2013届高考数学一轮复习课时检测 第八章 第六节 双曲线 理
高考数学一轮复习 第八章 平面解析几何 第六节 双曲线学案 文-人教版高三全册数学学案

第六节双曲线1.了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.2.了解圆锥曲线的简单应用、了解双曲线的实际背景、了解双曲线在刻画现实世界或解决实际问题中的作用.3.理解数形结合的思想.知识点一双曲线的定义平面内动点P与两个定点F1,F2(|F1F2|=2c>0)的距离____________为常数2a(2a<2c),则点P的轨迹叫做双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.答案之差的绝对值1.判断正误(1)平面内到点F1(0,4),F2(0,-4)距离之差等于6的点的轨迹是双曲线.( )(2)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( )答案:(1)×(2)×2.设P是双曲线x216-y220=1上一点,F1,F2分别是双曲线左、右两个焦点,若|PF1|=9,则|PF2|等于( )A.1 B.17C.1或17 D.以上答案均不对解析:由题意知|PF1|=9<a+c=10,所以P点在双曲线的左支,则有|PF2|-|PF1|=2a =8,故|PF2|=|PF1|+8=17.答案:B知识点二双曲线的标准方程与几何性质1.双曲线的标准方程和几何性质标准方程x 2a 2-y 2b 2=1 (a >0,b >0)y 2a 2-x 2b 2=1 (a >0,b >0)图形性 质范围 x ≥a 或x ≤-a ,y ∈Rx ∈R ,y ≤-a ,y ≥a对称性对称轴:坐标轴对称中心:原点 对称轴:坐标轴 对称中心:原点 顶点顶点坐标:A 1(-a,0),A 2(a,0)顶点坐标:A 1______,A 2______渐近线y =±b ax__________离心率e =ca,e ∈______,其中c =a 2+b 2 实虚轴线段A 1A 2叫做双曲线的实轴,它的长|A 1A 2|=____;线段B 1B 2叫做双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长a 、b 、c的关系 c 2=______(c >a >0,c >b >0)______和______等长的双曲线叫做等轴双曲线,其渐近线方程为______,离心率为______.答案1.(0,-a ) (0,a ) y =±a bx (1,+∞) 2a a 2+b 22.实轴 虚轴 y =±x e = 23.双曲线方程:x 2|k |-2+y 25-k =1,那么k 的范围是( )A .k >5B .2<k <5C .-2<k <2D .-2<k <2或k >5解析:由题意知,(|k |-2)(5-k )<0,解得-2<k <2或k >5. 答案:D4.(2016·新课标全国卷Ⅱ)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左、右焦点,点M 在E上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2 B .32 C. 3D .2解析:设F 1(-c,0),将x =-c 代入双曲线方程,得c 2a 2-y 2b 2=1,所以y 2b 2=c 2a 2-1=b 2a 2,所以y =±b 2a .因为sin ∠MF 2F 1=13,所以tan ∠MF 2F 1=|MF 1||F 1F 2|=b 2a 2c =b 22ac =c 2-a 22ac =c 2a -a 2c =e 2-12e=24,所以e 2-22e -1=0,所以e = 2.故选A. 答案:A5.(选修1-1P53练习第3题改编)以椭圆x 24+y 23=1的焦点为顶点,顶点为焦点的双曲线方程为__________.解析:设要求的双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),由椭圆x 24+y 23=1,得焦点为(±1,0),顶点为(±2,0).所以双曲线的顶点为(±1,0),焦点为(±2,0).所以a =1,c =2,所以b 2=c 2-a 2=3,所以双曲线标准方程为x 2-y 23=1.答案:x 2-y 23=1热点一 双曲线的定义及应用【例1】 已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 在双曲线右支上运动,则|PF |+|PA |的最小值为______.【解析】 如图所示,设双曲线的右焦点为E ,则E (4,0).由双曲线的定义及标准方程得|PF |-|PE |=4,则|PF |+|PA |=4+|PE |+|PA |.由图可得,当A ,P ,E 三点共线时,(|PE |+|PA |)min =|AE |=5,从而|PF |+|PA |的最小值为9.【答案】 9 【总结反思】双曲线定义的应用主要有两个方面:一是判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出曲线方程;二是在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|,|PF 2|的联系.(1)已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos∠F 1PF 2=( )A.14B.35C.34D.45(2)设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A.x 242-y 232=1B.x 2132-y 252=1 C.x 232-y 242=1 D.x 2132-y 2122=1解析:(1)由x 2-y 2=2,知a =b =2,c =2.由双曲线定义,|PF 1|-|PF 2|=2a =22,又|PF 1|=2|PF 2|,∴|PF 1|=42,|PF 2|=22,在△PF 1F 2中, |F 1F 2|=2c =4,由余弦定理,得cos ∠F 1PF 2 =|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=34.(2)由题意知椭圆C 1的焦点坐标为F 1(-5,0),F 2(5,0),设曲线C 2上的一点P , 则||PF 1|-|PF 2||=8<10=|F 1F 2|.由双曲线的定义知曲线C 2为双曲线且a =4,b =3. 故曲线C 2的标准方程为x 242-y 232=1.答案:(1)C (2)A热点二 双曲线的标准方程【例2】 (2016·天津卷)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( )A.x 24-y 2=1 B .x 2-y 24=1C.3x 220-3y25=1 D .3x 25-3y220=1【解析】 由题意得c =5,b a =12,则a =2,b =1,所以双曲线的方程为x 24-y 2=1.【答案】 A 【总结反思】求双曲线的标准方程的方法(1)定义法:由题目条件判断出动点轨迹是双曲线由双曲线定义,确定2a,2b 或2c ,从而求出a 2,b 2,写出双曲线方程.(2)待定系数法:先确定焦点在x 轴还是y 轴,设出标准方程,再由条件确定a 2,b 2的值,即“先定型,再定量”,如果焦点位置不好确定,可将双曲线方程设为x 2m 2-y 2n2=λ(λ≠0),再根据条件求λ的值.(1)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点与圆x 2+y 2-10x =0的圆心重合,且双曲线的离心率等于5,则该双曲线的标准方程为( )A.x 25-y 220=1 B.x 225-y 220=1 C.x 220-y 25=1 D.x 220-y 225=1 (2)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为__________.解析:(1)由题意知圆心坐标为(5,0),即c =5,又e =c a=5,所以a 2=5,b 2=20,所以双曲线的标准方程为x 25-y 220=1.(2)法1:∵双曲线的渐近线方程为y =±12x ,∴可设双曲线的方程为x 2-4y 2=λ(λ≠0).∵双曲线过点(4,3),∴λ=16-4×(3)2=4,∴双曲线的标准方程为x 24-y 2=1.法2:∵渐近线y =12x 过点(4,2),而3<2,∴点(4,3)在渐近线y =12x 的下方,在y=-12x 的上方(如图).∴双曲线的焦点在x 轴上,故可设双曲线方程为x 2a 2-y2b2=1(a >0,b >0).由已知条件可得⎩⎪⎨⎪⎧b a =12,16a 2-3b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,∴双曲线的标准方程为x 24-y 2=1.答案:(1)A (2)x 24-y 2=1热点三 双曲线的几何性质 考向1 求双曲线的离心率【例3】 (2016·山东卷)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0).若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.【解析】如图,由题意不妨设|AB |=3,则|BC |=2.设AB ,CD 的中点分别为M ,N ,则在Rt △BMN 中,|MN |=2c =2,故|BN |=|BM |2+|MN |2=322+22=52.由双曲线的定义可得2a =|BN |-|BM |=52-32=1,而2c =|MN |=2.所以双曲线的离心率e =2c2a=2.【答案】 2考向2 求双曲线的渐近线【例4】 已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( )A.2x ±y =0 B .x ±2y =0 C .x ±2y =0D .2x ±y =0【解析】 由题意,不妨设|PF 1|>|PF 2|,则根据双曲线的定义得,|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,解得|PF 1|=4a ,|PF 2|=2a .在△PF 1F 2中,|F 1F 2|=2c ,而c >a ,所以有|PF 2|<|F 1F 2|,所以∠PF 1F 2=30°,所以(2a )2=(2c )2+(4a )2-2·2c ·4a cos30°,得c =3a ,所以b =c 2-a 2=2a .所以双曲线的渐近线方程为y =±bax =±2x ,即2x ±y =0.【答案】 A考向3 求变量的取值范围【例5】 已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点.若MF 1→·MF 2→<0,则y 0的取值范围是( )A.⎝ ⎛⎭⎪⎫-33,33 B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223D.⎝ ⎛⎭⎪⎫-233,233【解析】 由题意知a =2,b =1,c =3,∴F 1(-3,0),F 2(3,0),∴MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0).∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0,即x 20-3+y 2<0.∵点M (x 0,y 0)在双曲线上,∴x 202-y 20=1,即x 20=2+2y 20,∴2+2y 20-3+y 20<0,∴-33<y 0<33. 【答案】 A【总结反思】(1)双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±b a满足关系式e 2=1+k 2.(2)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量a ,b ,c 的方程或不等式,利用b 2=c 2-a 2和e =c a转化为关于e 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.(1)(2017·安徽合肥质检)若双曲线C 1:x 22-y 28=1与C 2:x 2a 2-y 2b2=1(a >0,b >0)的渐近线相同,且双曲线C 2的焦距为45,则b =( )A .2B .4C .6D .8(2)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x(3)(2017·江西名校学术联盟一调)设A 1,A 2分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右顶点,若双曲线上存在点M 使得两直线斜率k MA 1·kMA 2<2,则双曲线C 的离心率的取值范围为( )A .(0,3)B .(1,3)C .(3,+∞)D .(0,3)解析:(1)由题意,得b a=2⇒b =2a ,C 2的焦距2c =45⇒c =a 2+b 2=25⇒b =4,故选B.(2)由题意得,e =c a =52⇒c =52a ⇒54a 2=a 2+b 2⇒b =12a ,故渐近线方程为y =±b a x =±12x ,故选C.(3)设M (x ,y ),A 1(-a,0),A 2(a,0),则kMA 1=yx +a,kMA 2=yx -a,∴kMA 1·kMA 2=y 2x 2-a 2(*).又M (x ,y )在双曲线x 2a 2-y 2b 2=1上,∴y 2=b 2⎝ ⎛⎭⎪⎫x 2a 2-1,代入(*)式得,b 2x 2-a 2b 2a 2x 2-a 2=b 2a 2<2,即c 2-a 2a2=e 2-1<2⇒1<e < 3.答案:(1)B (2)C (3)B双曲线类型问题与椭圆类型问题类似,因而研究方法也有许多类似之处,如“利用定义”,“方程观点”,“直接法或待定系数法求曲线方程”,“数形结合”等.但双曲线多了渐近线,问题变得略为复杂和丰富多彩.复习中要注意如下两个问题:(1)已知双曲线方程,求出它的渐近线方程;(2)求已知渐近线的双曲线方程;已知渐近线方程为ax ±by =0时,可设双曲线方程为a 2x2-b 2y 2=λ(λ≠0),再利用其他条件确定λ的值,此方法的实质是待定系数法.忽视“判别式”致误【例】 已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?【分析】 由于“判别式”是判断直线与圆锥曲线是否有公共点的重要方法,所以在解决直线与圆锥曲线相交的问题时,有时不需要考虑“判别式”.致使有的考生思维定势的原因,任何情况下都没有考虑“判别式”,导致解题错误.【解】 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k ,由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y 22=1,得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0(2-k 2≠0).①∴x 0=x 1+x 22=k 1-k2-k2. 由题意,得k 1-k2-k2=1,解得k =2. 当k =2时,方程①成为2x 2-4x +3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点. 解题策略:(1)本题是以双曲线为背景,探究是否存在符合条件的直线,题目难度不大,思路也很清晰,但结论却不一定正确.错误原因是忽视对直线与双曲线是否相交的判断,从而导致错误,因为所求的直线是基于假设存在的情况下所得的.(2)本题属探索性问题.若存在,可用点差法求出AB的斜率,进而求方程;也可以设斜率k,利用待定系数法求方程.(3)求得的方程是否符合要求,一定要注意检验.。
高三数学(文)一轮复习讲解与练习8.6双曲线(含答案解析)

第六节双曲线[备考方向要明了][归纳·知识整合]1.双曲线的定义满足以下三个条件的点的轨迹是双曲线(1)在平面内;(2)动点到两定点的距离的差的绝对值为一定值;(3)这一定值一定要小于两定点的距离.[探究] 1.与两定点F1,F2的距离之差的绝对值等于常数2a的动点的轨迹一定为双曲线吗?提示:只有当2a<|F1F2|且2a≠0时,轨迹才是双曲线;若2a=|F1F2|,则轨迹是以F1,F2为端点的两条射线;若2a>|F1F2|,则轨迹不存在.2.双曲线的标准方程和几何性质[探究] 2.双曲线的离心率的大小与双曲线“开口”大小有怎样的关系?提示:离心率越大,双曲线的“开口”越大.3.等轴双曲线实轴与虚轴等长的双曲线叫做等轴双曲线,其标准方程为x2-y2=λ(λ≠0),离心率e=2,渐近线方程为y=±x.[自测·牛刀小试]1.双曲线2x2-y2=8的实轴长是()A.2B.2 2C.4 D.4 2解析:选C由题意知,a=2,故长轴长为2a=4.2.双曲线方程:x2|k|-2+y25-k=1,那么k的范围是()A.k>5 B.2<k<5C.-2<k<2 D.-2<k<2或k>5解析:选D由题意知,(|k|-2)(5-k)<0,解得-2<k<2或k>5.3.若双曲线x2a2-y2b2=1(a>0,b>0)的离心率为2,则一条渐近线的方程为()A.y=3x+1 B.y=3x C.y=-3x+1 D.y=3x解析:选D 由题意知双曲线的渐近线方程为y =±ba x =±c 2-a 2a2x =±e 2-1x ,故渐近线方程为y =±3x .4.设P 是双曲线x 2a 2-y 29=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1,F 2分别是双曲线的左,右焦点,若|PF 1|=3,则|PF 2|=( )A .1或5B .6C .7D .9解析:选C 由渐近线方程3x -2y =0,知b a =32.又b 2=9,所以a =2,从而|PF 2|=7.5.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为________. 解析:由已知可得c =4,a =2,所以b 2=12,故双曲线的方程为x 24-y 212=1.答案:x 24-y 212=1[例1] (1)(2012·大纲全国卷)已知F 1,F 2为双曲线C :x 2-y 2=2的左,右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A.14 B.35 C.34D.45(2)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1 B.x 29-y 227=1 C.x 2108-y 236=1 D.x 227-y 29=1 [自主解答] (1)∵由双曲线的定义有|PF 1|-|PF 2|=|PF 2|=2a =22,∴|PF 1|=2|PF 2|=42,cos ∠F 1PF 2=(42)2+(22)2-422×(42)×(22)=34.(2)∵抛物线y 2=24x 的准线方程为x =-6,则在双曲线中有a 2+b 2=(-6)2=36.① 又∵双曲线x 2a 2-y 2b 2=1的一条渐近线为方程y =3x ,∴ba= 3.② 联立①②解得⎩⎪⎨⎪⎧a 2=9,b 2=27.所以双曲线的方程为x 29-y 227=1.[答案] (1)C (2)B ——————————————————— 双曲线定义运用中的两个注意点(1)在解决与双曲线的焦点有关的距离问题时,通常考虑利用双曲线的定义;(2)在运用双曲线的定义解题时,应特别注意定义中的条件“差的绝对值”,弄清楚指整条双曲线还是双曲线的一支.1.已知△ABP 的顶点A ,B 分别为双曲线x 216-y 29=1的左,右焦点,顶点P 在双曲线上,则|sin A -sin B |sin P的值等于( )A.45B.74C.54D.7解析:选A 在△ABP 中,由正弦定理知|sin A -sin B |sin P =|PB -P A |AB =2a 2c =810=45.2.设F 1,F 2是双曲线x 23-y 2=1的两个焦点,P 在双曲线上,当△F 1PF 2的面积为2时,PF 1·PF 2的值为( )A .2B .3C .4D .6解析:选B 设点P (x 0,y 0),依题意得,|F 1F 2|=23+1=4,S △PF 1F 2=12|F 1F 2|×|y 0|=2|y 0|=2,∴|y 0|=1.又∵P 在曲线上,∴x 203-y 20=1,即x 20=3(y 20+1)=6.∴PF 1·PF 2=(-2-x 0,-y 0)·(2-x 0,-y 0)=x 20+y 20-4=3.[例2] (1)(2012·福建高考)已知双曲线x 2a 2-y 25=1的右焦点为(3,0),则该双曲线的离心率等于( )A.31414B.324C.32D.43(2)(2012·新课标全国卷)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4D .8[自主解答] (1)因为双曲线的右焦点坐标为(3,0),所以c =3,b 2=5,则a 2=c 2-b 2=9-5=4,所以a =2.所以e =c a =32.(2)由题意可设双曲线的方程为x 2a 2-y 2a 2=1(a >0).易知抛物线y 2=16x 的准线方程为x =-4,联立⎩⎪⎨⎪⎧x 2a 2-y 2a 2=1,x =-4,得16-y 2=a 2.(*)因为|AB |=43,所以y =±2 3.代入(*)式,得16-(±23)2=a 2,解得a =2(a >0).所以双曲线C 的实轴长为2a =4. 答案:(1)C (2)C ——————————————————— 研究双曲线几何性质时的两个注意点(1)实半轴、虚半轴所构成的直角三角形是值得关注的一个重点;(2)由于e =ca 是一个比值,故只需根据条件得到关于a ,b ,c 的一个关系式,利用b 2=c 2-a 2消去b ,然后变形即可求e ,并注意e >1.3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则该双曲线的渐近线斜率为( )A .±2B .±43C .±12D .±34解析:选C b 2a 2=c 2-a 2a 2=e 2-1=14,由此可得双曲线的渐近线的斜率为k =±b a =±12.[例3] 已知双曲线的中心在原点,离心率为2,一个焦点F (-2,0). (1)求双曲线方程;(2)设Q 是双曲线上一点,且过点F ,Q 的直线l 与y 轴交于点M ,若|MQ |=2|QF |,求直线l 的方程.[自主解答] (1)由题意可设所求的双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则有e =ca =2,c=2,所以a =1,则b = 3.所以所求的双曲线方程为x 2-y 23=1.(2)因为直线l 与y 轴相交于M 且过焦点F (-2,0),所以l 的斜率一定存在,设为k ,则l :y =k (x +2),令x =0,得M (0,2k ),因为|MQ |=2|QF |且M ,Q ,F 共线于l , 所以MQ =2QF 或MQ =-2QF . 当MQ =2QF 时,x Q =-43,y Q =23k ,所以Q 的坐标为⎝⎛⎭⎫-43,23k . 因为Q 在双曲线x 2-y 23=1上,所以169-4k 227=1,解得k =±212.所以直线l 的方程为y =±212(x +2).当MQ =-2QF 时,同理求得Q (-4,-2k )代入双曲线方程得, 16-4k 23=1,解得k =±352.所以直线l 的方程为y =±352(x +2).综上:所求的直线l 的方程为y =±212(x +2)或y =±352(x +2). ——————————————————— 求解双曲线综合问题的主要方法双曲线的综合问题主要为直线与双曲线的位置关系.解决这类问题的常用方法是设出直线方程或双曲线方程,然后把直线方程和双曲线方程组成方程组,消元后转化成关于x (或y )的一元二次方程,利用根与系数的关系及整体代入的思想解题.设直线与双曲线交于A (x 1,y 1),B (x 2,y 2)两点,直线的斜率为k ,则|AB |=1+k 2|x 1-x 2|.4.如图,P 是以F 1、F 2为焦点的双曲线C :x 2a 2-y 2b2=1上的一点,已知PF 1·PF 2=0,且|PF 1|=2|PF 2|. (1)求双曲线的离心率e ; (2)过点P 作直线分别与双曲线的两渐近线相交于P 1,P 2两点,若OP 1·OP 2=-274,2PP 1+PP 2=0.求双曲线C 的方程.解:(1)由PF 1·PF 2=0,得PF 1⊥PF 2,即△F 1PF 2为直角三角形.设|PF 2|=r ,|PF 1|=2r ,所以(2r )2+r 2=4c 2,2r -r =2a ,即5×(2a )2=4c 2.所以e = 5. (2)b a=e 2-1=2,可设P 1(x 1,2x 1),P 2(x 2,-2x 2),P (x ,y ),则OP 1·OP 2=x 1x 2-4x 1x 2=-274, 所以x 1x 2=94.①由2PP 1+PP 2=0得,⎩⎪⎨⎪⎧x 2-x =-2(x 1-x ),-2x 2-y =-2(2x 1-y ),即x =2x 1+x 23,y =2(2x 1-x 2)3.又因为点P 在双曲线x 2a 2-y 2b 2=1上,所以(2x 1+x 2)29a 2-4(2x 1-x 2)29b 2=1.又b 2=4a 2,代入上式整理得x 1x 2=98a 2.②由①②得a 2=2,b 2=8. 故所求双曲线方程为x 22-y 28=1.1个规律——等轴双曲线的离心率及渐近线的关系双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直(位置关系).2种方法——求双曲线标准方程的两种方法(1)定义法,根据题目的条件,若满足定义,求出相应a ,b ,c 即可求得方程. (2)待定系数法①②待定系数法求双曲线方程的常用方法⎩⎪⎨⎪⎧与双曲线x 2a 2-y 2b 2=1共渐近线的可设为x 2a 2-y 2b2=λ(λ≠0);若渐近线方程为y =±b a x ,则可设为x 2a 2-y 2b2=λ(λ≠0);若过两个已知点则设为x 2m +y 2n=1(mn <0).3个关注点——双曲线几何性质的关注点 双曲线的几何性质从以下三点关注:(1)“六点”:两焦点、两顶点、两虚轴端点; (2)“四线”:两对称轴(实、虚轴),两渐近线;(3)“两形”:中心、顶点、虚轴端点构成的三角形,双曲线上的一点(不包括顶点)与两焦点构成的三角形.3个防范——双曲线问题的三个易混点(1)区分双曲线中的a ,b ,c 大小关系与椭圆a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.(2)双曲线的离心率大于1,而椭圆的离心率e ∈(0,1).(3)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程是y =±abx .易误警示——双曲线几何性质的解题误区[典例] (2012·湖南高考)已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 [解析] 由已知可得双曲线的焦距2c =10,a 2+b 2=52=25,排除C ,D ,又由渐近线方程为y =b a x =12x ,得12=ba,解得a 2=20,b 2=5.[答案] A [易误辨析]1.因对双曲线的几何性质不清,误以为c =10,错选C ;2.因对双曲线渐近线理解不清而出现渐近线求解错误,错解成12=ab ,从而错选B.3.解决与双曲线性质有关的问题时,还易出现对a ,b ,c 之间的关系式c 2=a 2+b 2与椭圆中a ,b ,c 之间的关系式a 2=c 2+b 2的混淆,从而出现解题错误等.[变式训练]已知点(2,3)在双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)上,C 的焦距为4,则它的离心率为________.解析:法一:点(2,3)在双曲线C :x 2a 2-y 2b2=1上,则4a 2-9b 2=1,又由于2c =4,所以a 2+b 2=4.解方程组⎩⎪⎨⎪⎧4a 2-9b 2=1,a 2+b 2=4, 得a =1或a =4.由于a <c ,故a =1.所以离心率为e =ca=2.法二:∵双曲线的焦距为4,∴双曲线的两焦点分别为F 1(-2,0),F 2(2,0),点(2,3)到两焦点的距离之差的绝对值为2,即2a =2,∴a =1,离心率e =ca=2.答案:2一、选择题(本大题共6小题,每小题5分,共30分)1.若k ∈R 则“k >5”是“方程x 2k -5-y 2k +2=1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 当k >5时,方程表示双曲线;反之,方程表示双曲线时,有k >5或k <-2.故选A.2.与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线方程是( )A.x 24-y 2=1 B.x 22-y 2=1 C.x 23-y 23=1 D .x 2-y 22=1解析:选B 椭圆的焦点坐标为(±3,0),四个选项中,只有x 22-y 2=1的焦点为(±3,0),且经过点P (2,1).3.(2013·惠州模拟)已知双曲线x 2a 2-y 2b 2=1与直线y =2x 有交点,则双曲线离心率的取值范围为( )A .(1, 5 )B .(1, 5 ]C .(5,+∞)D .[5,+∞)解析:选C ∵双曲线的一条渐近线方程为y =b a x ,则由题意得b a >2.∴e =ca =1+⎝⎛⎭⎫b a 2>1+4= 5.4.(2012·浙江高考)如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( )A .3B .2 C. 3D. 2解析:选B 设焦点为F (±c,0),双曲线的实半轴长为a ,则双曲线的离心率e 1=ca ,椭圆的离心率e 2=c 2a ,所以e 1e 2=2.5.已知双曲线x 22-y 2b2=1(b >0)的左,右焦点分别是F 1,F 2,其一条渐近线方程为y =x ,点P (3,y 0)在双曲线上.则PF 1·PF 2=( ) A .-12 B .-2 C .0D .4解析:选C ∵由渐近线方程为y =x 知双曲线是等轴双曲线,∴双曲线方程是x 2-y 2=2,于是两焦点坐标分别是(-2,0)和(2,0),且P (3,1)或P (3,-1).不妨取P (3,1),则PF 1=(-2-3,-1),PF 2=(2-3,-1).∴PF 1·PF 2=(-2-3,-1)·(2-3,-1)=-(2+3)·(2-3)+1=0.6.(2012·皖南八校联考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,若过点且斜率为33的直线与双曲线渐近线平行,则此双曲线离心率是( ) A.233B. 3 C .2D .2 3解析:选A 依题意,应有b a =33,又ba =e 2-1,即e 2-1=33,解得e =233. 二、填空题(本大题共3小题,每小题5分,共15分)7.(2012·江苏高考)在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________.解析:由题意得m >0,a =m ,b =m 2+4,所以c =m 2+m +4.由e =ca=5得m 2+m +4m=5,解得m =2. 答案:28.P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆(x +4)2+y 2=4和(x -4)2+y 2=1上的点,则|PM |-|PN |的最大值为________.解析:双曲线的两个焦点为F 1(-4,0),F 2(4,0),为两个圆的圆心,半径分别为r 1=2,r 2=1,|PM |max =|PF 1|+2,|PN |min =|PF 2|-1,故|PM |-|PN |的最大值为(|PF 1|+2)-(|PF 2|-1)=|PF 1|-|PF 2|+3=5.答案:59.(2012·辽宁高考)已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________.解析:不妨设点P 在双曲线的右支上,因为PF 1⊥PF 2,所以(22)2=|PF 1|2+|PF 2|2,又因为|PF 1|-|PF 2|=2,所以(|PF 1|-|PF 2|)2=4,可得2|PF 1|·|PF 2|=4,则(|PF 1|+|PF 2|)2=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=12,所以|PF 1|+|PF 2|=2 3.答案:2 3三、解答题(本大题共3小题,每小题12分,共36分)10.双曲线C 与椭圆x 227+y 236=1有相同焦点,且经过点(15,4).(1)求双曲线C 的方程;(2)若F 1,F 2是双曲线C 的两个焦点,点P 在双曲线C 上,且∠F 1PF 2=120°,求△F 1PF 2的面积.解:(1)椭圆的焦点为F 1(0,-3),F 2(0,3). 设双曲线的方程为y 2a 2-x 2b 2=1(a >0,b >0),则a 2+b 2=32=9.①又双曲线经过点(15,4),所以16a 2-15b 2=1,② 解①②得a 2=4,b 2=5或a 2=36,b 2=-27(舍去), 所以所求双曲线C 的方程为y 24-x 25=1.(2)由双曲线C 的方程,知a =2,b =5,c =3.设|PF 1|=m ,|PF 2|=n ,则|m -n |=2a =4, 平方得m 2-2mn +n 2=16.① 在△F 1PF 2中,由余弦定理得(2c )2=m 2+n 2-2mn cos 120°=m 2+n 2+mn =36.② 由①②得mn =203.所以△F 1PF 2的面积为S =12mn sin 120°=533.11.设A ,B 分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程; (2)已知直线y =33x -2与双曲线的右支交于M ,N 两点,且在双曲线的右支上存在点D ,使OM +ON =t OD ,求t 的值及点D 的坐标.解:(1)∵由题意知a =23,∴一条渐近线为y =b23x ,即bx -23y =0.∴|bc |b 2+12=3,解得b 2=3,∴双曲线的方程为x 212-y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0), 则x 1+x 2=tx 0,y 1+y 2=ty 0.将直线方程代入双曲线方程得x 2-163x +84=0, 则x 1+x 2=163,y 1+y 2=12. ∴⎩⎨⎧x 0y 0=433,x 2012-y203=1.∴⎩⎪⎨⎪⎧x 0=43,y 0=3.∴t =4,点D 的坐标为(43,3).12.设双曲线y 2a 2-x 23=1的两个焦点分别为F 1,F 2,离心率为2.(1)求此双曲线的渐近线l 1,l 2的方程;(2)若A ,B 分别为l 1,l 2上的点,且2|AB |=5|F 1F 2|,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线.解:(1)∵e =2,∴c 2=4a 2.∵c 2=a 2+3,∴a =1,c =2. ∴双曲线方程为y 2-x 23=1,渐近线方程为y =±33x .(2)设A (x 1,y 1),B (x 2,y 2),AB 的中点M (x ,y ). ∵2|AB |=5|F 1F 2|,∴|AB |=52|F 1F 2|=52×2c =10.∴(x 1-x 2)2+(y 1-y 2)2=10.又y 1=33x 1,y 2=-33x 2,2x =x 1+x 2,2y =y 1+y 2, ∴y 1+y 2=33(x 1-x 2),y 1-y 2=33(x 1+x 2), ∴[3(y 1+y 2)]2+⎣⎡⎦⎤33(x 1+x 2)2=10, ∴3(2y )2+13(2x )2=100,即x 275+3y 225=1.则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.1.已知双曲线中心在原点且一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐标为-23,则此双曲线的方程是( )A.x 23-y 24=1 B.x 24-y 23=1 C.x 25-y 22-1 D.x 22-y 25=1 解析:选D ∵中点⎝⎛⎭⎫-23,-53,设双曲线x 2a 2-y 2b 2=1与y =x -1的两交点A (x 1,y 1),B (x 2,y 2),∴k =y 2-y 1x 2-x 1=b 2a 2x 1+x 2y 1+y 2=2b 25a2=1.∴⎩⎪⎨⎪⎧ 5a 2=2b 2,a 2+b 2=7,解得⎩⎪⎨⎪⎧a 2=2,b 2=5.∴方程为x 22-y 25=1.2.(2013·揭阳模拟)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为________.解析:双曲线的渐近线方程为y =±12x ,则b a =12,故离心率e =ca =1+⎝⎛⎭⎫b a 2=52.答案:523.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)和椭圆x 216+y 29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________.解析:由题意知,椭圆的焦点坐标是(±7,0)离心率是74.故在双曲线中,c =7,e =274=c a ,故a =2,b 2=c 2-a 2=3,故所求双曲线的方程是x 24-y 23=1. 答案:x 24-y 23=14.双曲线x 2a 2-y 2b 2=1(a >1,b >0)的焦距为2c ,直线l 过点(a,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c ,求双曲线的离心率e 的取值范围.解:直线l 的方程为x a +yb=1,即bx +ay -ab =0.由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离d 1=b (a -1)a 2+b2.同理得到点(-1,0)到直线l 的距离d 2=b (a +1)a 2+b2.所以s =d 1+d 2=2ab a 2+b 2=2ab c. 由s ≥45c ,得2ab c ≥45c ,即5ac 2-a 2≥2c 2.于是得5e 2-1≥2e 2,即4e 4-25e 2+25≤0.解不等式,得54≤e 2≤5.由于e >1,故e 的取值范围是⎣⎡⎦⎤52,5.。
2024年广东省高考数学一轮复习第8章第6讲:双曲线(附答案解析)

2024年广东省高考数学一轮复习第8章第6讲:双曲线考试要求1.了解双曲线的定义、几何图形和标准方程.2.掌握双曲线的几何性质(范围、对称性、顶点、渐近线、离心率).3.了解双曲线的简单应用.知识梳理1.双曲线的定义把平面内与两个定点F 1,F 2的距离的差的绝对值等于非零常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.2.双曲线的标准方程和简单几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形性质焦点F 1(-c ,0),F 2(c ,0)F 1(0,-c ),F 2(0,c )焦距|F 1F 2|=2c范围x ≤-a 或x ≥a ,y ∈Ry ≤-a 或y ≥a ,x ∈R对称性对称轴:坐标轴;对称中心:原点顶点A 1(-a ,0),A 2(a ,0)A 1(0,-a ),A 2(0,a )轴实轴:线段A 1A 2,长:2a ;虚轴:线段B 1B 2,长:2b ,实半轴长:a ,虚半轴长:b渐近线y =±b axy =±a bx离心率e =ca ∈(1,+∞)a ,b ,c 的关系c 2=a 2+b 2(c >a >0,c >b >0)常用结论1.双曲线的焦点到其渐近线的距离为b .2.若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .3.同支的焦点弦中最短的为通径(过焦点且垂直于实轴的弦),其长为2b 2a.4.若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则12PF F S △=b 2tanθ2,其中θ为∠F 1PF 2.5.与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)的距离之差的绝对值等于8的点的轨迹是双曲线.(×)(2)方程x 2m -y 2n =1(mn >0)表示焦点在x 轴上的双曲线.(×)(3)双曲线x 2m 2-y 2n 2=1(m >0,n >0)的渐近线方程是x m ±yn =0.(√)(4)等轴双曲线的渐近线互相垂直,离心率等于2.(√)教材改编题1.已知曲线C 的方程为x 2k +1+y 25-k =1(k ∈R ),若曲线C 是焦点在y 轴上的双曲线,则实数k 的取值范围是()A .-1<k <5B .k >5C .k <-1D .k ≠-1或5答案C解析若曲线C 是焦点在y 轴上的双曲线,+1<0,-k >0,解得k <-1.2.双曲线2y 2-x 2=1的渐近线方程是()A .y =±12xB .y =±2xC .y =±22x D .y =±2x答案C 解析依题意知,双曲线y 212-x 2=1的焦点在y 轴上,实半轴长a =22,虚半轴长b =1,所以双曲线2y 2-x 2=1的渐近线方程是y =±22.3.设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线的左、右焦点,若|PF 1|=9,则|PF 2|=________.答案17解析根据双曲线的定义得||PF 1|-|PF 2||=8,因为|PF 1|=9,所以|PF 2|=1或17.又|PF 2|≥c -a =2,故|PF 2|=17.题型一双曲线的定义及应用例1(1)(2022·洛阳模拟)在平面直角坐标系中,已知△ABC 的顶点A (-3,0),B (3,0),其内切圆圆心在直线x =2上,则顶点C 的轨迹方程为()A.x 24-y 25=1(x >2)B.x 29-y 25=1(x >3)C.x 29+y 25=1(0<x <2)D.x 29+y 24=1(0<x <3)答案A解析如图,设△ABC 与圆的切点分别为D ,E ,F ,则有|AD |=|AE |=5,|BF |=|BE |=1,|CD |=|CF |,所以|CA |-|CB |=5-1=4.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为4的双曲线的右支(右顶点除外),即c =3,a =2,又c 2=a 2+b 2,所以b 2=5,所以顶点C 的轨迹方程为x 24-y 25=1(x >2).(2)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则△F 1PF 2的面积为______.答案23解析不妨设点P 在双曲线的右支上,则|PF 1|-|PF 2|=2a =22,在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=12,∴|PF 1|·|PF 2|=8,∴12F PF S △=12|PF 1|·|PF 2|·sin 60°=23.思维升华在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.跟踪训练1(1)已知圆C 1:(x +3)2+y 2=1,C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1和圆C 2相外切,则动圆圆心M 的轨迹方程为()A .x 2-y 28=1B.x 28-y 2=1C .x 2-y 28=1(x ≤-1)D .x 2-y 28=1(x ≥1)答案C解析设动圆M 的半径为r ,由动圆M 同时与圆C 1和圆C 2相外切,得|MC 1|=1+r ,|MC 2|=3+r ,|MC 2|-|MC 1|=2<6,所以动圆圆心M 的轨迹是以点C 1(-3,0)和C 2(3,0)为焦点的双曲线的左支,且2a =2,解得a =1,又c =3,则b 2=c 2-a 2=8,所以动圆圆心M 的轨迹方程为x 2-y 28=1(x ≤-1).(2)(2022·荆州模拟)已知双曲线C :x 216-y 29=1的左、右焦点分别是F 1,F 2,点P 是C 的右支上的一点(不是顶点),过F 2作∠F 1PF 2的角平分线的垂线,垂足是M ,O 是原点,则|MO |=________.答案4解析如图所示,延长F 2M 交PF 1于Q ,由于PM 是∠F 1PF 2的角平分线,F 2M ⊥PM ,所以△QPF 2是等腰三角形,所以|PQ |=|PF 2|,且M 是QF 2的中点.根据双曲线的定义可知|PF 1|-|PF 2|=2a =8,即|QF 1|=8,由于O 是F 1F 2的中点,所以MO 是△QF 1F 2的中位线,所以|MO |=12|QF 1|=4.题型二双曲线的标准方程例2(1)(2021·北京)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)过点(2,3),且离心率为2,则该双曲线的标准方程为()A .x 2-y 23=1B.x 23-y 2=1C .x 2-3y 23=1 D.3x 23-y 2=1答案A解析由e =ca =2,得c =2a ,b =c 2-a 2=3a ,则双曲线的方程为x 2a 2-y 23a2=1,将点(2,3)的坐标代入双曲线的方程可得2a 2-33a 2=1a 2=1,解得a =1,故b =3,因此双曲线的标准方程为x 2-y 23=1.(2)(2023·连云港模拟)在平面直角坐标系中,已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形,则双曲线的标准方程为()A.x 24-y 212=1 B.x 212-y 24=1C.x 23-y 2=1D .x 2-y 23=1答案D解析由方程x 2a 2-y 2b2=1,得双曲线的渐近线方程为y =±ba x ,不妨设A 在直线y =bax 上,由△OAF 是边长为2的等边三角形,可得c =2,直线y =bax 的倾斜角为60°,即ba=3,=3a,2+b2=c2=4,=3,=1,故双曲线的标准方程为x2-y23=1.思维升华求双曲线的标准方程的方法(1)定义法:由题目条件判断出动点轨迹是双曲线,确定2a,2b或2c,从而求出a2,b2.(2)待定系数法:“先定型,再定量”,如果焦点位置不好确定,可将双曲线方程设为x2m2-y2n2=λ(λ≠0),再根据条件求λ的值.跟踪训练2(1)已知双曲线x2a2-y2b2=1(a>0,b>0)的离心率为2,左焦点到渐近线的距离为23,则双曲线的方程为()A.x2 4-y212=1 B.x212-y24=1C.x2 3-y29=1 D.x29-y23=1答案A解析易知双曲线x2a2-y2b2=1(a>0,b>0)的渐近线方程为ay=±bx,由C的左焦点(-c,0)到其渐近线的距离是23,可得bca2+b2=b=23,则b2=12,由双曲线x2a2-y2b2=1(a>0,b>0)的离心率为2,得e=ca=2,又c2=a2+b2,解得a=2,c=4,则双曲线的方程为x24-y212=1.(2)(2023·廊坊模拟)江西景德镇青花瓷始创于元代,到明清两代达到了顶峰,它蓝白相映怡然成趣,晶莹明快,美观隽永.现有某青花瓷花瓶的外形可看成是焦点在x轴上的双曲线的一部分绕其虚轴旋转所形成的曲面,如图所示,若该花瓶的瓶身最小的直径是4,瓶口和底面的直径都是8,瓶高是6,则该双曲线的标准方程是()A.x 216-y 29=1 B.x 24-y 2=1C.x 28-y 29=1 D.x 24-y 23=1答案D解析由题意可知该双曲线的焦点在x 轴上,实轴长为4,点(4,3)在该双曲线上.设该双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),4,-32b 2=1,=2,=3,故该双曲线的标准方程是x 24-y 23=1.题型三双曲线的几何性质命题点1渐近线例3(1)(2022·北京)已知双曲线y 2+x 2m =1的渐近线方程为y =±33x ,则m =________.答案-3解析方法一依题意得m <0,双曲线的方程化为标准方程为y 2-x 2-m=1,此时双曲线的渐近线的斜率为±1-m=±33,解得m =-3.方法二依题意得m <0,令y 2-x 2-m =0,得y =±1-m x ,则±1-m=±33,解得m =-3.(2)(2022·连云港模拟)若双曲线经过点(1,3),其渐近线方程为y =±2x ,则双曲线的方程是________.答案4x 2-y 2=1解析方法一由题意可知,①若双曲线的焦点在x 轴上,则可设x 2a 2-y 2b 2=1(a >0,b >0),则1a2-3b 2=1且b a =2,联立解得a =12,b =1,则双曲线的方程为4x 2-y 2=1;②若双曲线的焦点在y 轴上,则可设y 2a 2-x 2b 2=1(a >0,b >0),则3a 2-1b 2=1,且ab =2,此时无解,综上,双曲线的方程为4x 2-y 2=1.方法二由题可设双曲线方程为4x 2-y 2=λ(λ≠0),∵双曲线经过点(1,3),∴λ=4×12-(3)2=1,∴双曲线方程为4x 2-y 2=1.思维升华(1)渐近线的求法:求双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线的方法是令x 2a 2-y 2b2=0,即得两渐近线方程x a ±yb==±ba x (2)在双曲线的几何性质中,重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b 2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±ba ,满足关系式e 2=1+k 2.命题点2离心率例4(1)(2021·全国甲卷)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为()A.72B.132C.7D.13答案A解析设|PF 2|=m ,则|PF 1|=3m ,在△F 1PF 2中,|F 1F 2|=m 2+9m 2-2×3m ×m ×cos 60°=7m ,所以C 的离心率e =c a =2c2a =|F 1F 2||PF 1|-|PF 2|=7m 2m =72.(2)(2022·全国甲卷)记双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为e ,写出满足条件“直线y=2x 与C 无公共点”的e 的一个值________.答案2((1,5]内的任意值均可)解析双曲线C 的渐近线方程为y =±bax ,若直线y =2x 与双曲线C 无公共点,则2≥b a ,∴b 2a 2≤4,∴e 2=c 2a 2=1+b 2a 2≤5,又e >1,∴e ∈(1,5],∴填写(1,5]内的任意值均可.思维升华求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量a ,b ,c 的方程或不等式,利用c 2=a 2+b 2和e =ca 转化为关于e 的方程(或不等式),通过解方程(或不等式)求得离心率的值(或范围).跟踪训练3(1)(多选)(2023·聊城模拟)已知双曲线C :x 29-k +y 2k -1=1(0<k <1),则下列结论正A .双曲线C 的焦点在x 轴上B .双曲线C 的焦距等于42C .双曲线C 的焦点到其渐近线的距离等于1-kD .双曲线C 答案ACD解析对于A ,因为0<k <1,所以9-k >0,k -1<0,所以双曲线C :x 29-k -y 21-k =1(0<k <1)表示焦点在x 轴上的双曲线,故选项A 正确;对于B ,由A 知a 2=9-k ,b 2=1-k ,所以c 2=a 2+b 2=10-2k ,所以c =10-2k ,所以双曲线C 的焦距等于2c =210-2k (0<k <1),故选项B 错误;对于C ,设焦点在x 轴上的双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0),焦点坐标为(±c ,0),则渐近线方程为y =±ba x ,即bx ±ay =0,所以焦点到渐近线的距离d =|bc |a 2+b 2=b ,所以双曲线C :x 29-k -y 21-k =1(0<k <1)的焦点到其渐近线的距离等于1-k ,故选项C 正确;对于D ,双曲线C 的离心率e =1+b 2a2=1+1-k 9-k=2-89-k,因为0<k <1,所以1<2-89-k <109,所以e =2-89-k∈D 正确.(2)(2022·怀化模拟)已知F 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,过点F 的直线l 与双曲线C 的一条渐近线垂直,垂足为A ,且直线l 与双曲线C 的左支交于点B ,若3|FA |=|AB |,则双曲线C 的渐近线方程为________.答案y =±43x解析设C 的左焦点为F 1,连接F 1B ,过F 1作F 1D ⊥FB 于点D ,如图所示,易知F 1D ∥OA ,在双曲线C 中,易知|FA |=b ,又3|FA |=|AB |,则D 为线段FB 的中点,所以△F 1BF 为等腰三角形,又|FB |=4b ,|F 1B |=4b -2a =|F 1F |=2c ,即c +a =2b ,又b 2=c 2-a 2=(c +a )(c -a ),将b =c +a 2代入得(c +a )24=(c +a )(c -a ),得c +a =4(c -a ),则c =53a ,又c 2=a 2+b 2,所以b =43a ,则渐近线方程为y =±43x .课时精练1.(2022·宜昌模拟)双曲线x 22-y 24=λ(λ>0)的离心率为()A.62B.3C.3或62D.2答案B解析因为λ>0,所以x 22λ-y 24λ=1,所以双曲线焦点在x 轴上,所以a 2=2λ,b 2=4λ,c 2=a 2+b 2=6λ,所以离心率为ca =c 2a 2=6λ2λ= 3.2.“mn <0”是“方程mx 2+ny 2=1表示双曲线”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案C解析因为方程mx 2+ny 2=1表示双曲线,所以mn <0,又当mn <0时,方程mx 2+ny 2=1表示双曲线,因此“mn <0”是“方程mx 2+ny 2=1表示双曲线”的充要条件.3.已知双曲线的渐近线方程为y =±22x ,实轴长为4,则该双曲线的标准方程为()A.x 24-y 22=1B.x 24-y 28=1或y 24-x 28=1C.x 24-y 28=1D.x 24-y 22=1或y 24-x 28=1答案D解析设双曲线方程为x 22m -y 2m1(m ≠0),∵2a =4,∴a 2=4,当m >0时,2m =4,m =2;当m <0时,-m =4,m =-4.故所求双曲线的标准方程为x 24-y 22=1或y 24-x 28=1.4.(2022·南通模拟)方程x 2+(cos θ)y 2=1,θ∈(0,π)表示的曲线不可能为()A .两条直线B .圆C .椭圆D .双曲线答案B解析因为θ∈(0,π),所以cos θ∈(-1,1),所以当cos θ∈(-1,0)时,方程x 2+(cos θ)y 2=1表示双曲线;当cos θ=0时,方程x 2+(cos θ)y 2=1表示两条直线x =±1;当cos θ∈(0,1)时,方程x 2+(cos θ)y 2=1可化为x 2+y 21cos θ=1,因为1cos θ>1,所以方程表示焦点在y 轴上的椭圆.5.(多选)(2023·唐山模拟)已知F 1,F 2为双曲线C :y 23-x 2=1的两个焦点,P 为双曲线C 上任意一点,则()A .|PF 1|-|PF 2|=23B .双曲线C 的渐近线方程为y =±33x C .双曲线C 的离心率为233D .|PF 1—→+PF 2—→|≥23答案CD解析双曲线C :y 23-x 2=1焦点在y 轴上,a =3,b =1,c =a 2+b 2=2.对于A 选项,||PF 1|-|PF 2||=2a =23,而P 点在哪支上并不确定,故A 错误;对于B 选项,焦点在y 轴上的双曲线C 的渐近线方程为y =±ab x =±3x ,故B 错误;对于C 选项,e =c a =23=233,故C 正确;对于D 选项,设P (x ,y )(x ∈R ),则|PO |=x 2+y 2=x 2+(3x 2+3)=3+4x 2≥3(当且仅当x =0时取等号),因为O 为F 1F 2的中点,所以|PF 1—→+PF 2—→|=|2PO →|=2|PO →|≥23,故D 正确.6.(多选)(2023·湖南长郡中学模拟)F 1,F 2分别为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 是C 右支上的一点,PF 1与C 的左支交于点Q .已知PQ →=2QF 1—→,且|PQ |=|PF 2|,则()A .△PQF 2为直角三角形B .△PQF 2为等边三角形C .C 的渐近线方程为y =±6xD .C 的渐近线方程为y =±7x 答案BC解析因为|PQ |=|PF 2|,所以由双曲线定义知,|PF 1|-|PF 2|=|QF 1|=2a ,|QF 2|-|QF 1|=2a ,所以|QF 2|=4a ,又PQ →=2QF 1—→,所以|PQ |=|PF 2|=4a ,故△PQF 2是等边三角形.在△PF 1F 2中,由余弦定理得,cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=36a 2+16a 2-4c 248a 2=12,则c 2a 2=a 2+b 2a 2=7,即ba=6,故C 的渐近线方程为y =±6x .7.(2021·新高考全国Ⅱ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =2,则该双曲线C的渐近线方程为________.答案y =±3x解析因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,所以e =c 2a 2=a 2+b 2a 2=1+b 2a 2=2,所以b 2a2=3,所以该双曲线的渐近线方程为y =±bax =±3x .8.(2022·晋中模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 在双曲线的右支上,|PF 1|=4|PF 2|,则双曲线离心率的取值范围是________.答案,53解析设∠F 1PF2=θ1|=4|PF 2|,1|-|PF 2|=2a ,1|=83a ,2|=23a ,∵|PF 2|≥c -a ,∴23a ≥c -a ,即53a ≥c ,即c a ≤53,∴双曲线离心率的取值范围是1<e ≤53.9.已知双曲线C :x 2-y 2b2=1(b >0).(1)若双曲线C 的一条渐近线方程为y =2x ,求双曲线C 的标准方程;(2)设双曲线C 的左、右焦点分别为F 1,F 2,点P 在双曲线C 上,若PF 1⊥PF 2,且△PF 1F 2的面积为9,求b 的值.解(1)因为双曲线C :x 2-y 2b2=1(b >0)的渐近线方程为y =±bx ,而它的一条渐近线方程为y=2x ,所以b =2,所以双曲线C 的标准方程为x 2-y 24=1.(2)因为PF 1⊥PF 2,所以12PF F S △=12|PF 1|·|PF 2|,因为△PF 1F 2的面积为9,所以|PF 1|·|PF 2|=18,又因为||PF 1|-|PF 2||=2a =2,所以|PF 1|2-2|PF 1|·|PF 2|+|PF 2|2=4,所以|PF 1|2+|PF 2|2=40,又因为|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2,所以c 2=10,由a 2+b 2=c 2,得1+b 2=10,所以b =3.10.如图,已知双曲线的中心在原点,F 1,F 2为左、右焦点,焦距是实轴长的2倍,双曲线过点(4,-10).(1)求双曲线的标准方程;(2)若点M (3,m )在双曲线上,求证:点M 在以F 1F 2为直径的圆上;(3)在(2)的条件下,若点M 在第一象限,且直线MF 2交双曲线于另一点N ,求△F 1MN 的面积.(1)解设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),双曲线焦距为2c ,实轴长为2a ,则2c =22a ,即c =2a ,∴b 2=c 2-a 2=a 2,∴双曲线方程为x 2-y 2=a 2,将(4,-10)代入得,a 2=16-10=6,∴双曲线的标准方程为x 26-y 26=1.(2)证明由(1)知,F 1(-23,0),F 2(23,0),∵M (3,m )在双曲线上,∴9-m 2=6,即m 2=3,以F 1F 2为直径的圆为x 2+y 2=12,将M (3,m )代入得9+3=12,∴M 在以F 1F 2为直径的圆上.(3)解由(2)知,点M 坐标为(3,3)或(3,-3),∵点M 在第一象限,∴M 的坐标为(3,3),直线MF 2的方程为y -3=-323-3(x -3)=-(2+3)(x -3),即y =(-2-3)x +(6+43),代入双曲线方程整理可得(6-43)y 2-43(2-3)y +6=0,∵M 的纵坐标为3,∴N 的纵坐标为6(6-43)×3=13-2=-(3+2),∴△F 1MN 的面积为S =12|F 1F 2|·(3+3+2)=23×(2+23)=12+43.11.中心在原点,焦点在坐标轴上的双曲线C 与椭圆x 210+y 26=1有相同的焦距,一条渐近线方程为x -3y =0,则C 的方程为()A.x 23-y 2=1或y 2-x 23=1B .x 2-y 23=1或y 2-x 23=1C.x 23-y 2=1或y 23-x 2=1D .x 2-y 23=1或y 23-x 2=1答案A解析在椭圆x 210+y 26=1中,c =10-6=2,∴焦距2c =4.∵C 的一条渐近线方程为x -3y =0,∴设C 的方程为x 23-y 2=λ(λ≠0),化为标准方程为x 23λ-y 2λ=1.当λ>0时,c =λ+3λ=2,解得λ=1,则C 的方程为x 23-y 2=1;当λ<0时,c =-λ-3λ=2,解得λ=-1,则C 的方程为y 2-x 23=1.综上,C 的方程为x 23-y 2=1或y 2-x 23=1.12.(2022·徐州模拟)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1>0,b >0,e 点,以线段F 1F 2为直径的圆与双曲线及其渐近线在第一象限分别交于A ,B 两点,若A ,B两点的横坐标之比是3∶2,则该双曲线的离心率为()A.5B.322C.2D.52答案C 解析过点A 作AF ⊥x 轴,垂足为F ,过点B 作BE ⊥x 轴,垂足为E ,如图所示.设A (x 1,y 1),B (x 2,y 2),则|OB |=|OF 2|=c ,由渐近线的方程y =b a x 可知y 2=ba x 2,在Rt △OBE中,x 22+b2a2x 22=c 2,解得x 2=a (舍负),由已知得x 1∶x 2=3∶2,即x 1=62a ,即|AF |2=c 2=c 2-32a 2,因为离心率e >62,所以c 2-32a 2>0,则点A 代入双曲线方程可得32a 2a 2-c 2-32a 2b 2=1,化简得2a 2=c 2,即e = 2.13.(2022·枣庄模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,右焦点为F ,B 为双曲线在第二象限上的一点,B 关于坐标原点O 的对称点为C ,直线CA 与直线BF 的交点M 恰好为线段BF 的中点,则双曲线的离心率为()A .2B .3 C.2D.3答案B解析如图,设B (m ,n ),则C (-m ,-n ),易知A (a ,0),F (c ,0),由M 为线段BF 的中点得M m +c 2,n2,又M 在直线CA 上,故CA →,AM →共线,又CA →=(a +m ,n ),AM →=m +c 2-a ,n2故(a +m )·n2=n ·m +c2-a整理得c =3a ,故离心率e =ca=3.14.(多选)(2022·湖南联考)已知双曲线E :x 2a 2-y 2=1(a >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),过点F 2作直线与双曲线E 的右支相交于P ,Q 两点,在点P 处作双曲线E 的切线,与E 的两条渐近线分别交于A ,B 两点,则下列命题中正确的是()A .若|PF 1|·|PF 2|=2,则PF 1—→·PF 2—→=0B .若a sin ∠PF 1F 2=csin ∠PF 2F 1,则双曲线的离心率e ∈(1,2+1]C .△F 1PQ 周长的最小值为8D .△AOB (O 为坐标原点)的面积为定值答案ACD解析由题意知|PF 1|-|PF 2|=2a ,a 2+1=c 2,则|PF 1|2-2|PF 1|·|PF 2|+|PF 2|2=4a 2,所以有|PF 1|2+|PF 2|2=4a 2+4=4c 2=|F 1F 2|2,从而PF 1—→⊥PF 2—→,即PF 1—→·PF 2—→=0,故A 正确;在△PF 1F 2中,由正弦定理得|PF 1|sin ∠PF 2F 1=|PF 2|sin ∠PF 1F 2,则sin ∠PF 1F 2sin ∠PF 2F 1=|PF 2||PF 1|=a c ,解得|PF 1|=ca|PF 2|.又|PF 1|-|PF 2|=2a ,所以|PF 2|=2a 2c -a>c -a ,整理得c 2-2ac -a 2<0,所以e 2-2e -1<0,解得1<e <2+1,故B 错误;当直线PQ ⊥x 轴时,|PQ |的最小值为2a,|PF 1|+|QF 1|+|PQ |=2a +|PF 2|+2a +|QF 2|+|PQ |=4a +2|PQ |=4a +4a ≥8(当且仅当a =1时取等号),故C 正确;设P (x 0,y 0),过点P 的双曲线E 的切线方程为x 0a 2x -y 0y =1,E 的渐近线方程为y =±1ax ,不妨设切线x 0a 2x -y 0y =1与渐近线y =1a x 的交点为A =1ax ,-y 0y =1,解得=a 2x 0-ay 0,=a x 0-ay 0,即同理可得又因为点P 在双曲线E 上,则有x 20a 2-y 20=1,x A +x B =a 2x 0-ay 0+a 2x 0+ay 0=2x 0,故点P 是AB 的中点.设切线x 0a 2x -y 0y =1与x 轴的交点为G ,易知S △AOP =12·a 2x 0y A -y 0|=a 2·ax 0|ax 0-ay 0-y 0|=a 2,所以S △AOB =2S △AOP =a ,故D 正确.。
2024届高考数学一轮复习第8章第6节双曲线课件

第六节 双曲线
考试要求:1.了解双曲线的定义、几何图形和标准方程. 2.了解双曲线的简单几何性质.
01
必备知识·回顾教材重“四基”
一、教材概念·结论·性质重现
1.双曲线的定义 平面内与两个定点F1,F2的距离的差___的_绝__对__值___等于非零常数(小于 |F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的_焦__点__,两 焦点间的距离叫做双曲线的_焦__距__.
焦点三角形,其中∠F1PF2为顶角θ,F1F2为底边. (1)在椭圆中, ①焦点三角形的周长是定值,l=2a+2c. ②△PF1F2中三边的关系,除定义|PF1|+|PF2|=2a外,还有余弦
定理: |F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cos θ. ③|PF1|·|PF2|的最大值为a2(当且仅当x0=0时取得),最小值为
图2
思路参考:设出点P(m,n),利用过两点的斜率公式与倾斜角关系求 解. C 解析:如图,作PM⊥AF于点M,
1.本题考查双曲线的离心率的计算,其基本策略是根据双曲线的几 何性质寻找a,c的关系式. 2.基于课程标准,解答本题要熟练掌握双曲线的定义,直线的斜率 公式和正切的二倍角公式.本题的解答体现了数学运算的核心素 养. 3.基于高考数学评价体系,本题通过知识间的相互联系和转化,体 现了基础性和综合性的统一.
集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0, c>0. (1)当a<c时,点P的轨迹是双曲线. (2)当a=c时,点P的轨迹是以F1,F2为端点的两条射线. (3)当a>c时,点P不存在.
2.双曲线的标准方程和几何性质
2013年高考数学试题精编:8.2双曲线

(
3, 0
)
a 2 = 1, b 2 =
【解析】双曲线的
⎛ 6 ⎞ 1 3 6 ⎜ c2 = c= ⎜ 2 ,0⎟ ⎟ ⎠. 2 ,所以右焦点为 ⎝ 2, 2,
【 误 区 警 示】 本 题 考 查双 曲 线 的 交点 , 把 双 曲线 方 程 先 转化 为 标 准 方程 , 然 后 利用
2 c 2 = a 2 + b 2 求出 c 即可得出交点坐标.但因方程不是标准形式, 很多学生会误认为 b = 1 或
5 3 6 2 y0 2 = x0 −1 = | y0 |= 2 ,所以 2 ,故 P 到 x 轴的距离为 2
5.(全国Ⅰ卷文 8)已知
F1 、 F2 为双曲线 C: x 2 − y 2 = 1 的左、右焦点,点 P 在 C 上,∠
F1 P F2 = 600 ,则 | PF1 | | PF2 |=
(A)2 (B)4 (C) 6 (D) 8 【答案】B【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数 学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析 1】.由余弦定理得
焦点相同,那么双曲线的焦点坐标为 【答案】 (
±4, 0 )
;渐近线方程为
。
, y = ± 3x
c
= 2, c = 4 ±4, 0 ) ,又双曲线离心率为 2,即 a , 解析:双曲线焦点即为椭圆焦点,不难算出为 (
故 a = 2, b = 2 3 ,渐近线为
y=±
b x = ± 3x a
x 2 y2 1 ± x 2 2. ( 福 建 卷 文 13 ) 若 双 曲 线 4 - b =1(b>0) 的 渐 近 线 方 程 式 为 y= 2 , 则 b 等
2013高考数学(文)一轮复习课件:8-6

和焦距成等差数列,则该椭圆的离心率是( 4 A. 5 2 C. 5 3 B. 5 1 D. 5
【示例3】► (2010· 辽宁)设双曲线的一个焦点为F,虚轴的一个 端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此 双曲线的离心率为( A. 2 B. 3 3+1 C. 2 ). 5+1 D. 2
).
x2 y2 解析 双曲线2x2-y2=8的标准方程为 4 - 8 =1,所以实轴长 2a=4. 答案 C
6 3.下列曲线中离心率为 2 的是( x2 y2 A. 2 - 4 =1 x2 y2 C. 4 - 6 =1 解析 得B. 答案 B x2 y2 B. 4 - 2 =1 x2 y2 D. 4 -10=1
2 5ab 2 5ab 2a 长为 2 2,又C1把AB三等分,所以 2 2= 3 ,两边平 4a +b 4a +b 1 方并整理得a =11b ,代入a -b =5得b =2.
2 2 2 2 2
答案
C
在双曲线的几何性质中,应充分利用双曲线的渐近线方程, 简化解题过程.同时要熟练掌握以下三方面内容: (1)已知双曲线方程,求它的渐近线; (2)求已知渐近线的双曲线的方程; (3)渐近线的斜率与离心率的关系, c2-a2 b 如k=a= a = c2 2 2-1= e -1. a
2
).
[审题视点] 取一条C2的渐近线,将其与C1联立求得弦长|AB|, 2 令|AB|= a,方可得出结论. 3
解析
依题意a2-b2=5,根据对称性,不妨取一条渐近线y= ab ,解得x=± 2 2 ,故被椭圆截得的弦 4a +b
y=2x, 2 2 2x,由 x y a2+b2=1 ຫໍສະໝຸດ 2.双曲线的标准方程和几何性质
x2 y2 a2-b2=1 (a>0,b>0) y2 x2 a2-b2=1 (a>0,b>0)
三维设计高考数学湘教版文科一轮复习课时检测8.6双曲线(含答案详析)

课时跟踪检测(五十) 双曲线第Ⅰ组:全员必做题1.设P 是双曲线x 2a 2-y 29=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1,F 2分别是双曲线的左,右焦点,若|PF 1|=3,则|PF 2|=( )A .1或5B .6C .7D .9 2.(2013·四川高考)抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( ) A.12B.32 C .1 D. 33.(2013·深圳调研) 双曲线x 2-my 2=1的实轴长是虚轴长的2倍,则m =( ) A.14B.12 C .2 D .44. (2013·郑州模拟)如图所示,F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,以坐标原点O 为圆心,|OF 1|为半径的圆与该双曲线左支的两个交点分别为A ,B ,且△F 2AB 是等边三角形,则双曲线的离心率为( )A.2+1B.3+1C.2+12D.3+125.(2013·武汉模拟)已知P 是双曲线x 2a 2-y 2b2=1(a >0,b >0)上的点,F 1,F 2是其焦点,双曲线的离心率是54,且1PF ·2PF ,=0,若△PF 1F 2的面积为9,则a +b 的值为( ) A .5B .6C .7D .86. (2013·惠州模拟)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点与抛物线y 2=410x 的焦点重合,且双曲线的离心率等于103,则该双曲线的方程为________. 7.(2013·陕西高考) 双曲线x 216-y 2m =1的离心率为54,则m 等于________. 8. (2013·石家庄模拟)F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于A ,B 两点.若△ABF 2是等边三角形,则该双曲线的离心率为________.9.设A ,B 分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程;(2)已知直线y =33x -2与双曲线的右支交于M 、N 两点,且在双曲线的右支上存在点D ,使OM +ON =t OD ,求t 的值及点D 的坐标.10. P (x 0,y 0)(x 0≠±a )是双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,M 、N 分别是双曲线E 的左、右顶点,直线PM ,PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A ,B 两点,O 为坐标原点,C 为双曲线上一点,满足OC =λOA +OB ,求λ的值.第Ⅱ组:重点选做题1.(2013·河北省重点中学联考) 设F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,若双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|,则双曲线的离心率为( ) A.52 B.102C.53D.1032.(2014·江西临川模拟)双曲线x 2b 2-y 2a 2=-1(a >0,b >0)与抛物线y =18x 2有一个公共焦点F ,双曲线上过点F 且垂直实轴的弦长为233,则双曲线的离心率等于________.答 案第Ⅰ组:全员必做题1.选C 由渐近线方程3x -2y =0,知b a =32.又b 2=9,所以a =2,从而|PF 2|=7. 2.选B 因为抛物线的焦点坐标为(1,0),而双曲线的渐近线方程为y =±3x ,所以所求距离为32,故选B. 3.选D 双曲线方程可化为x 2-y 21m=1, ∴实轴长为2,虚轴长为21m , ∴2=2⎝⎛⎭⎫2 1m ,解得m =4. 4.选B 连接AF 1,依题意得AF 1⊥AF 2,∠AF 2F 1=30°,|AF 1|=c ,|AF 2|=3c ,因此该双曲线的离心率e =|F 1F 2||AF 2|-|AF 1|=2c 3c -c=3+1,选B. 5.选C 设c =a 2+b 2,则c a =54, ∴a =45c ,∴b =c 2-a 2=35c . ∵1PF ,·2PF ,=0(即PF 1⊥PF 2),S △PF 1F 2=9,∴|PF 1|·|PF 2|=18.∵⎩⎪⎨⎪⎧||PF 1|-|PF 2||=2a ,|PF 1|2+|PF 2|2=|F 1F 2|2,∴⎩⎪⎨⎪⎧|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4a 2,|PF 1|2+|PF 2|2=4c 2, 两式相减得,2|PF 1|·|PF 2|=4b 2,∴b 2=9,∴b =3,∴c =5,a =4,∴a +b =7.6.解析:由已知可得抛物线y 2=410x 的焦点坐标为(10,0),a 2+b 2=10.又双曲线的离心率e =10a =103,∴a =3,b =1,双曲线的方程为x 29-y 2=1.答案:x 29-y 2=17.解析:⎩⎪⎨⎪⎧ a 2=16,b 2=m ,e 2=2516⇒2516=16+m16⇒m =9.答案:98.解析:如图,由双曲线定义得,|BF 1|-|BF 2|=|AF 2|-|AF 1|=2a ,因为△ABF 2是正三角形,所以|BF 2|=|AF 2|=|AB |,因此|AF 1|=2a ,|AF 2|=4a ,且∠F 1AF 2=120°,在△F 1AF 2中,4c 2=4a 2+16a 2+2×2a ×4a ×12=28a 2,所以e =7.答案:79.解:(1)由题意知a =23,∴一条渐近线为y =b23 x .即bx -23y =0.∴|bc |b 2+12= 3. ∴b 2=3,∴双曲线的方程为x 212-y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0),则x 1+x 2=tx0,y 1+y 2=ty 0.将直线方程代入双曲线方程得x 2-163x +84=0,则x 1+x 2=163,y 1+y 2=12.∴⎩⎨⎧ x0y 0=433,x 2012-y 203=1.∴⎩⎪⎨⎪⎧x 0=43,y 0=3. ∴t =4,点D 的坐标为(43,3).10.解:(1)由点P (x 0,y 0)(x ≠±a )在双曲线x 2a 2-y 2b 2=1上,有x 20a 2-y 20b2=1. 由题意又有y 0x 0-a ·y 0x 0+a =15, 可得a 2=5b 2,c 2=a 2+b 2=6b 2,则e =c a =305. (2)联立⎩⎪⎨⎪⎧x 2-5y 2=5b2y =x -c ,得4x 2-10cx +35b 2=0, 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧ x 1+x 2=5c 2,x 1x 2=35b 24.①设OC =(x 3,y 3),OC =λOA +OB ,即⎩⎪⎨⎪⎧x 3=λx 1+x 2,y 3=λy 1+y 2. 又C 为双曲线上一点,即x 23-5y 23=5b 2, 有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2.化简得:λ2(x 21-5y 21)+(x 22-5y 22)+2λ(x 1x 2-5y 1y 2)=5b 2,又A (x 1,y 1),B (x 2,y 2)在双曲线上,所以x 21-5y 21=5b 2,x 22-5y 22=5b 2.由①式又有x 1x 2-5y 1y 2=x 1x 2-5(x 1-c )·(x 2-c )=-4x 1x 2+5c (x 1+x 2)-5c 2=10b 2,得:λ2+4λ=0,解得λ=0,或λ=-4.第Ⅱ组:重点选做题1.选B 由题可知点A 在双曲线的右支上,则|AF 1|-|AF 2|=2|AF 2|=2a ,则|AF 2|=a ,得|AF 1|=3a ,由∠F 1AF 2=90°,得(3a )2+a 2=(2c )2,则e =c a =102. 2.解析:双曲线与抛物线x 2=8y 的公共焦点F 的坐标为(0,2),由题意知点⎝⎛⎭⎫33,2在双曲线上,∴⎩⎪⎨⎪⎧a 2+b 2=413b 2-4a 2=-1 得a 2=3,故e =c a =233. 答案:233。
安徽省高考数学一轮复习 8.6双曲线课后自测 理

安徽省2015届高考数学一轮复习 8.6双曲线课后自测 理(见学生用书第337页)A 组 基础训练一、选择题1.(2013·北京高考)双曲线x 2-y 2m =1的离心率大于2的充分必要条件是( ) A .m>12B .m≥1 C.m>1 D .m>2 【解析】 ∵双曲线x 2-y 2m =1的离心率e =1+m , 又∵e>2, ∴1+m>2,∴m>1.【答案】 C2.(2013·福建高考)双曲线x 24-y 2=1的顶点到其渐近线的距离等于( ) A.25 B.45 C.255 D.455【解析】 双曲线的渐近线为直线y =±12x ,即x±2y=0,顶点为(±2,0), ∴所求距离为d =|±2±0|5=255. 【答案】 C3.(2013·合肥高三第二次质检)焦点在x 轴上的双曲线C 的左焦点为F ,右顶点为A ,若线段FA 的中垂线与双曲线C 有公共点,则双曲线C 的离心率的取值范围是( )A .(1,3)B .(1,3]C .(3,+∞) D.[3,+∞)【解析】 设AF 的中点C(x c,0),由题意x c ≤-a ,即a -c 2≤-a ,解得e =c a≥3,故选D. 【答案】 D4.(2013·北京高考)若双曲线x 2a -y 2b =1的离心率为3,则其渐近线方程为( ) A .y =±2x B.y =±2x C .y =±12x D .y =±22x【解析】 ∵e =3,∴c a =3,即a 2+b 2a 2=3, ∴b 2=2a 2,∴双曲线方程为x 2a 2-y 22a 2=1, ∴渐近线方程为y =±2x.【答案】 B5.已知双曲线x 24-y 2b 2=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( ) A. 5 B .4 2 C .3 D .5【解析】 抛物线y 2=12x 的焦点坐标为(3,0),故双曲线x 24-y 2b 2=1的半焦距c =3. 由9=4+b 2得b =5,所以双曲线的渐近线方程为y =±52x. ∴双曲线焦点到其渐近线的距离d =⎪⎪⎪⎪⎪⎪35254+1= 5.【答案】 A二、填空题6.在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________. 【解析】 ∵c 2=m +m 2+4,∴e 2=c 2a 2=m +m 2+4m =5, ∴m 2-4m +4=0,∴m =2.【答案】 27.已知中心在原点的双曲线C ,过点P(2,3)且离心率为2,则双曲线C 的标准方程为________.【解析】 ∵双曲线C 的离心率为2,∴2=1+b 2a 2, ∴b a =3,∴可设双曲线C 的标准方程为x 2a 2-y 23a 2=1或y 2a 2-x 23a2=1, 把P(2,3)代入得,a 2=3或a 2=53,∴所求双曲线C 的标准方程为x 23-y 29=1或y 253-x 25=1. 【答案】 x 23-y 29=1或y 253-x 25=1 8.(2014·青岛调研)设P 为直线y =b 3a x 与双曲线x 2a 2-y 2b 2=1(a >0,b >0)左支的交点,F 1是左焦点,PF 1垂直于x 轴,则双曲线的离心率e =________.【解析】 ∵直线y =b 3a x 与双曲线x 2a 2-y 2b 2=1相交, 由⎩⎪⎨⎪⎧y =b 3a x ,x 2a 2-y 2b 2=1消去y 得x =32a 4, 又PF 1垂直于x 轴,∴32a 4=c ,从而e =c a =324. 【答案】 324 三、解答题 9.已知椭圆D :x 250+y 225=1与圆M :x 2+(y -5)2=9,双曲线G 与椭圆D 有相同焦点,它的两条渐近线恰好与圆M 相切,求双曲线G 的方程.【解】 椭圆D 的两个焦点为F 1(-5,0),F 2(5,0),因而双曲线中心在原点,焦点在x 轴上,且c =5.设双曲线G 的方程为x 2a 2-y 2b2=1(a>0,b>0), ∴渐近线方程为bx±ay=0且a 2+b 2=25,又圆心M(0,5)到两条渐近线的距离为r =3. ∴|5a|b 2+a 2=3,得a =3,b =4,∴双曲线G 的方程为x 29-y 216=1. 10.(2014·广州联考)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).点M(3,m)在双曲线上.(1)求双曲线的方程;(2)求证:MF 1→·MF 2→=0;(3)求△F 1MF 2的面积.【解】 (1)∵e =2,则双曲线的实轴、虚轴相等.∴可设双曲线方程为x 2-y 2=λ.∵过点(4,-10),∴16-10=λ,即λ=6.∴双曲线方程为x 2-y 2=6.(2)证明 ∵MF 1→=(-3-23,-m),MF 2→=(23-3,-m).∴MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2,∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0,∴MF 1→·MF 2→=0.(3)△F 1MF 2的底|F 1F 2|=4 3.由(2)知m =± 3.∴△F 1MF 2的高h =|m|=3,∴S △F 1MF 2=12×43×3=6. B 组 能力提升1.(2013·重庆高考)设双曲线C 的中心为点O ,若有且只有一对相交于点O ,所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1,B 1和A 2,B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( )A.⎝⎛⎦⎥⎤233,2 B.⎣⎢⎡⎭⎪⎫233,2 C.⎝ ⎛⎭⎪⎫233,+∞ D.⎣⎢⎡⎭⎪⎫233,+∞ 【解析】 设双曲线的焦点在x 轴上,由题意该双曲线的一条渐近线的斜率k(k>0)必须满足33<k≤ 3. ∴33<b a ≤3,则13<b 2a2≤3. 由e 2=⎝ ⎛⎭⎪⎫c a 2=c 2a 2=1+b 2a 2, ∴43<e 2≤4,∴233<e≤2,故选A.【答案】 A2.已知双曲线x 2a -y 2b =1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为________.【解析】 由题意知b a =3,抛物线的准线方程为x =-6, 则c =6,由⎩⎪⎨⎪⎧b 2=3a 2,c 2=a 2+b 2,c 2=36,得⎩⎪⎨⎪⎧ a 2=9,b 2=27, ∴双曲线方程为x 29-y 227=1. 【答案】 x 29-y 227=1 3.设A ,B 分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程;(2)已知直线y =33x -2与双曲线的右支交于M ,N 两点,且在双曲线的右支上存在点D ,使OM →+ON →=tOD →,求t 的值及点D 的坐标.【解】 (1)由题意知a =23,∴一条渐近线为y =b 23x , 即bx -23y =0,∴|bc|b 2+12=3,结合c 2=a 2+b 2=b 2+12, ∴b 2=3,∴双曲线的方程为x 212-y 23=1. (2)设M(x 1,y 1),N(x 2,y 2),D(x 0,y 0),则x 1+x 2=tx 0,y 1+y 2=ty 0,将直线方程代入双曲线方程得x 2-163x +84=0,则x 1+x 2=163,y 1+y 2=12,∴⎩⎪⎨⎪⎧ x 0y 0=433,x 2012-y 203=1,∴⎩⎨⎧ x 0=43,y 0=3,∴t =4,点D 的坐标为(43,3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 第六节 双曲线一、选择题1.“ab <0”是“方程ax 2+by 2=c 表示双曲线”的 ( ) A .必要但不充分条件 B .充分但不必要条件 C .充分必要条件D .既不充分也不必要条件解析:若ax 2+by 2=c 表示双曲线,即x 2c a +y 2c b=1表示双曲线,则c 2ab <0,这就是说“ab <0”是必要条件,然而若ab <0,c 可以等于0,即“ab <0”不是充分条件.答案:A2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±33x ,若顶点到渐近线的距离为1,则双曲线的方程为( )A.x 24-3y 24=1B.3x 24-y24=1 C.x 24-y 24=1D.x 24-4y 23=1 解析:不妨设顶点(a,0)到直线3x -3y =0的距离为1,即3a3+9=1,解得a =2.又ba =33,所以b =233,所以双曲线的方程为x 24-3y24=1. 答案:A3. (2011·新课标全国卷)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为 ( )A. 2B. 3 C .2D .3解析:设双曲线C 的方程为x 2a 2-y 2b 2=1,焦点F (-c,0),将x =-c 代入x 2a 2-y 2b 2=1可得y 2=b 4a 2,所以|AB |=2×b 2a =2×2a .∴b 2=2a 2.c 2=a 2+b 2=3a 2.∴e =ca= 3.答案:B4.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则1PA · 2PF 的最小值为 ( )A .-2B .-8116C .1D .0解析:设点P (x ,y ),其中x ≥1.依题意得A 1(-1,0)、F 2(2,0),则有y 23=x 2-1,y 2=3(x 2-1), 1PA · 2PF =(-1-x ,-y )·(2-x ,-y )=(x +1)(x -2)+y 2=x 2+3(x 2-1)-x -2=4x 2-x -5=4(x -18)2-8116,其中x ≥1.因此,当x =1时, 1PA · 2PF 取得最小值-2.答案:A5.设椭圆x 22+y 2m =1和双曲线y 23-x 2=1的公共焦点分别为F 1、F 2,P 为这两条曲线的一个交点,则cos ∠F 1PF 2的值为 ( )A.14 B.13 C.23D .-13解析:由题意可知m -2=3+1,解得m =6.法一:由椭圆与双曲线的对称性,不妨设点P 为第一象限内的点,F 1(0,-2),F 2(0,2),联立x 22+y 26=1与y 23-x 2=1组成方程组,解得P (22,322).所以由两点距离公式计算得|PF 1|=6+3,|PF 2|=6- 3.又|F 1F 2|=4,所以由余弦定理得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=13.法二:由椭圆与双曲线的对称性,不妨设点P 为第一象限内的点,F 1(0,-2).F 2(0,2),由题意得|PF 1|+|PF 2|=26,|PF 1|-|PF 2|=23,|F 1F 2|=4,解得|PF 1|=6+3,|PF 2|=6-3,同上由余弦定理可得cos ∠F 1PF 2=13.答案:B6. (2011·东城区模拟)已知双曲线mx 2-y 2=1(m >0)的右顶点为A ,若该双曲线右支上存在两点B 、C 使得△ABC 为等腰直角三角形,则实数m 的值可能为 ( )A.12 B .1 C .2D .3解析:由题意可得,点A 的坐标为(1m,0),设直线AB 的方程为y =tan 45°(x -1m),即x =y +1m,与双曲线方程联立可得,⎩⎪⎨⎪⎧x =y +1mmx 2-y 2=1,则(m -1)y 2+2my =0,解得y =0或y =2m 1-m .由题意知y =2m 1-m 为B 点的纵坐标,且满足2m1-m>0,即0<m <1,根据选项知. 答案:A 二、填空题7. (2011·辽宁高考)已知点(2,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,C 的焦距为4,则它的离心率为________.解析:根据点(2,3)在双曲线上,可以很容易建立一个关于a ,b 的等式,即4a 2-9b2=1,考虑到焦距为4,这也是一个关于c 的等式,2c =4,即c =2.再有双曲线自身的一个等式a 2+b 2=c 2,这样,三个方程,三个未知量,可以解出a =1,b =3,c =2,所以,离心率e =2.答案:28.已知双曲线kx 2-y 2=1(k >0)的一条渐近线与直线2x +y +1=0垂直,那么双曲线的离心率为________;渐近线方程为____________.解析:双曲线kx 2-y 2=1的渐近线方程是y =±kx .∵双曲线的一条渐近线与直线2x+y +1=0垂直,∴k =12,k =14,∴双曲线的离心率为 e =1k+11k=52,渐近线方程为12x ±y =0.答案:52 12x ±y =0 9.P 为双曲线x 2-y 215=1右支上一点,M 、N 分别是圆(x +4)2+y 2=4和(x -4)2+y 2=1上的点,则|PM |-|PN |的最大值为________.解析:双曲线的两个焦点为F 1(-4,0)、F 2(4,0),为两个圆的圆心,半径分别为r 1=2,r 2=1,|PM |max =|PF 1|+2,|PN |min =|PF 2|-1,故|PM |-|PN |的最大值为(|PF 1|+2)-(|PF 2|-1)=|PF 1|-|PF 2|+3=5.答案:5 三、解答题10.已知双曲线关于两坐标轴对称,且与圆x 2+y 2=10相交于点P (3,-1),若此圆过点P 的切线与双曲线的一条渐近线平行,求此双曲线的方程.解:切点为P (3,-1)的圆x 2+y 2=10的切线方程是3x -y =10. ∵双曲线的一条渐近线与此切线平行,且双曲线关于两坐标轴对称, ∴两渐近线方程为3x ±y =0.设所求双曲线方程为9x 2-y 2=λ(λ≠0).∵点P (3,-1)在双曲线上,代入上式可得λ=80, ∴所求的双曲线方程为x 2809-y 280=1.11.双曲线x 2a 2-y 2b2=1(a >1,b >0)的焦距为2c ,直线l 过点(a,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c ,求双曲线的离心率e 的取值范围.解:直线l 的方程为x a +y b=1,即bx +ay -ab =0.由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离d 1=b a -1a 2+b 2,同理得到点(-1,0)到直线l 的距离d 2=b a +1a 2+b 2.∴s =d 1+d 2=2aba 2+b2=2abc.由s ≥45c ,得2ab c ≥45c ,即5a c 2-a 2≥2c 2.于是得5e 2-1≥2e 2,即4e 4-25e 2+25≤0. 解不等式,得54≤e 2≤5.由于e >1,∴e 的取值范围是[52,5]. 12. (2011·江西高考)P (x 0,y 0)(x 0≠±a )是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)上一点,M 、N 分别是双曲线E 的左、右顶点,直线PM ,PN 的斜率之积为15.(1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A ,B 两点,O 为坐标原点,C 为双曲线上一点,满足 OC =λ OA + OB ,求λ的值.解:(1)点P (x 0,y 0)(x ≠±a )在双曲线x 2a 2-y 2b 2=1上,有x 20a 2-y 20b2=1. 由题意又有y 0x 0-a ·y 0x 0+a =15,可得a 2=5b 2,c 2=a 2+b 2=6b 2, 则e =c a =305. (2)联立⎩⎪⎨⎪⎧x 2-5y 2=5b2y =x -c ,得4x 2-10cx +35b 2=0,设A (x 1,y 1),B (x 2,y 2), 则⎩⎪⎨⎪⎧x 1+x 2=5c 2,x 1x 2=35b24.①设 OC =(x 3,y 3), OC=λOA + OB ,即⎩⎪⎨⎪⎧x 3=λx 1+x 2,y 3=λy 1+y 2.又C 为双曲线上一点,即x 23-5y 23=5b 2, 有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2.化简得:λ2(x 21-5y 21)+(x 22-5y 22)+2λ(x 1x 2-5y 1y 2)=5b 2, 又A (x 1,y 1),B (x 2,y 2)在双曲线上,所以x 21-5y 21=5b 2,x 22-5y 22=5b 2.由①式又有x 1x 2-5y 1y 2=x 1x 2-5(x 1-c )(x 2-c )= -4x 1x 2+5c (x 1+x 2)-5c 2=10b 2, 得:λ2+4λ=0,解出λ=0,或λ=-4。