复数与导数
复函数的导数

复函数的导数
复函数的导数,又称复变函数的导数,是复变函数基本概念之一,是在实践工程和微积分数学中经常用到的解决学习和应用问题的重要
工具。
一、什么是复函数
复函数是一种在复平面中定义的函数。
它也可以分解为实函数和虚函
数的和,即z=f(x,y)=u(x,y)+iv(x,y),其中u和v分别代表实部和虚部函数。
该函数由两个独立变量x、y来决定其值,其结果通常用复数f(x,y)来表示。
二、复函数的导数
复函数的导数是对复函数求偏导的结果。
它既可以对复平面中的实函
数求偏导,也可以对虚函数求偏导。
其计算方法如下:
1、实函数求偏导:∂u/∂x=∂u/∂x +∂u/∂y*i
2、虚函数求偏导:∂v/∂x=∂v/∂x +∂v/∂y*i
使用这两个公式,可以得出复函数的导数,常简写如下形式:
∂f/∂x=∂u/∂x +∂v/∂x*i
三、复函数在实际中的应用
复函数的导数也可以应用在实际当中,比如复函数的梯度可以用来分析某一物质物理变化的方向。
此外,由于复函数可以表示较复杂的函数形态,所以它也可以用来表示三维曲面及其上一切连续物体,例如等压面和等温面;因而可以在涉及到这类物体的许多科学领域中运用复函数的导数来进行求解。
总之,复函数的导数是一种比较常见而且重要的物理概念,它在实际应用中发挥着重要作用,可以被用在涉及到多种科学和工程领域的问题求解中,也为复函数的研究开辟新的层面。
复数与复变函数

非零复数z的整数n次根式 为:
n
z
=n
iϕ +2kπ
ρe n
=n
ρ (cos ϕ + 2kπ
+ i sin ϕ + 2kπ )
n
n
(k = 0,1,2....n −1)
2. 无穷远点
复平面上一点与球面上的点 一一对应 ,复平面上∝ 点与 球面上N相对应,点的幅角无 意义。复平面+ ∝为闭平面。
(全平面扩充平面)。
ii) 复数“零”的幅角无定义,其模为零.
iii) 当ρ=1时, z = cosϕ + isinϕ = eiϕ称为单位复数.
利用复数的指数形式作乘除法比较简单,如:
z1 z2
=
ρ1 ρ 2 [cos(ϕ1
+ ϕ2 ) + i sin(ϕ1
+ ϕ2 )] =
ρ ρ ei(ϕ1 +ϕ2 ) 12
z1 z2
上却有很大的区别,这是因为实变函数Δx 只沿实轴逼近零
,而复变函数Δz却可以沿复平面上的任一曲线逼近零,因此
复变函数可导的要求比实变函数可导的要求要严格得多.
z x
例: f (z) = z = x − iy 在复平面上处处不可导
∵ z + ∆z − z = ∆z
∆z
∆z
当 Δz→0 沿实轴
∆z = ∆x, ∆z = ∆x → 1 ∆x ∆x
立。
4. 复变函数
例 : 初等单值函数
幂函数: w=zn n=1,2, - - - - -
多项式: a0+a1z1+a2z2+- - - - +anzn n 为整数
高中数学知识点总结导数的应用

高中数学知识点总结导数的应用高中数学知识点总结_导数的应用导数的应用、复数1.用导数研究微分的单调性。
yf(x)在区间(a,b)内可导,若f"(x);0,则yf(x)在(a,b)上递增;若f"(x)[巩固2设f(x)是函数f(x)的导函数,将yf(x)和yf(x)三维空间的图象画在同一个直角坐标系中,不可能正确的是()(07浙江理8)OA.xOB.xOC.xOD.xyyyy[巩固3]函数f(x)、g(x)在R上可导,且f(x);g(x),若a;b,则()A.f(a);g(b)B.g(a)解析:f"(x)3x22axb0,∴f/(1)=2ab30①2f(1)1abaa4a3或10②由①②得:b3b11a3当时,f"(x)3x26x33(x1)20,此时函数f(x)无极值,舍去;b3当a4b11时f/(x)3x28x11,函数f(x)在x1处左减右增,有极小值;此时∴f(2)18。
注:在解决“已知函数的最大值点求参变量”的问题时,为避免“增根”,需将求出的参变量的值代入f/(x)检验其是否为完全平方式,若是则函数无极值(单调),否则有极值;也可以对f/(x)再次求导,看f为负则有极大值。
[巩固1]已知f(x)ax3bx2cx在区间[0,1]上是增函数,在区间(,0),(1,)上是减函数,又f()2132.(Ⅰ)求f(x)的解析式;(Ⅱ)若在区间[0,m](m>0)上恒有f(x)≤x成立,//为0则无极值,为正则有极小值,(x0)的值,求m的取值范围.[举例2]设函数f(x)ax2blnx,其中ab0.证明:当ab0时,函数f(x)没有极值点;当ab0时,函数f(x)有且只有一个极值点,并求出极值.(07高考山东文21)3.求yf(x)在闭区间内所的最值的步骤:(1)求导数f"(x)(2)求导数方程f"(x)=0的根(3)检查f"(x)在根的左右值的符号,列表求得极值;也可通过可解不等式f"(x)≥0及再以确定函数的极值;最后将极值与f"(x)≤0确定函数yf(x)在给定区间内的单调情况,区间端点的函数值比较以确定最值。
复数与复变函数的基本运算与性质

复数与复变函数的基本运算与性质复数是数学中的一种重要概念,可以用来描述平面上的点或向量。
复变函数则是一种将复数作为自变量和函数值的函数。
复数与复变函数都有其特定的基本运算与性质,本文将详细介绍。
一、复数的基本运算与性质1. 复数的表示复数可表示为 a + bi 的形式,其中 a 和 b 是实数,i 是虚数单位。
实部 a 表示复数在实轴上的投影,虚部 b 表示复数在虚轴上的投影。
2. 复数的加法和减法复数的加法和减法遵循实数的运算法则,即分别对实部和虚部进行相应的运算。
3. 复数的乘法复数的乘法按照分配律进行,即将每个部分相乘后再进行合并。
4. 复数的除法复数的除法可以通过乘以倒数的方式进行,即将除数的倒数乘以被除数。
5. 共轭复数共轭复数是指保持实部不变而虚部取负的两个复数。
共轭复数的乘积为实数,而共轭复数的和差仍为复数。
6. 模和辐角复数的模表示它与原点的距离,辐角表示其与实轴正向的夹角。
二、复变函数的基本运算与性质1. 复变函数的定义复变函数将复数作为自变量和函数值,可以表示为 f(z) = u(x, y) +iv(x, y),其中 u 和 v 分别是 x 和 y 的实函数,i 是虚数单位。
2. 复变函数的连续性复变函数 f(z) 连续的充要条件是 u 和 v 在 z 的实部和虚部上都连续。
3. 复变函数的导数对于复变函数 f(z),如果其在某一点 z 处存在导数,那么导数表示为 f'(z) = u_x(x, y) + iv_x(x, y),其中 u_x 和 v_x 分别是 u 和 v 对 x 的偏导数。
4. 柯西—黎曼方程柯西—黎曼方程是复变函数的一个重要性质,即 u_x = v_y 和 u_y = -v_x。
柯西—黎曼方程保证了复变函数可导的充分必要条件。
5. 复变函数的积分复变函数的积分可以用路径积分的方法进行,路径积分表示了函数在不同路径下的变化。
路径积分不依赖于具体的路径选择,而只取决于路径的起点和终点。
x的复数次幂的求导

x的复数次幂的求导
要求导x的复数次幂,首先需要使用复数指数函数的导数公式来
处理。
对于f(x)=x^c,其中c为复数,可以将复数表示为a+bi的形式,其中a和b为实数部分和虚数部分。
根据指数函数的导数规则,导数
为f'(x)=c*x^(c-1)。
对于复数指数,我们可以将其表示为
f(x)=e^(c*ln(x)),然后对其求导。
最后根据链式法则,对内部函数
进行求导。
例如,若要求导f(x)=x^(2+3i),可以表示为
f(x)=e^((2+3i)ln(x))。
然后对此进行求导,得到
f'(x)=(2+3i)*x^(2+3i-1)。
最后可以使用Euler公式将其恢复为正常
的复数幂函数形式。
需要注意的是,求导复数幂函数时,需要辅助使用对数函数和Euler公式,以便化简并处理虚数部分的导数。
数学导数复数知识点总结

数学导数复数知识点总结在本文中,我们将对导数的复数知识点进行详细总结,包括复数的定义、复数函数的导数、复数函数的全微分与全导数,以及一些相关的应用和例题。
一、导数的复数定义1.1 复数的定义在正式介绍导数的复数知识点之前,我们有必要先来回顾一下复数的概念。
复数是由一个实数部分与一个虚数部分组成的数,通常表示为 a+bi,其中a和b都是实数,而i是虚数单位,满足i²=-1。
因此,复数可以看作是实数与虚数的结合,是一个具有一定规律和性质的数。
而复数函数就是以复数为自变量和因变量的函数,例如f(z)=z²+1,其中z是复数。
1.2 复数的运算对于复数的运算,我们可以通过实部和虚部的运算,实现加减乘除等操作。
例如,对于复数z1=a1+b1i和z2=a2+b2i,它们的和、差、积、商分别为z1+z2=(a1+a2)+(b1+b2)i,z1-z2=(a1-a2)+(b1-b2)i,z1*z2=(a1a2-b1b2)+(a1b2+a2b1)i,z1/z2=(a1a2+b1b2)/(a2²+b2²)+((a2b1-a1b2)/(a2²+b2²))i。
通过这些运算,我们可以得到两个复数的和、差、积、商,这为后续导数的复数知识点打下了基础。
1.3 导数的复数定义在实数情况下,我们知道导数的定义是函数在某一点的极限。
而对于复数函数,我们同样可以根据实数的导数定义来给出复数函数导数的定义。
设f(z)是z的一个函数,如果存在复数w,使得对于任意给定的ε>0,存在另一个正数δ,当|z-z0|<δ时,|f(z)-w|<ε成立,则称f(z)在z=z0处有极限w,记作limz→z0f(z)=w。
如果函数f(z)在z0处有极限w,且对于z0的任何邻域内的点z≠z0,都有limz→z0(f(z)-f(z0))/(z-z0)=w,则称f(z)在z0处可导,并称w是f(z)在z0处的导数。
高考数学常用二级结论:排列组合概率统计、复数、导数(收藏)

高考数学常用二级结论:排列组合概率统计、复数、导数(收藏)一、排列组合二项式定理概率与统计42.二项式系数恒等式:n n n r n n n n C C C C C 2210=++++++13502412n n n n n n n n n C C C C C C C C -++++=++++=奇偶43.组合数性质m n m n n C C -=,11m m m n n n C C C -++=,1121++++=++++r n r n r r r r r r C C C C C ,11k k n n kC nC --=.44.线性回归方程y a bx =+必过定点(,)x y ,其中11n i i x x n ==∑,11ni i y y n ==∑. 45.方差与标准差(1)一组数据123,,,,n x x x x ⋯,他们的方差为123111()nn i i x x x x x x n n ==+++⋯+=∑ 222222123n 111[(x )(x ) (x )(x )]()n i i S x x x x x x n n ==+++⋯+=∑-----,标准差为σ= (2)两组数据123,,,,n x x x x ⋯与123,,,,n y y y y ⋯,其中i y ax b =+,1,2,3,,i n =⋯.则y ax b =+,它们的方差为222y x S a S =,标准差为||y x a σσ=46.具有线性关系的随机变量的数学期望与方差有以下关系式:(1)()()E a b aE b ξξ+=+;(2)2()()V a b a V ξξ+=.47.二项分布:(,)X B n p 的数学期望与方差公式:(1)()E X np =;(2)()(1)V X np p ==-.二、复数48.复数模的等式与不等式: (1)()22221212122z z z z z z ++-=+; (2)121212z z z z z z -≤±≤+49.复数的几何意义及应用:复平面上: (1)0z z r -=(0)r >表示圆心为0z 半径为r 的圆; (2)0z z r -≤(0)r >表示圆心为0z 半径为r 的圆面; (3)222z z z z a ++-=12(20)a z z >->,表示以12,z z 为焦点的椭圆.三、导数50.()()111()n n x n x n Q -'⎡⎤+=+∈⎣⎦,x x e e =')(,xx 1)(ln =',x x cos )(sin =',x x sin )(cos -=' 51.ln 1x x ≤-(0)x >,1x e x ≥+()x R ∈.52.定积分 (1)1(ln )(ln )(ln )ln ln b b a a dx x c b c a c b a x =+=+-+=-⎰(0)b a >>(2)ab a ==⎰(0)b a >> (3)11111()11|b p p p p a b a x dx x b a p p +++==-++⎰(0,)p b a >> (4)(ln 1)ln ln ln b x x b a a b dx x b a a+==-⎰(0)b a >> (5)sin cos cos cos b a b xdx x c a b a=-+=-⎰()b a >。
复变函数的可导与解析

y0
iy
v i u y y
u i v x x v i u
y y
u x
v y
v
u
x y
柯西-黎曼(Cauchy-Riemann)方程
如 例2 中,f (z) z x iy, u( x, y) x, v( x, y) y
u 1, u 0, v 0, v 1 u v , v u
f (z)在复平面上处处可导,处处 解析,且 f (z) ux ivx e x (cos y i sin y) f (z)
(2) f (z) x y ixy
解 u( x, y) x y, v( x, y) xy,而
ux 1, uy 1, v x y, v y x ux , uy , v x , v y 在复平面上处处连续,但仅在 x 1, y 1时满足C R条件
lim
x0
u( x,0) x
u(0,0)
0
v y (0,0)
u(0, y) u(0,0)
uy
(0,0)
lim
y0
y
0 v x (0,0)
满足C R条件.
但当z沿 y kx(x 0)趋于零时,有
lim
f z f 0 lim
k(x)2
k
z(1ki )x0
z
x0 (1 ki )x 1 ki
z0 z ( x ,y )(0,0) x iy
而 lim x iy lim iy 1 x0 x iy y0 iy
y 0
lim x iy lim x 1 y0 x iy x0 x
x 0
lim f z z f z lim x iy
z 0
z
(x,y)(0,0) x iy
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数专题练习
一、 选择题
1、若是纯虚数,则实数的值是( ) A 1 B C D 以上都不对
2、则是的( )条件
A 充分不必要
B 必要不充分
C 充要
D 既不充分又不必要
3、若,则是( )
A 纯虚数
B 实数
C 虚数
D 无法确定
4、的值域中,元素的个数是( )
A 2
B 3
C 4
D 无数个
5、,则实数的值为( ) A B C D
6、若,则方程的解是( )
A B C D 7、,则的最大值为( )
A 3
B 7
C 9
D 5
8、已知则的值为( ) A B 1 C D 3
9、已知,则的值为( ) A B 1 C D
10、已知方程m 表示等轴双曲线,则实数m 的值为( )
A B C
22
(1)(32)x x x i -+++x 1-1±22
1(1)(4),.z m m m m i m R =++++-∈23 2.z i =-1m =12z z =12,z z C ∈1212z z z z ⋅+⋅(),()n n f n i i n N -+=+∈3()m i R +∈m ±x C ∈||13x i x =+-12+124,1x x ==-43i -+12|34|2z i ++≤||z z =501001z z ++i 2i +11x x +=199619961x x
+1-i -i |2||2|z z a --+=±
11、复数集内方程的解的个数是( )
A 2
B 4
C 6
D 8
12、复数的模是( ) A B C D 二、 填空题
13、的平方根是 、 。
14、在复平面内,若复数Z 满足,则Z 所对应的点的集合构成的图形是 。
15、设,则集合A={}中元素的个数是 。
16、已知复数,则复数 = 。
三、解答题 17 在复平面上,设点A 、B 、C ,对应的复数分别为。
过A 、B 、C 做平行四边形ABCD ,求此平行四边形的对角线BD 的长。
2
5||60z z ++=1cos sin ,(2)z i ααπαπ=++<<2cos 2α
2cos 2α-2sin 2α2tan 2
α-34i +|1|||z z i +=
-12ω=-+|()k k x x k Z ωω-=+∈122,13z i z i =-=-215
z i z +,1,42i i +
18、(10分)设为共轭复数,且 ,求的值。
19、(12分)已知复数Z 满足且为实数,求Z 。
,a b 2()3412a b abi i +-=-,a b |4||4|,z z i -=-141
z z z -+
-
20、(12分)已知为复数,为纯虚数,,且。
求复数。
21、求同时满足下列两个条件的所有复数;
(1),且;(2)Z 的实部与虚部都是整数。
,z ω(13)i z +⋅2z i ω=
+||ω=ωz 10z R z +∈1016z z
<+≤
22、Z=x +yi (x ,y ∈R ),且 ,求z .
23、对于的的方程是,若方程有实数根,求锐角和实数根。
222
log 8(1log )x y i x y i ++-=-x 0)2()(tan 2=+-+-i x i x θθ
导数及应用专题
一、选择题
1.函数y =x 3-2ax +a 在(0,1)内有极小值,则实数a 的取值范围是( )
A .(0,3) B.⎝ ⎛⎭
⎪⎫0,32 C .(0,+∞) D .(-∞,3)
2.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的
最小值是 ( )
A .-37
B .-29
C .-5
D .以上都不对
3.如果函数y=f(x)的图象如图所示,那么导函数y=f ′(x)的图象可能是( )
4.若f (x )=-12
x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是 ( )
A .[-1,+∞)
B .(-1,+∞)
C .(-∞,-1]
D .(-∞,-1)
5.若函数f (x )=x 3-6bx +3b 在(0,1)内有极小值,则实数b 的取值范围是( )
A .(0,1)
B .(-∞,1)
C .(0,+∞) D.⎝ ⎛⎭
⎪⎫0,12
6.函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则 ( )
A .a =-11,b =4
B .a =-4,b =11
C .a =11,b =-4
D .a =4,b =-11
二、填空题
7.函数f (x )=x 3-15x 2-33x +6的单调减区间为__________________
8.已知函数f (x )=-x 3+ax 在区间(-1,1)上是增函数,则实数a 的取值范围是___________.
9.函数f(x)=x3+3ax2+3[(a+2)x+1]有极大值又有极小值,则a的取值范围是__________.
三、解答题
10.已知向量a=(x2,x+1),b=(1-x,t).若函数f(x)=a·b在区间(-1,1)上是增函数,求t的取值范围.
11.已知a是实数,函数f(x)=x2(x-a),
(1)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求f(x)在区间[0,2]上的最大值.
12.已知函数f (x )=x 3+2bx 2+cx -2的图象在与x 轴交点处的切线
方程是y =5x -10.
(1)求函数f (x )的解析式;
(2)设函数g (x )=f (x )+13
mx ,若g (x )的极值存在,求实数m 的取值范围以及函数g (x )取得极值时对应的自变量x 的值.。