三角函数的诱导公式(第二课时)教学设计
1.3.2三角函数的诱导公式第二课时

高一数学必修四导学案课题:1.3.2 第二课时 三角函数的诱导公式五、六班级:_______姓名:_____________小组:_______教师评价:__________【教学目标】1.理解诱导公式五、六的推导过程.2.掌握六组诱导公式并能灵活运用【重点难点】公式五、六记准并能灵活运用公式【导学过程】问题一:给定一个角α,角π2-α的终边与角α的终边有什么关系?它们的三角函数值之间有什么关系?问题二:怎样求π2+α的正弦、余弦值呢?【课前自主梳理】1.诱导公式(1)公式五:sin ⎝ ⎛⎭⎪⎫π2-α= ,cos ⎝ ⎛⎭⎪⎫π2-α= (2)公式六:sin ⎝ ⎛⎭⎪⎫π2+α= ,cos ⎝ ⎛⎭⎪⎫π2+α=. 2.公式五和公式六的文字概括π2±α的-----------函数值,分别等于α的---------函数值,前面加上一个把α看成--------时原函数值的符号.【互动探究】1.给值求值例 1 (1)已知cos ⎝ ⎛⎭⎪⎫π2+α=35,且α∈⎝ ⎛⎭⎪⎫π2,32π,则tan(π-α)=( )A.43B.34 C .-34 D .±34【合作探究】(2)已知sin ⎝ ⎛⎭⎪⎫π6-α=45,求cos ⎝ ⎛⎭⎪⎫56π+α·sin ⎝ ⎛⎭⎪⎫π3+α 的值.(3)已知cos ⎝ ⎛⎭⎪⎫π12-θ=13,则sin ⎝ ⎛⎭⎪⎫5π12+θ的值是( ) A.13 B.223 C .-13D .-223【互动探究】2.利用诱导公式化简、求值例 2 化简下列各式.(1)sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°;(2)sin ⎝ ⎛⎭⎪⎫52π+α·cos ⎝ ⎛⎭⎪⎫72π-αsin ⎝ ⎛⎭⎪⎫α-32π·sin 3π+α.【合作探究】(2018高考改编)设f (α)=2sin π+αcos π-α-cos π+α1+sin 2α+cos ⎝ ⎛⎭⎪⎫32π+α-sin 2⎝ ⎛⎭⎪⎫π2+α⎝⎛⎭⎪⎫sin α≠-12,求f ⎝ ⎛⎭⎪⎫-236π.【重点附加】【合作探究】已知角α终边上一点P (-4,3),求cos ⎝ ⎛⎭⎪⎫π2+αsin -π-αcos ⎝ ⎛⎭⎪⎫11π2-αsin ⎝ ⎛⎭⎪⎫9π2+α的值. 【互动探究】3、三角函数的证明例 3 求证:tan 2π-αsin -2π-αcos 6π-αsin ⎝ ⎛⎭⎪⎫α+3π2cos ⎝ ⎛⎭⎪⎫α+3π2=-tan α.【重点附加】已知f (cos x )=cos17x ,证明:f (sin x )=sin17x .。
高中一年级上学期数学《诱导公式——第二课时》教学设计+课时作业

(2)若tanβ= ,求 的值.
C组拓展强化
13.已知sin(π-α)=-2 ,则sinαcosα等于()
A. B.- C. 或- D.-
14.【多选】定义:角θ与φ都是任意角,若满足θ+φ=90°,则称θ与φ“广义互余”.已知sin(π+α)=- ,下列角β中,可能与角α“广义互余”的是()
B组能力提高
9.已知sinα= ,则 的值为________.
10.已知 = ,则 =________, =________.
11.已知f(α)= .
(1)化简f(α);
(2)若角A是△ABC的内角,且f(A)= ,求tanA-sinA的值.
12.已知角α的终边经过点P(m,2 ),sinα= 且α为第二象限角.
【教师提问6】:当 为任意角时公式五和公式六还成立吗?为什么?
同前面的分析方法知,当 为任意角时以上六组公式还成立。
(注:教师可选择一种情况比如 为第二象限角时作简要分析,配合动画演示,其余情况留给学生课下验证)
设计意图:让学生领悟诱导公式对后续学习与研究的巨大意义,点明本节课的课题并说明公式名称的由来,加强学生对学习诱导公式必要性的认识;公式记忆是学习诱导公式的必经环节,让学生弄清口诀“函数名不变,符号看象限”的具体含义,简要分析并得到结论:当 为任意角时以上四组公式还成立且将 看作锐角时跟 为任意角时的符号规律一致。
(3) = =cos(-α)=cosα.()
2.若 <0,且 >0,则θ是()
A.第一象限角B.第二象限角C.第三角限角D.第四象限角
3.已知sin 25.3°=a,则cos 64.7°等于()
A.aB.-aC.a2D.
4.已知sin(π+α)= ,则 的值为()
(完整word版)《三角函数的诱导公式》教学设计完美版

《三角函数的诱导公式》教学设计一.教材分析(1)教材的地位与作用:《三角函数的诱导公式》选自《普通高中课程标准数学教科书·数学必修4》(人教A版)第一章第3节第一课时,是三角函数这一章中的一个重要内容,它涉及三角函数的求值、化简、证明等应用,而且公式推导过程中所渗透的类比、化归、分类讨论、整体代换等思想方法,都是学生今后学习和工作中必备的数学素养。
(2)从知识的体系来看:《三角函数的诱导公式》是《任意角和弧度制》与《任意角的三角函数》内容的延续,不仅能加深对三角函数的理解,也为以后学三角函数的图像与性质做好铺垫。
二.学情分析(1)学生的已有的知识结构:掌握了任意角和弧度制,任意角的三角函数的定义,同角三角函数的基本关系。
(2)教学对象:高一理科试验班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。
(3)从学生的认知角度来看:学生很容易把本节内容与任意角的三角函数的定义及诱导公式一等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的种类繁多,要求归纳总结的知识多,这对学生的思维是一个突破。
三.教学目标根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标:理解并掌握三角函数的诱导公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题.(2)过程与方法目标:通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.(3)情感,态度与价值观:培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。
四.重点、难点分析教学重点:公式的推导、公式的特点和公式的运用。
1.3.2 三角函数的诱导公式(二)教案

湖 南 省 娄 底 市 双 峰 县 第 五 中 学 集 体 备 课 教 案高 一 年 级 数 学 组- 1 -教学环节设计 知识点解析、师生互动 教学后记课题:1.3.2 三角函数的诱导公式(二) 教学目标:1.进一步理解和掌握六组正弦、余弦和正切的诱导公式,并能正确地运用这些公式进行任意角的正弦、余弦和正切值的求解、简单三角函数式的化简与三角恒等式的证明;2.通过公式的应用,培养学生的化归思想,运算推理能力、分析问题和解决问题的能力.教学重点:诱导公式及诱导公式的综合运用.教学难点:公式的推导和对称变换思想在学生学习过程中的渗透. 教学过程:(导入→自学→展示→探讨→展示→讲解点拨→评价小结→练习总结) 一、导入新课 角2π-α与角α终边之间有怎样的对称关系,能否从任意角三角函数的定义出发利用这一对称关系探求角2π-α与角α的三角函数值之间的关系呢? 二、自主学习 自学任务:课本P26—P27,独立完成导学案。
三、展示评价 (学生展示导学案答案、教师评价解析) 四、小组探讨 (分组讨论、解答探究案) 五、展示评价 (分组展示探究案答案、教师评价解析) 六、课堂小结 七、检测反馈 (学生独立完成练习案、教师巡查点拨) 一、导学案答案解析二、探究案答案解析例1 13. 例2 略例3 5716. 三、检测案答案解析1.A 2.A 3.C 4.C 5.-13 6.892 7.2 8.解 原式=-cos θcos θ(-cos θ-1)+cos θ-cos θ·cos θ+cos θ =1cos θ+1+11-cos θ=21-cos 2θ=2sin 2θ. ∵sin θ=33,∴原式=6. 9.解 由条件,得⎩⎨⎧ sin α=2sin β,3cos α=2cos β.①② ①2+②2,得sin 2α+3cos 2α=2,③ 又因为sin 2α+cos 2α=1,④由③④得sin 2α=12,即sin α=±22, 因为α∈⎝⎛⎭⎫-π2,π2,所以α=π4或α=-π4. 当α=π4时,代入②得cos β=32,又β∈(0,π),所以β=π6,代入①可知符合. 当α=-π4时,代入②得cos β=32,又β∈(0,π),所以β=π6,代入①可知不符合. 综上所述,存在α=π4,β=π6满足条件.。
高中数学1.3三角函数的诱导公式(第2课时)优秀教案

1.3三角函数的诱导公式〔第2课时〕导学案【课前要点梳理】1.诱导公式〔奇变偶不变,符号看象限〕2.同角三角函数的根本关系式(1)平方关系:sin 2α+cos 2α= 〔α为任意角〕. (2)商数关系: =sin αcos α ⎝ ⎛⎭⎪⎫α≠k π+π2,k ∈Z .【课堂互动探究】题型一 整体代换,利用角之间的关系求值典例1 〔1〕计算54cos53cos 52cos5cosππππ+++= . (2)假设534sin =+)(πθ,则)4(cos πθ-= . (3)316cos =-)(απ,求)(απαπ-⋅+32sin )65(cos 的值.小结:对于一些给值(式)求值问题,要注意角与未知角的关系,即发现它们之间是否满足互余或互补,假设满足,则可以进行整体代换,用诱导公式求解. (1)常见的互余关系:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等. (2)常见的互补关系:π3+α与23π-α;π4+α与34π-α等. 【针对训练1】1.213sin =-)(απ,则)6(cos απ+= .2.3175cos =+)(。
α,则)(。
αα-+105cos )15-sin(的值是〔 〕 A.31 B.32 C. 31- D.32-【思考诊断】典例1〔2〕中,534sin =+)(πθ,求得)4(cos πθ-=.假设534sin =+)(πθ,且α为第四象限角,则)4(tan πθ-= .题型二 诱导公式与同角三角函数关系的综合应用 典例2 〔1〕假设21sin =+)(απ,)0,2(πα-∈,则)(απ-tan = . 变式:假设21sin =+)(απ,则)(απ-tan = .〔2〕+。
1sin 2+。
2sin 2+。
3sin 2。
89sin 2+ = .小结:解决与诱导公式有关的三角函数式的化简或者求值问题,关键是正确地应用诱导公式把不同角问题转化为同角问题来处理,再利用同角三角函数关系进行化简或者求值.〔统一角,统一函数名〕【针对训练2】1.+。
《三角函数的诱导公式二、三、四》教学设计

《三角函数的诱导公式二、三、四》教学设计第一课时一、内容和内容解析 1.内容“诱导公式”包括5组公式,即诱导公式二至六,本单元的知知识结构如下图所示:本单元分为两课时完成,本节课为第一课时,主要探究诱导公式二、三、四,并围绕圆的对称性提出要研究的相关问题,形成研究的思路.2.内容解析我们知道,任意角的三角函数的定义是借助于单位圆得出的,之后又借助于圆的几何性质得出了三角函数的部分性质,即同角三角函数的基本关系.圆有丰富的性质,对称性是圆的重要性质,如果用三角函数表示单位圆上点的坐标,就可将这些对称性表示为三角函数之间的关系,从而得到三角函数的诱导公式.角的基本构成元素就是顶点、始边、终边,在三角函数这一章的研究中,为了方便,使角的顶点与原点重合,始边与x 轴的非负半轴重合,因此变化的只有角的终边.首先从形的角度,研究圆的对称性,假设任意角α的终边与单位圆的交点为1P ,点1P 关于圆心或特殊直线的对称点为Q ,根据单位圆上这两个点的对称性,可以写出以OQ 为终边的角与角α的关系.接下来从数的角度,利用三角函数的定义,建立对称点坐标之间的关系,得到三角函数之间的关系即诱导公式.由此可见诱导公式的本质就是圆的对称性的代数表示.对于πα+,π2α+还可以从旋转对称的角度认知它们,与从轴对称认知的本质一致,而这样认知与诱导公式一,及后续的两角差的余弦公式的研究就一致了.因此这种变式为后续利用旋转对称性探究两角差的余弦作了铺垫.可见,本单元是培养学生发现和提出问题、分析和解決问题,发展学生直观想象核心素养的很好的载体.在数学史上,求三角函数值曾经是一个重要而困难的问题.数学家制作了锐角三角函数值表,并通过公式,将任意角转化为锐角进行计算.现在,我们可以利用计算工具方便地求任意角的三角函数值,所以利用这些公式的“求值”已不是重点,但是研究这些公式时使用的数学思想方法,在解決三角函数的各种问题中却依然有重要作用.在本单元中,利用诱导公式解決问题,重要的是观察计算对象的特征,选择合适的诱导公式,确定恰当的求解路线,并实施计算求解问题.因此本单元是培养学生数学运算核心素养的很好的载体.因此本单元的教学重点是:利用圆的对称性探究诱导公式,运用诱导公式进行简单三角函数式的求值、化简与恒等式的证明.此外,为了使学生尽快熟悉并形成使用弧度制的习惯,在诱导公式中全部采用了弧度制.二、目标和目标解析1.目标(1)经历诱导公式的探究过程,积累应用类比、转化、数形结合等方法研究三角函数性质的经验,提升直观想象核心素养.(2)初步应用诱导公式解決问题,积累解题经验,提升数学运算核心素养.2.目标解析达成上述目标的标志是:(1)在平面直角坐标系中,给出任意角α的终边与单位圆的交点P,结合单位圆的特殊对称性——关于原点对称和特殊直线对称,学生能分别画出相应的对称点Q,并利用圆的对称性给出坐标间的关系,利用三角函数的定义,用角表示两个点的坐标,并能求出以OQ为终边的角与角α的坐标之间的关系,从而建立三角函数之间的关系,即诱导公式.(2)学生能利用诱导公式进行化简、计算和证明.特别是在遇到比较复杂的问题时,能根据运算对象的特点,选择合适的公式,确定恰当的求解方案,并能正确求解.在解题的基础上,能概括出利用诱导公式求解的一般程序.三、教学问题诊断分析本单元就单个知识点而言,比较好理解.但是公式比较多,当学生应用和记忆时会出现困难或者混淆.因此本节课的教学难点之一是:诱导公式的有效识记和应用.为破解这一难点,本节课的教学过程中要充分发挥单位圆的直观作用,提高学生的直观想象核心素养,理解诱导公式的本质:圆的对称性的代数化,三角函数的性质.学生能主动地依托单位圆,想象着它的对称性,就可以准确的记忆诱导公式.对于公式的应用,要提高学生分析问题的能力,即要形成一定的求解程序,提升学生的数学运算素养.学生在理解诱导公式时,总是有思维定势,以为α是锐角,于是导致解题时,通过角所在象限判断诱导公式的符号出错.所以本单元的第二个难点是:诱导公式中角α可以是任意角的理解.为破解这一难点,在推导诱导公式时要充分地应用变式.比如在推导公式二时,点1P 的位置一般选在第一象限,获得公式后,可以变化点1P 的位置,让学生观察:点1P 的位置变化时,点2P 与点1P 的坐标之间的关系.并抽象概括出这两点的坐标之间的关系与点1P 的位置无关.因此公式中的角α可以是任意角.在此基础上,配以具体题目,让学生感受这种概括的正确性.四、教学支持条件分析本单位可利用作图软件,画图呈现如上所述的对称性,并动态演示当点1P 的位置变化时对称点的坐标与它的坐标之间的关系不变.五、教学过程设计 (一)创设情境,引出问题导入语:前面我们学习了三角函数,是借助于单位圆给出的,并根据定义得出了公式一,刻画“周而复始”这种変化规律及其几何意义.之后借助于单位圆的几何特征,获得了同一个角的三个三角函数之间的关系.我们知道,对称性是圆的重要性质,而对称性(如奇偶性)也是函数的重要性质.由此想到,我们可以利用圆的对称性,研究三角函数的性质.问题1:如图5.3-1,在直角坐标系内,设任意角α的终边与单位圆交于点1P ,作1P 关于原点的对称点2P .(1)以2OP 为终边的角β与角α有什么关系? (2)角β,α的三角函数值之间有什么关系?师生活动:先由学生独立完成问题1,然后展示,师生帮助一起完善和梳理思路. 如图5.3-2,以2OP 为终边的角β都是与角πα+终边相同的角,即2ππβα=++()k ∈Z ()k .因此,只要探究角πα+与α的三角函数值之间的关系即可.设111P x y (,),222P x y (,).因为2P 是点1P 关于原点的对称点,所以2121x x y y =-=-,. 根据三角函数的定义,得1111sin cos =tan y y x x ααα==,,; 2222sin πcos πtan πy y x x ααα+=+=+=(),(),().设计意图:初步感受如何将圆的一个特殊的对称性:在坐标系中关于原点对称,代数化,并得到诱导公式二.并以此问题作为研究方法的示范,为进一步提出、分析、解決问题做好奠基工作.追问1:如果点1P 在第二象限,那么点2P 的坐标与点1P 的坐标之间有什么关系?如果点1P 在y 轴负半轴上呢?在其他位置呢?据此,公式二中的角α的终边可以在什么位置?师生活动:学生思考后给出解答:不论点1P 在哪里,点2P 的坐标与点1P 的坐标之间的关系都不変,即公式二对任意角α都成立.追问2:探究公式二的过程,可以概括为哪些步骤?每一步蕴含的数学思想是什么? 师生活动:学生思考后给出回答,教师进行归纳:第一步,根据圆的对称性,建立角之间的联系,从形的角度入手研究.第二步,建立坐标之间的关系.将形的关系代数化,并从不同的角度进行表示,体现了数形结合的思想方法.第三步,根据等量代换,得到三角函数之间的关系,即公式二,体现了联系性. 追问3:角πα+还可以看作是角α的终边经过怎样的变换得到的? 师生活动:学生思考后给出回答:按逆时针方向旋转角π得到的.设计意图:追问1旨在帮助学生理解角α的任意性,追问2旨在提炼方法,追问3则渗透圆的旋转对称性,为后面几个公式的探索在方法上做好铺垫.(二)类比探索,整体认知问题2:借助于平面直角坐标系,类比问题1你能说出单位圆上点1P 的哪些特殊对称点?并按照如上问题1总结得到的求解步骤,尝试求出相应的关系式.师生活动:首先由学生独立思考,尽量多地写出点1P 的对称点,然后展示交流,之后再将之代数化,最后得到相应的诱导公式.学生的回答可能会超越教科书中的研究内容,如果是学生自己想到的,可以顺其自然保留,但是不作进一步的要求.如果学生没有想到,教师不需要增加.学生首先想到的应该是点1P 关于坐标轴的对称点;之后关于特殊直线的对称点,比如y x =;教师启发之后会想到经过两次对称得到的对称点.学生可能的答案有单位圆上点1P 的特殊对称点:第一类,点1P 关于x 轴、y 轴的对称点;第二类,点1P 关于特殊直线的对称点,如y x =,y x =-;第三类,点1P 关于x 轴的对称点,再关于特殊直线的对称点,或者点x 轴关于特殊直线的对称点,再关于坐标轴的对称点等等.接下来,针对如上结论,从第一类到第三类依次解決,本课时可以先解決第一类.如图5.3-3,作1P 关于x 轴的对称点3P ,以3OP 为终边的角β都是与角α-终边相同的角,即2πk βα=+-()∈Z ()k .因此,只要探究角α-与α的三角函数值之间的关系即可.设333P x y (,),因为3P 是点1P 关于x 轴的对称点,所以3131x x y y ==-,.根据三角函数的定义,得1111sin cos =tan y y x x ααα==,,; 3333sin cos tan y y x x ααα-=-=-=(),(),().如图5.3-4,作1P 关于y 轴的对称点4P ,以4OP 为终边的角β都是与角πα-终边相同的角,即2ππk βα=+-()∈Z ()k .因此,只要探究角πα-与α的三角函数值之间的关系即可. 设444P x y (,),因为4P 是点1P 关于y 轴的对称点,所以4141x x y y =-=,.根据三角函数的定义,得1111sin cos =tan y y x x ααα==,,; sin sin αα-=-(), cos cos αα-=(),4444sin πcos πtan πy y x x ααα-=-=-=(),(),().追问4:公式三和公式四中的角α的终边可以在什么位置? 预设答案:角α是任意角.设计意图:类比问题1,进一步探索发现.这是个开放式的问题设计,给了学生自主的时空,鼓励他们多角度观察思考,提出问题,并类比问题1进行分析,解決问题.强化将单位圆的对称性代数化这种研究思路.(三)初步应用,建立程序 例1 利用公式求下列三角函数值: (1)cos225°; (2)8πsin 3; (3)8πsin 3-(); (4)tan 2040ο-(). 追问5:题目中的角与哪个特殊角接近?拆分之后应该选择哪个诱导公式?师生活动:学生独立完成之后展示交流,注重展示其思考过程,教师帮助规范求解过程. 设计意图:引导学生有序地思考问题,有理地解決问题.问题3:由例1,你对公式一~四的作用有什么进一步的认识?你能自己归纳一下把任意角的三角函数转化为锐角三角函数的步骤吗?师生活动:学生独立思考总结,之后展示交流.利用公式一~公式四,可以把任意角的三角函数转化为锐角三角函数,一般可按如下图步骤进行:设计意图:引导学生梳理求解过程,提炼解题经验,明确从负角转化为锐角的程序,提高自觉地、理性地选择运算公式的能力,提升数学运算素养.例2 化简:cos 180sin 360tan 180cos 180ααααοοοο++()()(--)(-+).sin πsin αα-=(), cos πcos αα-=-(),追问6:本题与例1的异同是什么?由例1总结出的求解程序在此如何应用?师生活动:学生独立完成,之后展示交流,注重展示其思考过程,教师帮助规范求解过程.设计意图:巩固习题的知识和方法,提高学生分析能力和转化能力.(四)梳理小结,深化理解问题4:诱导公式与三角函数和圆之间有怎样的关系?你学到了哪些基本知识,获得了怎样的研究问题的经验?师生活动:学生自主总结,展示交流.(1)诱导公式是圆的对称性的代数化,是三角函数的性质.(2)学到了三组诱导公式,研究方法是数形结合,注重联系.设计意图:帮助学生梳理基本知识,总结研究方法,为进一步的硏究铺路奠基.(五)布置作业,深入研究(1)类比第一类问题的解決,即诱导公式二、三和四的探索发现过程,完成第二类和第三类问题.写出你的研究小报告,报告中先写出问题,再写出答案,并在下节课展示交流.(2)完成教科书P191练习,注重应用总结出来的程序.六、目标检测设计计算下列三角函数值:(1)cos420ο-();(2)7πsin6-();(3)tan1140ο-();(4)77πcos6-();(5)tan315ο;(6)11πsin4-().设计意图:检测学生对基本知识和基本运算及基本技能的掌握情况.。
高中数学 第一章 三角函数 1.3 三角函数的诱导公式(第2课时)教学课件 新人教A版必修4

【多维探究】 (1)本例条件不变,如何求 cos56π-α的值?
(2)本例条件若变为“已知 sin23π+α=12”,其他不变,则 结果又如何?
(3)本例条件若不变,如何求 cos23π+α的值? (4)本例条件若不变,如何求 tanπ3-α的值?
解:(1)cos56π-α=cosπ2+π3-α=-sinπ3-α=-12. (2)cosπ6+α=cos23π+α-π2=cosπ2-23π+α =sin23π+α=12.
提示:因为
tanπ2+α
=
csoinsπ2π2++αα=-cossinαα=-cs1oins
α α
=
-
1 tan
α,所以
tanπ2+α=-tan1
α,即它们互为负倒数.
1.对诱导公式五、六的理解 (1)公式五、六中的角 α 是任意角. (2)公式五、六可以概括如下:π2±α 的正弦(余弦)函数值, 分别等于 α 的余弦(正弦)函数值,前面加上一个把 α 看成锐角 时原函数值的符号,可以简单地说成“函数名改变,符号看象 限”.
高中数学 第一章 三角函数 三角 的诱导公式(第 课时)教学课件
教 版必修
同学们,下课休息十分钟。现在是休息时间,你们休
睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对
哦~
1.sin 95°+cos 175°的值为( )
A.sin 5°
B.cos 5°
C.0
D.2sin 5°
解析:sin 95°+cos 175°=sin(90°+5°)+cos(180°
证明:∵左边=-2sin321π--2θsin-2 θsin θ-1
=-2sinπ+1-π2-2sθin2-θ sin θ-1=2sinπ2-1-θ2s-ins2inθ θ-1
《三角函数的诱导公式》新课程高中数学必修4省优质课比赛说课教案

三角函数的诱导公式教材:在北师大版普通高中课程标准实验教科书必修4中,单位圆与正弦、余弦函数的内容约4课时,下面笔者从教学背景分析、教学设计分析、目标分析、过程分析、板书设计等方面谈谈“三角函数的诱导公式”这节课的教学设计.一、教学背景分析(一)教材的地位和作用本节教学内容是4组三角函数诱导公式的推导过程及其简单应用.承上,有任意角三角函数正弦、余弦和正切的比值定义、三角函数线、同角三角函数关系等;启下,学生将学习利用诱导公式进行任意角三角函数的求值化简以及三角函数的图象与性质(包括三角函数的周期性)等内容.同时,学生在初中就接触过对称等知识,对几何图形的对称等知识相当熟悉,这些构成了学生的知识基础.诱导公式的作用主要在于把任意角的三角函数化归成锐角的三角函数,体现了把一般化特殊、复杂化简单、未知化已知的数学思想.(二)目标定位诱导公式可以帮助我们把任意角的三角函数化为锐角三角函数,但是随着计算器的普及,上述意义不是很大.我们认为,诱导公式的教学价值主要体现在以下几个方面:第一,感受探索发现,通过几何对称这个研究工具,去探索发现任意角三角函数间的数量关系式,即三角函数的基本性质乃是圆的几何性质(主要是其对称性质)的代数解析表示.第二,学会初步应用,能够选用恰当的诱导公式将任意角的三角函数转化为锐角三角函数问题并求解.第三,领悟思想方法,在诱导公式的学习过程中领悟化归、数形结合等思想方法.第四,积累数学经验,为学生认识任意角的三角函数既是一个起源于圆周运动的周期函数又是研究现实世界中周期变化现象的“最有表现力的函数”做好准备.二、教学设计分析在进行本课教学设计时,有以下两条典型教学路线可供选择:(1)两个角的终边有哪些特殊的对称关系?(2)怎样把非第一象限的角转化为第一象限的角?笔者最终选择了第一条路线,主要基于以下两点考虑.(一)尊重教材的编写方式从对教材的分析来看,北师大版教材将三角函数作为一种数学模型来定位,力图在单位圆中借助对称性来考察对应点的坐标关系,从而统整各组诱导公式.教材的编写处理体现了教材专家的集体智慧和版本教材的一贯特色,教师应该努力体会和把握,不宜轻率抛开教材另搞一套.(二)切合学生的认知水平利用学生熟悉的圆及其对称性研究三角函数的相关性质,符合学生的认知心理.同时,单位圆及其对称性的表象对学生推导诱导公式、理解公式之间的内在联系、形象记忆三角函数诱导公式都将起到事半功倍的效果.三、教学环境分析根据教学内容和学生实际情况,确定选择使用多媒体教室.四、教学目标分析(一)知识与技能1.能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式.2.能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题.(二)过程与方法1.经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力.2.通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力.(三)情感、态度、价值观1.通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度.2.在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神.五、教学重点与难点教学重点:探求π-α的诱导公式.π+α与-α的诱导公式在小结π-α的诱导公式发现过程的基础上,教师引导学生推出.教学难点:π+α,-α与角α终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”.六、教学方法与教学手段问题教学法、合作学习法,结合多媒体课件.七、教学过程角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值怎么求呢?先看一个具体的问题.(一)问题提出如何将任意角三角函数求值问题转化为0°~360°角三角函数求值问题.【问题1】求390°角的正弦、余弦值.一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,三角函数看重的就是终边位置关系.即有sin(α+k·360°) = sinα,cos(α+k·360°) = cosα, (k∈Z)tan(α+k·360°) = tanα.这组公式用弧度制可以表示成sin(α+2kπ) = sinα,cos(α+2kπ) = cosα, (k∈Z) (公式一)tan(α+2kπ) = tanα.【设计意图】前面的学习中,已经将角的概念从锐角扩充到了任意角,学习了任意角三角函数的定义,接下来自然地会提出任意角的三角函数值怎么去求.于是,先安排求特殊值再过渡到一般情形比较符合学生的身心特点和认知规律,意在培养学生从特殊到一般归纳问题和抽象问题的能力,引导学生在求三角函数值时抓坐标、抓角终边之间的关系.同时,首先考虑α+2kπ(k∈Z)与α的三角函数值之间的关系,有助于学生理解三角函数被看成刻画现实世界中周期性变化的数学模型的确切含义.(二)尝试推导如何利用对称推导出角π-α与角α的三角函数之间的关系.由上一组公式,我们知道,终边相同的角的同一三角函数值一定相等.反过来呢?如果两个角的三角函数值相等,它们的终边一定相同吗?比如说:【问题2】你能找出和30°角正弦值相等,但终边不同的角吗?角π-α与角α的终边关于y轴对称,有sin(π-α) = sinα,cos(π-α) = -cosα,(公式二)tan(π-α) = -tanα.【设计意图】对问题2的提问方式的设计主要是考虑到我们在研究问题的时候常常会研究它的逆命题、否命题、等价命题等.事实上问题2可以看成是“若两个角的终边相同,则它们的正弦值相同”的逆命题,即“若两个角的正弦值相同,则两个角的终边相同”.但这里是以问题的形式提出的,实际上教会了学生一种自己研究问题的方法.〖思考〗请大家回顾一下,刚才我们是如何获得这组公式(公式二)的?因为与角α终边关于y 轴对称是角π-α,利用这种对称关系,得到它们的终边与单位圆的交点的纵坐标相等,横坐标互为相反数.于是,我们就得到了角π-α与角α的三角函数值之间的关系:正弦值相等,余弦值互为相反数,进而,就得到我们研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系.【设计意图】阶段小结,让学生将对称作为研究三角函数问题的一种方法使用.将上述研究过程进行梳理,得出“角间关系→对称关系→坐标关系→三角函数值间关系”的研究路线图.(三)自主探究 如何利用对称推导出π+ α,- α与α的三角函数值之间的关系.刚才我们利用单位圆,得到了终边关于y 轴对称的角π-α与角α的三角函数值之间的关系,下面我们还可以研究什么呢?【问题3】两个角的终边关于x 轴对称,你有什么结论?两个角的终边关于原点对称呢?角-α与角α的终边关于x 轴对称,有:sin (-α) = -sin α,cos (-α) = cos α,(公式三)tan (-α) = -tan α.角π +α与角α终边关于原点O 对称,有:sin (π +α) = -sin α,cos (π +α) = -cos α,(公式四)tan (π +α) = tan α.上面的公式一到四都称为三角函数的诱导公式.【设计意图】从两个角的终边关于y 轴对称的情况进行自然过渡,给学生留下了自主探究的空间,让他们再次经历公式的研究过程,从而得出公式三和四,并将问题2研究方法一般化.(四)简单应用例:求下列各三角函数值: (1) ; (2) 2cos 3π;(3) . 7sin()6-π31cos 6-π【设计意图】初步熟悉诱导公式的使用,让学生感悟在解决问题的过程中,如何合理地使用这几组公式.此外,引导学生注意同一个三角函数的求值问题可以采用不同的诱导公式,启发学生这些公式的内在关系和联系,体会数学方法的多样性.(五)回顾反思【问题4】回顾一下,我们是怎样获得诱导公式的?研究的过程中,你有哪些体会?知识上,学会了四组诱导公式;思想方法层面:诱导公式体现了由未知转化为已知的化归思想;诱导公式所揭示的是终边具有某种对称关系的两个角三角函数之间的关系.主要体现了化归和数形结合的数学思想.具体可以表示如下:【设计意图】开放式小结,使得不同的学生有不同的学习体验和收获.这些问题的提出,侧重于诱导公式推导方法的回顾和反思,侧重于个体情感体验的分享和表达,从而区别于侧重公式规律的总结和记忆.(六)分层作业1.阅读课本,体会三角函数诱导公式推导过程中的思想方法;2.必做题:课本20页A组1, 6,21页B组 1;3.选做题:(1)你能由公式二、三、四中的任意两组公式推导到另外一组公式吗?(2)角α和角β的终边还有哪些特殊的位置关系,你能探究出它们的三角函数值之间的关系吗?【设计意图】分层作业有利于不同层次的学生巩固知识,提升思维能力.阅读课本旨在引导学生教科书是学习的根本,阅读课本有利于培养学生良好的回归课本的学习习惯.而出现选做题目,目的是提供多元化和挑战性选择,促使学有余力的学生课后思考和自主探究几组公式之间的内在联系.(七)板书设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数的诱导公式(第二课时)
一、教学目标
1.知识与技能
(1)能够借助三角函数的定义及单位圆中的对称性推导三角函数的诱导公式五、六。
(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题
2.过程与方法
(1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。
(2)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力。
3.情感、态度、价值观
(1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。
(2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。
教学重点:
在已探究公式一~四诱导公式的基础上,归纳总结出研究方法后,再次引导学生探究诱导公式五、六。
教学难点: 发现角-2πα与 角终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式五,从而推出公式六。
二、任务分析:
前学生已经探究过一~四诱导公式,已经总结出了“探究路线”,在学生已有的学习经验上,这节课主要是让学生借助单位圆中的对称性,发现角-2πα与角α终边位置的几何关系,从而发现由终边位置关系导致(与单位圆交点)的坐标关系,然后运用任意角三角函数的定义推导出诱导公式五,然后教师引导学生用已学过的公式推出公式六。
在掌握公式五、六后,让学生学会利用诱导公式把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值 问题。
三、教学方法
合作探究、数形结合、化归思想。
四、教具:多媒体、教科书
α
五、教学过程
1.回顾旧知
(1)大家还记得一~四诱导公式吗?
(2)利用一~四诱导公式把任意角的三角函数转化为锐角三角函数的一般思路是什么?
(3)下面大家利用已学过的诱导公式求以下式子的值。
42sin()sin 2cos 333πππ-++
2、情景设计
(1)大家还记得推导诱导公式二~四的研究方法吗?
(2)大家回忆一下三角函数的定义?
3、学生活动
(1)下面大家试着在坐标系里作出角 与角
(2)大家观察一下 -2πα 与α的终边关于哪条直线对称?
由图像可知,角 与 的终边关于直线 对称,如果 的终边 与单位圆交于点 ,则 的终边与单位圆的交点 的坐标是什么?
(4)由上得出 ,
下面请大家以前后两桌同学为一组,根据三角函数的定义,
合作讨论一下
的正弦值以及余弦值是什么?与 的正弦值以及余弦值有什么关
系? -2παα
-2πααy x =α-2πα-2π
α
α
(,)P y x '
=αsin
=αcos =-)2
(cos απ (学生讨论后集体回答)
(5)总结归纳
诱导公式五 ααπsin )2cos(=- , ααπcos )2
(sin =- 思考:大家能不能利用已学过的诱导公式把公式六推导出来?教师引导同学思考。
不难得出 ααπ
αππαπcos )2sin()]2([sin )2(sin =-=--=+ 同理: ααπ
παπsin )]2(cos[)2cos(-=--=+
所以得到公式六 ααπcos )2
(sin =+,cos()sin 2παα+=-
由观察法得公式五和公式六的记法 : 2π
α±的正弦(余弦)函数值,分别等于α的余弦值(正弦)函数值,前面加上一个把α看成是锐角时原函数值的符号。
简记:函数名互余,符号看象限
六、例题讲解
例3 证明:
3;
23(2)cos()sin 2π
ααπ
αα-=-(1)sin(-)=-cos
例4 化简
11
sin(2)cos()cos()cos()
22.
9cos()sin(3)sin()sin()2ππαπααπαππαπαπαα-++-----+
(先让学生思考五分钟,然后教师和学生一起完成)
cos 90αsin 270α
·sin(180253π+(以上练习主要考查学生对公式的灵活运用,(2) 把 看成锐角,原函数值的符号
2.三角函数的简化过程口诀:负化正,正化小,化到锐角就行了
九、作业
书本P27 7, P29 B 组 1
α。