
2
y
2 2
2 2
又随机变量 X 的边缘密度函数为
fX x
1
x1 2
e 2
2 1
2 1
x
20
随机变量 Y 的边缘密度函数为
fY y
1
y2 2
e 2
2 2
2 2
y
所以,当 r 0 时, X, Y 的联合密度函数为
则称随机变量 X 服从参数为n, p的二项分布, 记作 X ~ Bn, p 其中n为自然数,0 p 1为参数
二项分布的概率背景
进行n重Bernoulli试验,设在每次试验中
PA p , PA 1 p q
令 X:在这次Bernoulli试验中事件A发生的次数.
则 X ~ Bn, p
7
一元正态分布 N , 2 的概率密度函数为
P( X1 x1, X 2 x2, , X n xn ).
xk 1, , xn
12
P( X1 x1, X 2 x2, , X k xk )
P( X1 x1, X 2 x2,
xk 1, , xn
例 二维离散随机向量的边缘分布律
, X n xn ).
Y X
1 2 3 4
12
1/4 0 1/8 1/8 1/12 1/12 1/16 1/16
2
定义的分布称为 n 元正态分布,简记为 N (,).
8
二维正态分布
若二维随机变量 ( X,Y ) 具有概率密度
f (x, y)
1
e 1 2(1 ρ2
)
(
x μ1 σ12
)2
2
ρ(
x μ1 )( σ1σ2
y
μ2
)
(
y μ2 σ22
)2
2πσ1σ2 1 ρ2
( x , y )
其中μ1, μ2 ,σ1,σ2 , ρ均为常数,且σ1 0,σ2 0,1 ρ 1. 则称( X ,Y )服从参数为μ1, μ2 ,σ1,σ2 , ρ的二维 正态分布.记为
f
(x,
y)
x
y,如果0 x 1,0 0,其他;
y
1,
g(x,
y)
(
1 2
x)( 1 2
y),如果0
x
1, 0
y
1,
0,其他;
显然,F(x,y)和G(x,y)不恒等。但它们的边缘密度函数分别为
14
x y,如果0 x 1,0 y 1,
f (x, y)
0,其他;
g(x,
y)
( 12
pij
n
,
pij
j 1
pij
P{Y
y
X
xi}
j:y j y n
,
pij
j 1
设(X,Y)为连续随机变量,联合密度函数为f(x,y),如果
在定点x,X的边缘密度
fX (x) f (x, y)dy 0,
24
定义
y
f (x, z)dz
FY X ( y x) P{Y y X x}
dxn 1.
5
例1 多项分布(Multinomial Distribution) M (n, p1, p2, , pm )
做 n 次重复独立试验,每次试验的结果为
A1, A2, , Am, P( Ai ) pi ,i 1, 2, , m.

m
pi 1, pi 0.
i1
若记 X i 表示在 n 次试验中 Ai 出现的次数,则 m 维随机
P{Y y X C} P{Y y, X C}, P{X C}
显然, P{Y y X C} 是一维分布函数,我们称为条件 X C 下,Y 的条件分布函数。
设(X,Y)为离散的,其联合概率分布为
P(X xi,Y yj ) pij ,i, j 1,2, .

23
P{Y
yj
X
xi}
pij pi.
x)( 1 2
y),如果0
x
1, 0
y
1,
0,其他;
fX (x)
f (x, y)dy
1
(x
y)dy
x
1
,0
x
1;
0
2
gX (x)
g(x, y)dy
1
(
1
x)(
1
y)dy
x
1
,0
x
1;
02
2
2
所以 fX (x) gX (x). 同理可知 fY ( y) gY ( y).
15
二维正态分布
一. 随机向量的定义 随机向量主要用来描述用一维随机变量不能
完全刻划的随机现象。 例如,随机地抽出一张扑克牌:它具有花色与点 数这两个离散随机属性 ;
导弹的落点与目标之间的误差:由两个连续 随机变量组成的二维随机向量 ;
以及更一般的多维随机向量 。
2
1. 二维随机向量 如果 X 、Y 都是定义在同一个样本空间中的
3
定义 设 x1, x 2 , xn 为实数,称 n 元函数
F (x1, x 2 , xn ) P{X1 x1, X 2 x2, , X n xn}
为随机向量 X (X1, , X n ) 的联合分布函数。
n元分布函数具有以下性质:
⑴、对任一xi 是单调不减的;
⑵、对任一xi 是右连续的;
由上式可得
f (x y)
fX (x) f (y x)
,
fX (x) f ( y x)dx
这就是Bayes公式的密度函数形式。
26
条件密度函数的性质
性质1 对任意的 x,有 fX Y x y 0
性质 2 f X Y x ydx 1
简言之, f X Y x y 是密度函数.
对于条件密度函数 fY X y x 也有类似的性质.
1
11
2 1 2 1 r 2 2 1 2 2
由此得, r 0 .
结论:对于 ( X ,Y ) ~ N 1, 2, 12, 22, r ,
相关文档
最新文档