连续函数四则运算

合集下载

1-07函数的连续性

1-07函数的连续性
x 0
f
( x0

x)
f
( x0 )]
0,那末就称函数
f ( x)在点 x 0 连续, x 0 称为 f ( x) 的连续点.
设 x x0 x,
y f ( x) f ( x0 ),
x
0 就是
x

x, 0
y
0 就是
f
(x)
f ( x ). 0
定义 1′设函数 f ( x) 在U ( x0 ) 内有定义,如果
断点. 三、1、x 1 为第一类间断点;
2、 x k 为可去间断点, 2
x k(k 0)为第二类间断点.
f1(
x)


x tan
x
,
x

k,
k

2
1, x 0
(k 0,1,2,) ,
二、函数连续性的运算定理
1. 连续函数的四则运算
定理1 若函数 f ( x), g( x)在点 x0处连续,
x x0
f ( x)
f 2( x0 )
故| f ( x) |、 f 2 ( x) 在x0 都连续.
但反之不成立.

f
(
x)

1, 1,
x0 x0
在 x0 0不连续
但 | f ( x) |、 f 2 ( x) 在x0 0 连续
练习题
一、填空题:
1、指出 y x 2 1 在 x 1 是第_______类间 x2 3x 2
恒有 f (u) f (a) 成立.
又 lim ( x) a, x x0
对于 0, 0,使当0 x x0 时,

连续函数的四则运算

连续函数的四则运算
在(0,+∞ ) 上, ymax = ymin = 1.
定理6 最大值和最小值定理 定理 一定有最大值和最小值. 在闭区间上连续的函数 一定有最大值和最小值 定理7 定理 有界性定理 在闭区间上连续的函数 一定在该区间上有界 一定在该区间上有界. 证 设函数 f ( x ) 在 [a , b] 上连续, 于是存在 m 、 上连续,
推论1在闭区间上连续的函数 推论 在闭区间上连续的函数 必取得介于最大值 之间的任何值. M 与最小值 m 之间的任何值.
例 5 证明方程 x 3 4 x 2 + 1 = 0 在区间 (0, 1) 内至 少有一个实根 . 证 令 f ( x) = x 3 4 x 2 + 1 , 则 f ( x ) 在 [0, 1] 上连续 . 又 f (0) = 1 > 0 , f (1) = 2 < 0 , 由零点定理 , ξ ∈ (0, 1) , 使 f (ξ ) = 0 , 即 根ξ . 完
1 ln(1 + x ) 解 lim = lim ln(1 + x ) x x →0 x →0 x
1 x = ln lim(1 + x ) x →0
= ln e = 1 .


求 lim cos( x + 1
x →∞ x →∞
x) .
解 lim cos( x + 1
x)
( x + 1 x )( x + 1 + x ) = cos lim x →∞ x +1+ x
3 sin x
1 2x = lim (1 + 2 x ) x →0
= e6 .

三、初等函数的连续性 三角函数及反三角函数在它们的定义域内是连续 的; 指数函数 y = a x (a > 0, a ≠ 1) 在 ( ∞ ,+∞ ) 内单调 且连续; 且连续 对数函数 y = log a x (a > 0, a ≠ 1) 在 (0,+∞ ) 内单 调且连续; 调且连续

连续函数的运算与初等函数的连续性

连续函数的运算与初等函数的连续性

x)

u0
.
定理4 若 u (x) 在点 x0 连续,且 (x0 ) u0 , 而
函数 y = f (u) 在点 u u0 处连续,则复合函数 y f (x)
在点 x0 连续 .
例1
求 lim
x2 9 .
x3 x 3

lim
x2 9
x2 9 lim

x0
∵ (1 2x) (1 2x) e 解
3 sin x
1 2x
sinx
x
6
1
6
x sin
x
ln(12
x
)
2
x

1
∴ lim(1 2x) e e 3 sin x
lim
x0
6
x sin
x
ln(12
x
)
2
x

6
x0
说明 函数 u(x)v(x) (u(x) 0 , u(x)不恒等于1) 既不是
lim
1
u(x)
1
1 u( x)1v( x)
u ( x)1
elimu( x)1v( x)
说明 在求解此类极限时,先计算 limu(x) 1v(x),
再对极限值取指数 e 即可.
1
例6 求 lim(x 2ex ) x1 . x0
解 因为 所以
lim(x 2ex ) 2 ,
定理3

lim
xx0

(x)

(
x0
)
,
u


(x)
,
而函数 y f (u)
在点 u u0 处连续,则有

连续函数四则运算

连续函数四则运算

1 x
1 x
第九节 连续函数的运算与初等函数的连续性
定理4 设函数 y = f [g(x)] 由函数 u = g(x) 与函数
y = f (u) 复合而成, U ( x0 ) D f g . 若函数 u = g(x) 在 x =
x0 连续,且 g(x0) = u0 , 而函数 y = f (u) 在 u = u0 连续, 则复合函数 y = f [g(x)] 在 x = x0 连续. 证明略.
例如, y sin x 在
上单调增加且连续, 其反函数
y arcsin x 在[-1, 1]上也单调增加且连续.
y
y sin x
π 2
-1
O
1
π 2
x
y arcsin x
第九节 连续函数的运算与初等函数的连续性
又如, y = ex 在(- , + )上单调递增且连续,其反函
第九节 连续函数的运算与初等函数的连续性
一、连续函数的四则运算
定理1 在某点连续的有限个函数经有限次和 、差 、
积 、商(分母不为 0) 运算, 结果仍是一个在该点连续的 函数 . ( 利用极限的四则运算法则证明)
例如, 都在(- , + ) 连续,
在其定义域内连续.
第九节 连续函数的运算与初等函数的连续性
二、反函数与复合函数的连续性
1. 反函数的连续性 定理2 如果函数 y = f (x) 在区间 Ix 上单调增加(或单
调减少)且连续,那么它的反函数 x = f -1(y) 也在对应的
区间 Iy = { y | y = f (x) , x Ix } 上单调增加(或单调减少)
且连续. 证明略.
第九节 连续函数的运算与初等函数的连续性

(完整版)高等数学笔记

(完整版)高等数学笔记

(完整版)高等数学笔记第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1。

函数的定义: y=f(x ), x ∈D定义域: D(f ), 值域: Z(f )。

2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3。

隐函数: F(x,y )= 04。

反函数: y=f (x) → x=φ(y )=f —1(y )y=f -1(x)定理:如果函数: y=f (x), D (f )=X , Z (f )=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f —1(x), D (f —1)=Y, Z (f —1)=X 且也是严格单调增加(或减少)的。

㈡ 函数的几何特性1。

函数的单调性: y=f (x ),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x )在D 内单调增加( );若f (x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f (x 2),则称f (x)在D 内严格单调增加( );若f(x 1)>f (x 2),则称f(x)在D 内严格单调减少( ).2。

函数的奇偶性:D(f )关于原点对称 偶函数:f(—x )=f (x) 奇函数:f (-x )=-f (x ) 3.函数的周期性:周期函数:f(x+T)=f(x ), x ∈(-∞,+∞) 周期:T-—最小的正数4。

函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数1。

常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5。

三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6。

反三角函数:y=arcsin x, y=arccon x y=arctan x , y=arccot x ㈣ 复合函数和初等函数1。

可导与连续的关系及四则运算法则

可导与连续的关系及四则运算法则

可导的定义
函数在某点的导数描述了函数 在该点的切线斜率。如果一个 函数在某点可导,那么该点的 切线斜率存在。
可导性要求函数在该点的左右 极限相等,即函数在该点具有 极限。
可导性是函数局部性质,只要 求函数在某一点可导,并不要 求在整个定义域上可导。
可导的定义
函数在某点的导数描述了函数 在该点的切线斜率。如果一个 函数在某点可导,那么该点的 切线斜率存在。
导数的计算方法
导数可以通过极限定义进行计算,即函数在某一点的导数等于该点的切线斜率。此外,还可以利用链 式法则、乘积法则、商的导数法则等计算复杂函数的导数。
导数的几何意义
导数表示函数图像上某一点的切线斜率。当导数大于零时,函数在该区间内单调递增;当导数小于零 时,函数在该区间内单调递减。
思考导数的物理意义和实际应用
02
减法法则
$(u-v)' = u'-v'$
03
乘法法则
$(uv)' = u'v + uv'$
04
除法法则
$left(frac{u}{v}right)' = frac{u'v - uv'}{v^2}$
复合函数的导数
链式法则
$(uv)' = u'v + uv'$
指数法则
$(u^n)' = nu^{n-1}u'$
对数法则
$(ln u)' = frac{u'}{u}$
复合函数的导数
链式法则
$(uv)' = u'v + uv'$
指数法则
$(u^n)' = nu^{n-1}u'$

1-5 连续性与间断点 连续函数运算

1-5 连续性与间断点 连续函数运算

不连续
不存在; 存在 ,
x→x0
这样的点
称为间断点 . 间断点
间断点分类: 间断点分类:
第一类间断点: 第一类间断点: 及 若 若 第二类间断点: 第二类间断点: 及 中至少一个不存在 , 均存在 , 称 称
x0为可去间断点
.
x0 为跳跃间断点 .
若其中有一个为 ∞, 称
x0 为无穷间断点
. .
若其中有一个为振荡 , 称
∆y = 2
∆x sin 2 ∆x cos( x + 2 )
= ∆x
即 这说明 同样可证: 同样可证: 函数 在 在
∆x →0
0
内连续 . 内连续 .
二、 函数的间断点 下列情形之一函数 f (x) 在点 (1) (2) (3) 但 在 在 在 无定义 ; 有定义,但 有定义,且
lim f (x) ≠ f (x0)
三、初等函数的连续性 基本初等函数在定义域内连续 连续函数经四则运算仍连续 连续函数的复合函数连续
一 切 初 等 函 数 在
定 义 区 间 内 连 续
例如, 例如,
y = 1− x
2
的连续区间为
(端点为单侧连续) 端点为单侧连续)
y = lnsin x 的连续区间为

y = cos x −1 的定义域为
函数的连续性与间断点 连续函数的运算与初等函数的连续性
第八节 函数的连续性与间断点
第一章
一、 函数连续性的定义 二、 函数的间断点
一、 函数连续性的定义 处及其邻域内
f ( x0 ) ,
定义:设函数 y = f (x) 在 有定义, 且 lim
x → x0 f (x) =
则称函数 f (x ) 在 x 0 处连续。 .

连续函数的运算与初等函数的连续性

连续函数的运算与初等函数的连续性

结论 反三角函数在其定义域内皆连续.
指数函数 y e x (, )内单调增加且连续, 对数函数 y ln x在(0, )内单调增加且连续 .
y
y ex
1
o1
y ln x
x
2.复合函数的连续性
定理3

lim
x x0
g(
x)
u0
,
而函数 f (u)在点u0连续,
lim
x x0
f [g( x)] lim uu0
y sin 1 在(, 0) (0, )内连续. x
y
y sin 1
x
o
x
三、初等函数的连续性
已有结果: (1) 三角函数在它们的定义域内是连续的. (2) 反三角函数在它们的定义域内是连续的. (3) 指数函数 y a x (a 0, a 1)在(, )内连续.
(4) 对数函数 y loga x (a 0, a 1)在(0, )内连续. (5)幂函数 y x在定义区间内连续.
基本初等函数在定义区间内连续.
y x e ln x
y eu , u ln x.
在(0, )内连续, 讨论不同值,
(均在其定义域内连续 )
基本初等函数在定义区间内连续 连续函数经四则运算仍连续 连续函数的复合函数连续
一切初等函数 在定义区间内 连续
例如
y 1 x2 的连续区间为[1,1].(端点为单侧连续) y lnsin x的连续区间为(2n π, (2n 1) π ) , n Z.
lim sin x 1, x0 x
x0
cos x1
解:
原式
lim
[1
(cos
x
1
1)]cos x1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因为
u (x )v(x ) ev(x )ln u (x ),
故幂指函数可化为复合函数.
易见: 若 liu m (x)a 0, liv m (x)b,则 liu ( m x ) v (x ) lie v m (x ) lu n (x )elim v(x)[ln u (x)]eblna ab.
即 lim u(x)v(x)ab
f(x)f(x0) (f(x)f(x0)) 则称 f (x0)是函数 f (x)在区间 I上的最大(小)值.
例如, y1sixn ,x[0,2],ymax 2, ymin0.
ysg x,在n( , )上, ymax1, ymi n1. 在(0,)上, yma x ym in 1.
定理6 最大值和最小值定理 在闭区间上连续的函数 一定有最大值和最小值.
x
co0s 1 .

3
例 2 求 lim (12x)sinx . x0
解 因为
3
(12x)sinx
(12x)21xs1in x6,
所以
lx i0(m 12x)s3 ixnlx i0 m (12x)2 1 x sx ixn 6
e6 .

三、初等函数的连续性
三角函数及反三角函数在它们的定义域内是连续 的;
指数函数 y ax(a0 ,a1 )在( , )内单调
且连续;
对数函数 yloagx(a0 ,a1 )在(0,)内单
调且连续;
y x aloagx y au, uloag x在(0,)
内连续.
讨论 的不同值(均在其定义域内连续).
初等函数的连续性
讨论 的不同值(均在其定义域内连续).
定理4 基本初级函数在定义域内是连续的. 定理5 一切初级函数在其定义区间内都是连续的. 定义区间是指包含在定义域内的区间. 注意 1. 初等函数仅在其定义区间内连续, 但在其 定义域内不一定连续.
连续, 则有 lx ix0m f[(x) ]f(a)f[lim (x)].
x x0
xx0
证 f (u)在点 u a 处连续, 0,0,
当|ua|时,恒有
|f(u ) f(a )|,

lim (x)a,对上述 xx0
,
0,当
0 |xx0|时, 恒有 |(x ) a | |u a |,
结合上述两步得, 0,0,当
的零点.
定理8零点定理设函数 f (x)在闭区间[a,b]上连续, 且 f (a)与 f (b)异号(即 f(a )f(b ) 0 )那,么在开区 间(a,b)内至少有函数 f (x)的一个零点, 即至少有
一点 (ab),使 f()0.
f (x) g(x)
(g(x0)0)
在点 x 0 处也连续. 例如, sinx, co x在s( , )内连续,故
tanxcsionxxs,
coxt csionxxs,
secxco1xs,
cscxsi1nx
在其定义域内连续.
二、复合函数的连续性
定理2 若 lim (x)a,函数 f (u)在点 a处
注意公式成立的条件
1
例6 求 lim (x2ex)x1.

lix( x m 0 2 e x )x 1 1 [li(x m 2 e x )x l ] i 0 x 1 m 1
x 0
x 0
21
1 2
.

四、闭区间上连续函数的性质
定义 对于在区间 I上有定义的函数 f(x),如果 有 x0I,使得对于任一 xI都有

lxim 0 ln1(xx)
1
limln1(x)x x0
lnlxim 0(1x)1x
lne 1 .

例 求 lic m ox s1 ( x ). x
解 lic m ox s 1 (x ) x
c o lx i s (m x 1 x x ) 1 (x x 1 x )
colxs i mx1 1
(x0)u0,而函数 yf(u)在点 uu0处连续,
则复合函数 f[(x)]在点 x 0 处也连续.
注意 定理4是定理3的特殊情况.
例如,
u
1 x

(,0 ) (0 ,)内 连续,
ysiu n在 ( , )内连续,
y sin1x 在(,0 ) (0 ,) 内连续.
例1
求 limln1(x). x0 x
x l ix0m f(x)f(x0)(x0 定义区间).

例 3 求 lxim2 2xex1.

因为
f(x) ex 是初等函数 2x1,来自且x02
是其定义区间内的点 , 所以 f(x)2xex1在点
x0 2处连续 , 于是
lim ex e2 x2 2x 1 221
e2 5
.

幂指函数
形如 f(x)u(x)v(x)(u(x)0)的函数称为幂指函数.
定理7 有界性定理 在闭区间上连续的函数 一定在该区间上有界.
证 设函数 f (x)在[a,b]上连续, 于是存在 m、 M ,使得 x [a,b]有, m f(x )M ,取
K mm a||,x M |{ }||f(x)|K. 故函数 f (x)在[a,b]上有界.

定义 如果 x 0 使 f(x0)0,则 x 0 称为函数 f (x)
0 |xx0|时, 恒有 |f ( u ) f ( a ) | |f [ ( x ) f ( ] a ) | ,
lim f[(x) ]f(a)f[lim (x)].
x x0
xx0
意义 1. 极限符号可以与连续函数符号互换;
2.定理2给出了变量代换(u(x)的) 理论依据.
定理3 设函数 u(x)在点 x 0 处连续, 且
例如, ycox s1,D : x 0 , 2 , 4 ,
在这些孤立点的领域内没有定义.
y x2(x1)3,D :x0及 x1.
在这些孤立点的领域内没有定义.
y x2(x1)3,D :x0及 x1. 在0点的领域内没有定义, 函数在区间[1,)上
连续. 2. 初等函数求极限的方法(代入法)
1.11 连续函数的运算与性质 1. 连续函数的四则运算 2. 反函数与复合函数的连续性 3. 初等函数的连续性
基本初等函数在各自的定义域上都连续 . 初等函数在其各自的定义域上都连续 . 这里定义 区间指包含在其定义域内的区间 . 4. 闭区间上连续函数的性质
一、连续函数的算术运算
定理1 若函数 f(x)g ,(x)在点 x 0 处连续, 则 f(x)g(x),f(x)g(x),
相关文档
最新文档