高三数学复习教案第四章三角函数新人教版必修433

合集下载

三角函数教案(高三数学教案)

三角函数教案(高三数学教案)

三角函数教案三角函数教案(精选4篇)三角函数教案篇11、锐角三角形中,任意两个内角的和都属于区间 ,且满足不等式:即:一角的正弦大于另一个角的余弦。

2、若 ,则 ,3、的图象的对称中心为 ( ),对称轴方程为。

4、的图象的对称中心为 ( ),对称轴方程为。

5、及的图象的对称中心为 ( )。

6、常用三角公式:有理公式: ;降次公式: , ;万能公式: , , (其中 )。

7、辅助角公式: ,其中。

辅助角的位置由坐标决定,即角的终边过点。

8、时, 。

9、。

其中为内切圆半径, 为外接圆半径。

特别地:直角中,设c为斜边,则内切圆半径 ,外接圆半径。

10、的图象的图象( 时,向左平移个单位, 时,向右平移个单位)。

11、解题时,条件中若有出现,则可设 ,则。

12、等腰三角形中,若且 ,则。

13、若等边三角形的边长为 ,则其中线长为 ,面积为。

14、 ;三角函数教案篇2二、复习要求1、三角函数的概念及象限角、弧度制等概念;2、三角公式,包括诱导公式,同角三角函数关系式和差倍半公式等;3、三角函数的图象及性质。

三、学习指导1、角的概念的推广。

从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。

这样一来,在直角坐标系中,当角的终边确定时,其大小不一定(通常把角的始边放在x轴正半轴上,角的顶点与原点重合,下同)。

为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成k·3600 α的形式,特例,终边在x轴上的角集合{α|α=k·1800,k∈z},终边在y轴上的角集合{α|α=k·1800 900,k∈z},终边在坐标轴上的角的集合{α|α=k·900,k∈z}。

在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小。

弧度制是角的度量的重要表示法,能正确地进行弧度与角度的换算,熟记特殊角的弧度制。

在弧度制下,扇形弧长公式l=|α|r,扇形面积公式 ,其中α为弧所对圆心角的弧度数。

高三数学复习教案 第四章《三角函数》(新人教版必修4)07

高三数学复习教案 第四章《三角函数》(新人教版必修4)07

第七教时教材:三角函数的值在各象限的符号目的:通过启发让学生根据三角函数的定义,确定三角函数的值在各象限的符号,并由此熟练地处理一些问题。

过程:一、复习三角函数的定义;用单位圆中的线段表示三角函数值 二、提出课题 然后师生共同操作:1.第一象限:0,0.>>y x ∴sin α>0,cos α>0,tan α>0,cot α>0,sec α>0,csc α>0 第二象限:0,0.><y x ∴sin α>0,cos α<0,tan α<0,cot α<0,sec α<0,csc α>0 第三象限:0,0.<<y x ∴sin α<0,cos α<0,tan α>0,cot α>0,sec α<0,csc α<0 第四象限:0,0.<>y x ∴sin α<0,cos α>0,tan α<0,cot α<0,sec α>0,csc α<0记忆法则:ααcsc sin 为正 全正ααcot tan 为正ααsec cos 为正2.由定义:sin(α+2k π)=sin α cos(α+2k π)=cos α tan(α+2k π)=tan α cot(α+2k π)=co α sec (α+2k π)=sec α csc (α+2k π)=csc α三、例一 (P18例三 略)例二 (P18例四)求证角θ为第三象限角的充分条件是⎩⎨⎧><0tan 0sin ϑθ )2()1(证:必要性:若θ是第三象限角,则必有sin θ<0,tan θ>0充分性:若⑴ ⑵ 两式成立 ∵若sin θ<0 则θ角的终边可能位于第三、第四象限,也可能位于y 轴的非正半轴 若tan θ>0,则角θ的终边可能位于第一或第三象限 ∵⑴ ⑵ 都成立 ∴θ角的终边只能位于第三象限 ∴角θ为第三象限角例三 (P19 例五 略) 四、练习:1. 若三角形的两内角α,β满足sin αcos β<0,则此三角形必为…………(B )A :锐角三角形B :钝角三角形C :直角三角形D :以上三种情况都可能2. 若是第三象限角,则下列各式中不成立的是……………………………(B )A :sin α+cos α<0B :tan α-sin α<0C :cos α-cot α<0D :cot αcsc α<03. 已知θ是第三象限角且02cos <ϑ,问2ϑ是第几象限角?解:∵2)12()12(ππϑπ++<<+k k )(Z k ∈∴4322ππθππ+<<+k k )(Z k ∈ 则2ϑ是第二或第四象限角又∵02cos <ϑ 则2ϑ是第二或第三象限角∴2ϑ必为第二象限角4.已知1212sin <⎪⎭⎫ ⎝⎛ϑ,则θ为第几象限角?解: 由1212sin <⎪⎭⎫⎝⎛ϑ∴sin2θ>0∴2k π<2θ<2k π+π )(Z k ∈ ∴k π<θ<k π+2π∴θ为第一或第三象限角 五、小结:符号法则,诱导公式六、作业: 课本 P19 练习4,5,6P20-21习题4.3 6-10。

人教版高中数学《三角函数》全部教案

人教版高中数学《三角函数》全部教案

三角函数第一教时教材:角的概念的推广目的:要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

过程:一、提出课题:“三角函数”回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。

相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。

二、角的概念的推广1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”2.讲解:“旋转”形成角(P4)突出“旋转”注意:“顶点”“始边”“终边”“始边”往往合于x轴正半轴3.“正角”与“负角”——这是由旋转的方向所决定的。

记法:角α或α∠可以简记成α4.由于用“旋转”定义角之后,角的范围大大地扩大了。

1︒角有正负之分如:α=210︒β=-150︒γ=-660︒2︒角可以任意大实例:体操动作:旋转2周(360︒×2=720︒)3周(360︒×3=1080︒)3︒还有零角一条射线,没有旋转三、关于“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)例如:30︒390︒-330︒是第Ⅰ象限角300︒-60︒是第Ⅳ象限角585︒1180︒是第Ⅲ象限角-2000︒是第Ⅱ象限角等四、关于终边相同的角1.观察:390︒,-330︒角,它们的终边都与30︒角的终边相同2.终边相同的角都可以表示成一个0︒到360︒的角与)(Z k k ∈个周角的和 390︒=30︒+360︒ )1(=k-330︒=30︒-360︒ )1(-=k 30︒=30︒+0×360︒)0(=k1470︒=30︒+4×360︒ )4(=k-1770︒=30︒-5×360︒ )5(-=k3.所有与α终边相同的角连同α在内可以构成一个集合 {}Z k k S ∈⋅+==,360| αββ即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和 4.例一 (P5 略) 五、小结: 1︒ 角的概念的推广用“旋转”定义角 角的范围的扩大 2︒“象限角”与“终边相同的角”第二教时教材:弧度制目的:要求学生掌握弧度制的定义,学会弧度制与角度制互化,并进而建立角的集合与实数集R 一一对应关系的概念。

人教版高中数学必修四教案三角函数

人教版高中数学必修四教案三角函数

1.1. 1 任意角教学目标1、知识与技能目标:理解任意角的概念(包括正角、负角、零角) 与区间角的概念.2、过程与能力目标:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.3、情感与态度目标1.提高学生的推理能力; 2.培养学生应用意识. 教学重点:任意角概念的理解;区间角的集合的书写.教学难点:终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课:1.角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类:④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度?2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.例1.如图⑴⑵中的角分别属于第几象限角?例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角. ⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°; 3.探究:终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k·360 ° ,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意:⑴ k ∈Z.⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷ 角α + k·720 °与角α终边相同,但不能表示与角α终边相同的所有角.正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角 ⑵B 1 y⑴O x45° B 2O x B 3y30° 60o负角:按顺时针方向旋转形成的角 始边终边 顶点 A O B例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角. ⑴-120°;⑵640 °;⑶-950°12'.例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) .例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法.1.1.2弧度制(一)教学目标1、 知识与技能目标:理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数.2、 过程与能力目标:能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题3、 情感与态度目标:通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点:弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点:“角度制”与“弧度制”的区别与联系. 教学过程一、复习角度制:初中所学的角度制是怎样规定角的度量的? 规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考:(1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗? (2)引导学生完成P6的探究并归纳: 弧度制的性质: ①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=rr③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:︒=3602π; ︒=180π;rad 01745.01180≈︒=π;︒=n rad n 180π. 5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用. 6.特殊角的弧度7.弧长公式rl a =弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30'化成弧度. 例2.把rad 53π化成度. 例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2kπ(k ∈Z )的形式:319)1(π;︒-315)2(. 例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-. 解: (1),672319πππ+= 而67π是第三象限的角,193p\是第三象限角.(2) 315316,666p p pp -=-+\-Q 是第二象限角. .,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R, ∴扇形的圆心角大小为R l rad, ∴扇形面积lR R R l S 21212=⋅=.证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180Rn l π=,O R l∴R l R R n S ⋅=⋅⋅=2118021π. 可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.22121:R lR S α==扇形面积公式4-1.2.1任意角的三角函数(三)教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。

高中必修四《三角函数》教案

高中必修四《三角函数》教案

高中必修四《三角函数》教案高中必修四《三角函数》教案一、教学目标1、知识与技能(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。

2、过程与方法通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。

3、情感态度与价值观通过本节的学习,让学生对周期现象有一个初步的认识,感受到生活中处处都有数学,从而激发学生的学习热情,培养学生学好数学的信心,学会从联系的角度去理解事物。

二、教学重难点重点:如果你感觉到周期现象的存在,你就会判断是不是周期现象。

难点:周期函数概念的理解及其简单应用。

三、教学工具投影仪四、教学过程【创设情境,揭示课题】同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。

众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。

再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。

所以,我们这节课要研究的主要内容就是周期现象与周期函数。

(板书课题)【探究新知】1。

我们已经知道,潮汐和时钟是周期性现象。

请大家观察钱塘江潮汐的图片(投影图),注意波浪是如何变化的。

可以看出,每隔一段时间就会反复出现波浪,这也是一种周期性现象。

请举例说明你生活中的周期性现象。

(单摆运动,季节变化等。

)(板书:一、我们生活中的周期现象)。

【免费下载】新人教B版高中数学必修433三角函数的积化和差与和差化积教案

【免费下载】新人教B版高中数学必修433三角函数的积化和差与和差化积教案

2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2013届高三数学复习教案第四章《三角函数》(新人教版必修4)03

第三教时教材:弧度制目的:要求学生掌握弧度制的定义,学会弧度制与角度制互化,并进而建立角的集合与实数集R 一一对应关系的概念。

过程:一、回忆(复习)度量角的大小第一种单位制—角度制的定义。

二、提出课题:弧度制—另一种度量角的单位制它的单位是rad 读作弧度定义:长度等于半径长的弧所对的圆心角称为1弧度的角。

如图:∠AOB=1rad∠AOC=2rad周角=2πrad1.正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是02.角α的弧度数的绝对值 rl =α(l 为弧长,r 为半径) 3.用角度制和弧度制来度量零角,单位不同,但数量相同(都是0)用角度制和弧度制来度量任一非零角,单位不同,量数也不同。

三、角度制与弧度制的换算抓住:360︒=2πrad ∴180︒=π rad∴ 1︒=rad rad 01745.0180≈π '185730.571801 =≈⎪⎭⎫ ⎝⎛=πrad 例一 把'3067 化成弧度解:⎪⎭⎫ ⎝⎛=2167'3067 ∴ rad rad ππ832167180'3067=⨯= 例二 把rad π53化成度 解: 1081805353=⨯=rad π o rC 2rad 1rad r l=2r o A A B注意几点:1.度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;2.今后在具体运算时,“弧度”二字和单位符号“rad ”可以省略 如:3表示3rad sin π表示πrad 角的正弦3.一些特殊角的度数与弧度数的对应值应该记住(见课本P9表)4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

任意角的集合 实数集R四、练习(P11 练习1 2)例三 用弧度制表示:1︒终边在x 轴上的角的集合 2︒终边在y 轴上的角的集合 3︒终边在坐标轴上的角的集合解:1︒终边在x 轴上的角的集合 {}Z k k S ∈==,|1πββ2︒终边在y 轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈+==Z k k S ,2|2ππββ 3︒终边在坐标轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈==Z k k S ,2|3πββ 例四 老《精编》P118-119 4、5、6、7五、 小结:1.弧度制定义 2.与弧度制的互化六、作业: 课本 P11 练习 3、4 P12习题4.2 2、3。

高中数学必修4三角函数教案

任意角的三角函数一、教学目标1、知识目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切) 的定义,根据定义探讨出三角函数值在各个象限的符号,掌握同一个角的不同三角函数之间的关系。

2、能力目标:能应用任意角的三角函数定义求任意角的三角函数值。

3、情感目标:培养数形结合的思想。

二、教材分析1、教学重点:理解任意角三角函数(正弦、余弦、正切)的定义。

2、教学难点:从函数角度理解三角函数。

3、教学关键:利用数形结合的思想。

三、教学形式:讲练结合法四、课时计划:2节课五、教具:圆规、尺子六、教学过程(一)引入我们已经学过锐角三角函数,知道他们都是以锐角为自变量,以比值 为函数值的函数,你能用直角坐标系中的终边上点的坐标来表示锐角 三角函数吗?设锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,那么它 的终边在第一象限,在α的终边上任取一点P (a,b ),它与原点的距离 r=22b a +>0.根据初中学过的三角函数定义,我们有αsin =r b , ra αcos =a b αtan =,取r=1,则ab tan αa,cos αb,αsin ===,引入单位圆概念。

(二)新课1、设α是以任意角,它的终边与单位圆交于P (x,y ),那么:(1)y 叫做α的正弦,记作αsin , 即y αsin =; (2) x 叫做α的余弦,记作αcos ,即x αcos =;(3) x y叫做α的正切,记作αtan ,即xy αtan =)0(≠x . 注:用单位圆定义的好处就在于r=1,点的横坐标表示余弦值,纵坐标 表示正弦值。

2、根据任意角的三角函数定义,得到三种函数值在各象限的符号。

通过观察发现:第一象限全为正,第二象限只有正弦为正,第三象限只有正切为正,第四象限只有余弦为正。

总结出一条法则:一全正,二正弦,三正切,四余弦。

注:这有利于培养学生观察和思考的能力,以方便记忆。

3、利用勾股定理可以推出:1cos sin 22=+αα,根据三角函数定义,当)(2z k k ∈+≠ππα时,有αααtan cos sin =。

高三数学三角函数复习教案

高三数学三角函数复习教案函数的知识是高中里面比较重要的知识,教师需要好的教案来教导学生,今天小编在这里整理了一些高三数学三角函数复习教案,我们一起来看看吧!高三数学三角函数复习教案1“函数的单调性”教案【教学目标】【知识目标】:使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.【德育目标】通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念、判断及证明. 函数的单调性是学生第一次接触用严格的逻辑语言证明函数的性质,并在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际应用,【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 由于判断或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判断或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下(1)函数的单调性起着承前启后的作用。

一方面,初中数学的许多内容在解决函数的某些问题中得到了充分运用,函数的单调性与前一节内容函数的概念和图像知识的延续有密切的联系;函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。

(2)函数的单调性是培养学生数学能力的良好题材,这节课通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确定义,明确指出函数的增减性是相对于某个区间来说的。

高考数学一轮复习 第四章 三角函数、解三角形 4.4 三角函数的图象与性质教学案

第四节 三角函数的图象与性质[最新考纲] 1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎪⎫-π2,π2内的单调性.1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]图象的五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0). 余弦函数y =cos x ,x ∈[0,2π]图象的五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1). 2.正弦函数、余弦函数、正切函数的图象与性质函数y =sin x y =cos x y =tan x图象定义域 R R ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z值域[-1,1] [-1,1]R单调性递增区间:⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2,k ∈Z ,递减区间:递增区间: [2k π-π,2k π],k ∈Z ,递减区间: [2k π,2k π+π],递增区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2,k ∈Z1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.函数具有奇偶性的充要条件函数y=A sin(ωx+φ)(x∈R)是奇函数⇔φ=kπ(k∈Z);函数y=A sin(ωx+φ)(x∈R)是偶函数⇔φ=kπ+π2(k∈Z);函数y=A cos(ωx+φ)(x∈R)是奇函数⇔φ=kπ+π2(k∈Z);函数y=A cos(ωx+φ)(x∈R)是偶函数⇔φ=kπ(k∈Z).一、思考辨析(正确的打“√”,错误的打“×”)(1)函数y =sin x 的图象关于点(k π,0)(k ∈Z )中心对称.( )(2)正切函数y =tan x 在定义域内是增函数. ( )(3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( )(4)y =sin |x |与y =|sin x |都是周期函数. ( ) [答案](1)√ (2)× (3)× (4)× 二、教材改编1.函数y =tan 2x 的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π4,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π2+π8,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π+π8,k ∈ZD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈ZD [由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,∴y =tan 2x的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z.] 2.函数f (x )=cos ⎝⎛⎭⎪⎫2x +π4的最小正周期是 .π [T =2π2=π.]3.y =sin ⎝ ⎛⎭⎪⎫2x -π4的单调减区间是 .⎣⎢⎡⎦⎥⎤3π8+k π,7π8+k π(k ∈Z ) [由π2+2k π≤2x -π4≤3π2+2k π,k ∈Z 得3π8+k π≤x ≤7π8+k π,k ∈Z .] 4.y =3sin ⎝⎛⎭⎪⎫2x -π6在区间上的值域是 .考点1 三角函数的定义域和值域 1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.2.求三角函数最值或值域的常用方法(1)直接法:直接利用sin x 和cos x 的值域求解.(2)化一法:把所给三角函数化为y =A sin(ωx +φ)+k 的形式,由正弦函数单调性写出函数的值域.(3)换元法:把sin x ,cos x ,sin x cos x 或sin x ±cos x 换成t ,转化为二次函数求解.1.函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是()D [由正切函数的定义域,得2x +π6≠k π+π2,k ∈Z ,即x ≠k π2+π6(k ∈Z ),故选D.]2.(2019·全国卷Ⅰ)函数f (x )=sin ⎝⎛⎭⎪⎫2x +3π2-3cos x的最小值为 .-4[f (x )=sin ⎝⎛⎭⎪⎫2x +3π2-3cos x =-cos 2x -3cos x =-2cos 2x -3cos x +1,令cos x =t ,则t ∈[-1,1].f (t )=-2t 2-3t +1=-2⎝⎛⎭⎪⎫t +342+178,易知当t =1时,f (t )min =-2×12-3×1+1=-4. 故f (x )的最小值为-4.] 3.已知函数f (x )=2a sin ⎝⎛⎭⎪⎫2x +π6+a +b (a <0)的定义域为⎣⎢⎡⎦⎥⎤0,π2,值域为[-5,1],则a +b = .-1 [因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,所以sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1.因为a <0,所以f (x )∈[3a +b ,b ].因为函数的值域为[-5,1],所以3a +b =-5,b =1,所以a =-2,所以a +b =-1.]4.函数y =sin x -cos x +sin x cos x 的值域为 .[设t =sin x -cos x ,则t 2=sin 2x +cos 2x-2sin x ·cos x ,sin x cos x =1-t22,且-2≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1,t ∈[-2,2].当t =1时,y max =1;当t =-2时,y min =-12- 2.∴函数的值域为.]求解三角函数的值域(最值)常见的几种类型(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值).(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值).(3)形如y =a sin 3x +b sin 2x +c sin x +d ,类似于(2)进行换元,然后用导数法求最值.考点2 三角函数的单调性(1)形如y =A sin(ωx +φ)的函数的单调性问题,一般是将ωx +φ看成一个整体,再结合图象利用y =sin x 的单调性求解;(2)如果函数中自变量的系数为负值,要根据诱导公式把自变量系数化为正值,再确定其单调性.求三角函数的单调性 (1)函数f (x )=tan ⎝⎛⎭⎪⎫2x -π3的单调递增区间是( )(2)(2019·大连模拟)函数y =12sin x +32cos x 的单调递增区间是 .(1)B (2) [(1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ),故选B.(2)∵y =12sin x +32cos x =sin ⎝⎛⎭⎪⎫x +π3,由2k π-π2≤x +π3≤2k π+π2(k ∈Z ),解得2k π-5π6≤x ≤2k π+π6(k ∈Z ).∴函数的单调递增区间为 (k ∈Z ),又x ∈,∴单调递增区间为.]本例(2) 在整体求得函数y =12sin x +32cos x 的增区间后,采用对k 赋值的方式求得x ∈上的区间.根据函数的单调性求参数 (1)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A .(0,2]B.⎝ ⎛⎦⎥⎤0,12C.⎣⎢⎡⎦⎥⎤12,34 D.⎣⎢⎡⎦⎥⎤12,54 (2)(2018·全国卷Ⅱ)若f (x )=cos x -sin x 在[0,a ] 是减函数,则a 的最大值是( )A.π4B.π2C.3π4D .π(1)D (2)C [(1)由2k π+π2≤ωx +π4≤2k π+3π2,得2k πω+π4ω≤x ≤2k πω+5π4ω,k ∈Z , 因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,所以⎩⎪⎨⎪⎧2k πω+π4ω≤π2,2k πω+5π4ω≥π,解得⎩⎪⎨⎪⎧ω≥4k +12,ω≤2k +54.因为k ∈Z ,ω>0,所以k =0,所以12≤ω≤54,即ω的取值范围为⎣⎢⎡⎦⎥⎤12,54.故选D.(2)f (x )=cos x -sin x =-2sin ⎝⎛⎭⎪⎫x -π4,当x -π4∈⎣⎢⎡⎦⎥⎤-π2,π2,即x ∈⎣⎢⎡⎦⎥⎤-π4,3π4时,sin ⎝ ⎛⎭⎪⎫x -π4单调递增,-2sin ⎝⎛⎭⎪⎫x -π4单调递减,∴⎣⎢⎡⎦⎥⎤-π4,3π4是f (x )在原点附近的单调递减区间,结合条件得[0,a ]⊆⎣⎢⎡⎦⎥⎤-π4,3π4,∴a ≤3π4,即a max =3π4,故选C.]已知单调区间求参数范围的3种方法子集法求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解反子集法由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解周期性法由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解1.若函数f (x )=sin ωx (ω>0)在区间上单调递增,在区间上单调递减,则ω= .32 [由已知得T 4=π3,∴T =4π3,∴ω=2πT =32.]2.函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调减区间为 .[由已知,得函数为y =-sin ⎝ ⎛⎭⎪⎫2x -π3,欲求函数的单调减区间,只需求y =sin ⎝⎛⎭⎪⎫2x -π3的单调增区间即可.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调减区间为(k ∈Z ).]考点3 三角函数的周期性、奇偶性、对称性求解三角函数y =sin(ωx +φ)(ω>0)的周期性、奇偶性、对称性问题,其实质都是根据y =sin x 的对应性质,利用整体代换的思想求解.三角函数的周期性(1)(2019·全国卷Ⅱ)下列函数中,以π2为周期且在区间⎝ ⎛⎭⎪⎫π4,π2单调递增的是( )A .f (x )=|cos 2x |B .f (x )=|sin 2x |C .f (x )=cos|x |D .f (x )=sin|x |(2)若函数f (x )=2tan ⎝⎛⎭⎪⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为 .(1)A (2)2或3 [(1)对于选项A ,作出y =|cos 2x |的部分图象,如图1所示,则f (x )在⎝ ⎛⎭⎪⎫π4,π2上单调递增,且最小正周期T=π2,故A 正确.对于选项B ,作出f (x )=|sin 2x |的部分图象,如图2所示,则f (x )在⎝ ⎛⎭⎪⎫π4,π2上单调递减,且最小正周期T =π2,故B 不正确.对于选项C ,∵f (x )=cos|x |=cos x ,∴最小正周期T =2π,故C 不正确.对于选项D ,作出f (x )=sin|x |的部分图象,如图3所示.显然f (x )不是周期函数,故D 不正确.故选A.图1 图2]图3(2)由题意得,1<πk <2,∴k <π<2k ,即π2<k <π,又k ∈Z ,∴k =2或3.]公式莫忘绝对值,对称抓住“心”与“轴”(1)公式法求周期①正弦型函数f (x )=A sin(ωx +φ)+B 的周期T =2π|ω|;②余弦型函数f (x )=A cos(ωx +φ)+B 的周期T =2π|ω|;③正切型函数f (x )=A tan(ωx +φ)+B 的周期T =π|ω|.(2)对称性求周期①两对称轴距离的最小值等于T2;②两对称中心距离的最小值等于T2;③对称中心到对称轴距离的最小值等于T4.(3)特征点法求周期①两个最大值点之差的最小值等于T ; ②两个最小值点之差的最小值等于T ; ③最大值点与最小值点之差的最小值等于T2.特征点法求周期实质上就是由图象的对称性求周期,因为最值点与函数图象的对称轴相对应.(说明:此处的T 均为最小正周期)三角函数的奇偶性 已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ,φ∈(0,π).(1)若f (x )为偶函数,则φ= ; (2)若f (x )为奇函数,则φ= .(1)56π (2)π3 [(1)因为f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ为偶函数,所以-π3+φ=k π+π2,k ∈Z ,又因为φ∈(0,π),所以φ=5π6.(2)因为f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ为奇函数,所以-π3+φ=k π,k ∈Z ,又φ∈(0,π), 所以φ=π3.]若f (x )=A sin(ωx +φ)(A ,ω≠0),则①f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );②f (x )为奇函数的充要条件是φ=k π(k ∈Z ).三角函数的对称性 (1)已知函数f (x )=2sin ⎝⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期为4π,则该函数的图象( )A .关于点⎝ ⎛⎭⎪⎫π3,0对称B .关于点⎝ ⎛⎭⎪⎫5π3,0对称C .关于直线x =π3对称D .关于直线x =5π3对称(2)已知函数y =sin(2x +φ)⎝⎛⎭⎪⎫-π2<φ<π2的图象关于直线x=π3对称,则φ的值为 .(1)B (2)-π6 [(1)因为函数f (x )=2sin ⎝⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期是4π,而T =2πω=4π,所以ω=12,即f (x )=2sin ⎝ ⎛⎭⎪⎫x 2+π6.令x 2+π6=π2+k π(k ∈Z ),解得x =2π3+2k π(k ∈Z ), 故f (x )的对称轴为x =2π3+2k π(k ∈Z ),令x 2+π6=k π(k ∈Z ),解得x =-π3+2k π(k ∈Z ). 故f (x )的对称中心为⎝ ⎛⎭⎪⎫-π3+2k π,0(k ∈Z ),对比选项可知B正确.(2)由题意得f ⎝ ⎛⎭⎪⎫π3=sin ⎝⎛⎭⎪⎫2π3+φ=±1, ∴2π3+φ=k π+π2(k ∈Z ),∴φ=k π-π6(k ∈Z ).∵φ∈⎝⎛⎭⎪⎫-π2,π2,∴φ=-π6.]三角函数图象的对称轴和对称中心的求解方法若求f (x )=A sin(ωx +φ)(ω≠0)图象的对称轴,则只需令ωx +φ=π2+k π(k ∈Z ),求x ;若求f (x )=A sin(ωx +φ)(ω≠0)图象的对称中心的横坐标,则只需令ωx +φ=k π(k ∈Z ),求x .1.设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递减D [A 项,因为f (x )=cos ⎝⎛⎭⎪⎫x +π3的周期为2k π(k ∈Z ),所以f (x )的一个周期为-2π,A 项正确;B 项,因为f (x )=cos ⎝⎛⎭⎪⎫x +π3图象的对称轴为直线x =k π-π3(k ∈Z ),所以y =f (x )的图象关于直线x =8π3对称,B 项正确;C项,f (x +π)=cos ⎝⎛⎭⎪⎫x +4π3.令x +4π3=k π+π2(k ∈Z ),得x =k π-5π6,当k =1时,x =π6,所以f (x +π)的一个零点为x =π6,C 项正确;D项,因为f (x )=cos ⎝⎛⎭⎪⎫x +π3的单调递减区间为2k π-π3,2k π+2π3(k ∈Z ),单调递增区间为2k π+2π3,2k π+5π3(k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是f (x )的单调递减区间,2π3,π是f (x )的单调递增区间,D 项错误.]2.(2019·成都模拟)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为4π,且∀x ∈R ,有f (x )≤f ⎝ ⎛⎭⎪⎫π3成立,则f (x )图象的一个对称中心坐标是( )A.⎝ ⎛⎭⎪⎫-2π3,0B.⎝ ⎛⎭⎪⎫-π3,0C.⎝ ⎛⎭⎪⎫2π3,0 D.⎝ ⎛⎭⎪⎫5π3,0 A [由f (x )=sin(ωx +φ)的最小正周期为4π,得ω=12.因为f (x )≤f ⎝ ⎛⎭⎪⎫π3恒成立,所以f (x )max =f ⎝ ⎛⎭⎪⎫π3,即12×π3+φ=π2+2k π(k ∈Z ), 由|φ|<π2,得φ=π3,故f (x )=sin ⎝ ⎛⎭⎪⎫12x +π3.令12x +π3=k π(k ∈Z ),得x =2k π-2π3(k ∈Z ), 故f (x )图象的对称中心为⎝ ⎛⎭⎪⎫2k π-2π3,0(k ∈Z ),当k =0时,f (x )图象的对称中心为⎝ ⎛⎭⎪⎫-2π3,0.]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三十三教时
教材:)sin(ϕ+ω=x A y 的图象,综合练习
目的:进一步熟悉参数ϕω、、A 对函数)sin(ϕ+ω=x A y 图象的影响,熟练掌握
由x y sin =的图象得到函数)()sin(R x k x A y ∈+ϕ+ω=的图象的方法。

过程:
一、复习提问:
1. 如何由x y sin =的图象得到函数)sin(ϕ+ω=x A y 的图象 2. 如何用五点法作)sin(ϕ+ω=x A y 的图象
3. ϕω、、A 对函数)sin(ϕ+ω=x A y 图象的影响作用 二、函数[)0,0(,),0),sin(>ω>+∞∈ϕ+ω=A x x A y 其中的物理意义:
函数表示一个振动量时:
A :这个量振动时离开平衡位置的最大距离,称为“振幅”
T :ωπ
=2T 往复振动一次所需的时间,称为“周期”
f :π
ω
==21T f 单位时间内往返振动的次数,称为“频率”
ϕ+ωx :称为相位
ϕ:x = 0时的相位,称为“初相”
三、1.函数)0,0(,),cos(>ω>∈ϕ+ω=A R x x A y 其中的简图可类似获得 2.口答:P66—67练习 4,5 P67—68习题4.9 1
四、处理《教学与测试》P123—124 第59课
例一、函数)2
||,0,0(),sin(π
<ϕ>ω>ϕ+ω=A x A y 的最小值是-2,其图象最
高点与最低点横坐标差是3π,又:图象过点(0,1),求函数解析式。

解:易知:A = 2 半周期π=32T ∴T = 6π 即π=ω
π
62 从而:
3
1=ω
设:)31
sin(2ϕ+=x y 令x = 0 有1sin 2=ϕ
又:2||π<ϕ ∴6
π
=ϕ ∴所求函数解析式为
)6
31sin(2π
+=x y
例二、设用五点法作出函数)4
2cos(3π
-=x y 的图象,
问:这个图象可由x y cos =的图象经过如何变换得到? 解:
例三、函数f (x )的横坐标伸长为原来的2倍,再向左平移
2
π
个单位所得的曲线是x y sin 21
=
的图象,试求)(x f y =的解析式。

解:将x y sin 21=的图象向右平移2π个单位得:)2sin(21π
-=x y
即x y cos 21-=的图象再将横坐标压缩到原来的21得:x y 2cos 2
1
-=
x x f y 2cos 2
1
)(-==∴
五、作业:课本P68—69 习题4.9 4,5
《教学与测试》P123—124 余下部分(选)。

相关文档
最新文档