浅谈反证法在初中数学解题中的应用

合集下载

反证法在初中数学解题中的运用分析

反证法在初中数学解题中的运用分析

反证法在初中数学解题中的运用分析反证法是数学解题中常用的一种证明方法,它通过对反命题进行证明,从而推出原命题的真实性。

在初中数学中,反证法的应用十分广泛,尤其在数学证明和解题过程中起到了重要作用。

本文将通过分析初中数学中常见的反证法运用案例,探讨反证法在数学解题中的运用及其意义。

1.证明题中的应用在初中数学中,证明题是数学学习中的一个重要内容。

而反证法在证明题中常常发挥重要作用。

证明某个命题成立时,我们可以采用反证法,假设命题不成立,然后进行推导证明出现矛盾,从而得出原命题的成立。

2. 数学问题的解答中的应用在初中数学解题中,反证法也常常用于解决一些复杂的数学问题。

有一个常见的数列问题:已知数列的通项公式为an=n^2+n+41,要证明对于任意的整数n,an不可能是素数。

采用反证法,假设存在一个整数n,使得an是素数,然后进行推导得出矛盾,从而证明了原命题的成立。

这个案例展示了反证法在解决数学问题中的应用。

二、反证法在初中数学解题中的意义1. 提高解题的逻辑性反证法在初中数学解题中的应用,可以提高解题的逻辑性,让解题过程更加清晰和严密。

在解题过程中,采用反证法可以让学生对问题进行更全面的思考,不仅能够得出结论,还能够通过推导和反驳的过程加深对问题的理解。

2. 培养学生的思维能力反证法的应用可以培养学生的逻辑思维能力和推理能力。

通过运用反证法,学生需要进行思考、推导和分析,从而加深对问题的理解和抽象能力。

这对学生的思维发展和逻辑能力的培养有着重要的意义。

反证法的应用可以提高学生解题的灵活性。

在解题过程中,遇到一些较为复杂的问题,可以尝试采用反证法来解决。

这种方法能够拓宽解题思路,增加解题的方式和途径,提高解题的灵活性。

三、结语反证法在初中数学解题中的运用极为广泛,它在证明题、数学问题解答及几何问题的解答中发挥着重要作用。

采用反证法不仅可以提高解题的逻辑性和灵活性,还能够培养学生的思维能力。

在教学实践中,应该重视反证法的教学和运用,让学生在解题过程中更加注重推理、严密、逻辑,从而提高数学学习的效果。

反证法在初中数学解题中的应用探讨

反证法在初中数学解题中的应用探讨

反证法在初中数学解题中的应用探讨反证法是初中数学中常用的一种解题方法。

它基于谬误论证法,假设待证明的命题不成立,通过推理论证推出一个不合理的结果,从而推翻了最初的假设,进而证明了待证明的命题成立。

下面将从几个典型的初中数学题目入手,探讨反证法在初中数学解题中的应用。

我们来看一个求解整数平方根的问题。

假设有一个正整数n,我们要证明如果n是平方数,那么它的平方根一定是整数。

我们可以采用反证法来证明这一结论。

假设n的平方根不是整数,即存在无法化简的最简分数\frac{a}{b},满足\sqrt{n}=\frac{a}{b},其中a和b互质。

不失一般性,假设a是奇数。

由于\sqrt{n}是n的平方根,我们可以推出n=\left(\frac{a}{b}\right)^2,进而得到n=\frac{a^2}{b^2}。

由于a是奇数,那么a^2也是奇数。

设a^2=k,则b^2n=k,由于k是奇数,所以n必然也是奇数。

我们知道平方数的性质是除以4的余数只可能是0或1,所以n的余数只可能是0或1,与n是奇数矛盾。

我们得出结论,若n是平方数,它的平方根一定是整数。

接下来,我们来看一个涉及最小值的问题。

假设有一个集合A,其中包含一些正整数。

现在要证明,如果将集合A中的两个元素交换位置,则整个集合中的元素之和不小于原来的和。

我们可以采用反证法来证明这一结论。

假设交换位置后,整个集合中的元素之和比原来的和要小。

设原来集合A中的两个元素分别为a和b,交换位置后变为b和a。

如果交换位置后的和比原来的和要小,那么必然有a-b>0,即a>b,否则a-b<0,即a<b。

不失一般性,假设a-b>0。

现在考虑将a减去某个正整数k,而将b加上k的情况。

由于a-b>0,所以存在一个正整数k,使得a-k>b+k。

考虑到a和b都是整数,那么我们可以得到一个更小的和,即a-k+(b+k)<a+b,这与交换位置后的和比原来的和要小矛盾。

反证法在初中数学解题中的应用探讨

反证法在初中数学解题中的应用探讨

反证法在初中数学解题中的应用探讨反证法是初中数学学习中常用的一种思维方式,通常在证明某些命题时会用到。

它的作用在于,通过假设命题不成立,然后通过推理得到矛盾,从而证明了命题是成立的。

下面就来探讨一下反证法在初中数学解题中的应用。

1. 证明逆命题、反命题在数学中,证明逆命题、反命题通常采用反证法。

例如,证明“如果两条直线平行,则它们的斜率相等”的逆命题“如果两条直线的斜率不相等,则它们不是平行的”以及反命题“如果两条直线不平行,则它们的斜率不相等”时,可以采用反证法。

首先假设逆命题和反命题是成立的,即假设存在两条斜率不相等的直线是平行或存在两条不平行的直线的斜率相等,然后通过推理得到矛盾的结论,从而证明了原命题是成立的。

2. 证明等式在初中数学中,证明等式也常常采用反证法。

例如,证明“对于任意实数x,x²≥0”时,可以采用反证法。

假设存在一个实数x,使得x²<0,然后通过x²的定义将其化简为(-x)²>0,即(-x)×(-x)>0,那么根据负数的定义可知,(-x)×(-x)>0的条件是x≠0,即(-x)²>0的条件是x≠0。

但是这与我们的假设矛盾,因为我们已经假设x²<0,而这意味着x²≥0不成立,由此证明了原命题是成立的。

3. 证明最大值或最小值假设存在实数a、b,使得a+b=8且ab>16,然后将ab表达式展开为a(8-a),化简后得到8a-a²>16,移项可得a²-8a+16<0,即(a-4)²<0,这与平方差公式是矛盾的,因此我们假设的ab>16是不成立的,即xy的最大值是16。

反证法在初中数学解题中的运用分析

反证法在初中数学解题中的运用分析

反证法在初中数学解题中的运用分析反证法是一种证明方法,它通过假设所要证明的结论不成立,然后推出与已知事实相矛盾的结论,从而得出所要证明的结论成立的结论。

在初中数学中,反证法被广泛应用。

它不仅能够帮助学生更加深刻地理解数学概念,还能够提高学生的思维能力和解决问题的能力。

首先,反证法在初中数学中常用于证明某些命题是假的。

比如,我们常常可以用反证法证明一些等式不成立。

例如,我们来看下面这个例子:已知 $a,b,c$ 为正整数,且 $a+b=c$,证明 $a^2+b^2$ 不能被 4 整除。

我们可以用反证法来证明这个命题。

假设 $a^2+b^2$ 能被 4 整除,那么 $a$ 和$b$ 一定都是偶数。

令 $a=2m$,$b=2n$,其中 $m$ 和 $n$ 是正整数,则:$a^2+b^2=4(m^2+n^2)$由于 $a+b=c$,因此:因此,$c$ 也是偶数。

但是,由于 $a,b,c$ 是正整数,因此 $c$ 不能为偶数。

因此,假设不成立,命题得证。

其次,反证法在初中数学中还常用于证明一些命题是正确的。

有时候,我们可以通过假设某些前提不成立,然后推出一个与已知事实不符的结论,从而证明原命题是正确的。

比如,我们来看下面这个例子:对于正整数 $n$,如果 $n^2$ 是奇数,则 $n$ 也是奇数。

由于 $n^2$ 是奇数,因此 $4m^2$ 也是奇数。

但是,我们知道,偶数的平方一定是偶数,因此 $4m^2$ 一定是偶数,与已知事实相矛盾。

因此,可以得出结论:如果$n^2$ 是奇数,则 $n$ 也是奇数。

反证法在初中数学解题中的应用探讨

反证法在初中数学解题中的应用探讨

反证法在初中数学解题中的应用探讨反证法是初中数学中常用的一种证明方法,是通过假设命题不成立,推导出矛盾的结果,从而证明原命题成立。

反证法在数学证明中具有重要的作用,同时也在数学解题中有很多应用。

一、应用举例1. 直角三角形定理的证明要证明直角三角形定理,可以使用反证法。

假设三角形不是直角三角形,即三条边不能成直角,那么三条边呈现的几何形状就是一个锐角三角形和一个钝角三角形。

由于锐角三角形的每个角都小于90度,所以它的三角度数之和小于180度。

因此,它的两条短边加起来肯定小于斜边的长度,这与勾股定理不符合。

同理,对于钝角三角形,由于它的两条短边加起来肯定大于斜边的长度,也不符合勾股定理,因此可以得出结论:三角形必须为直角三角形。

2. 二次不等式当我们需要解决类似于x²+2x<3这样的不等式时,可以先假设x²+2x≥3,即假设不等式右边小于左边。

那么可以将不等式两边移项得到x²+2x-3≥0,然后可以因式分解得到(x+3)(x-1)≥0。

根据符号法可以知道方程的解集为(-∞,-3]∪[1,∞),由此可以得到原始不等式的解集为(-3,1)。

3. 对于奇偶性问题的判断对于奇偶性问题,可以使用反证法。

首先,假设一个数n为奇数,那么可以得到2n为偶数,可是,如果2n为偶数,那么n一定为偶数。

因此,我们可以得出结论:如果n是奇数,那么2n一定是偶数;反之,如果2n是偶数,那么n一定是偶数。

二、反证法的特点1. 简单实用反证法是初中数学中最为简单实用的证明方法之一。

这种证明方法可以减少证明的复杂度和时间,使证明更加简单和直观。

通过假设未知量在某种前提情况下为错误的来证明未知量的正确性。

2. 适用范围广反证法的适用范围非常广泛,可以处理大多数数学问题。

特别是在数学证明中,它通常用来证明那些难证或没有直观的结论。

在不少数学分支中,反证法是解题的重要手段。

3. 可以检验猜想的正确性使用反证法不仅可以证明一个结论,还可以证明一个猜想的错误性。

反证法在初中数学解题中的运用分析

反证法在初中数学解题中的运用分析

反证法在初中数学解题中的运用分析反证法是一种证明方法,运用反证法可以达到“证明之外还证明”的效果,也就是通过证明不成立的情况来证明规律的正确性。

在初中数学中,反证法可以有效地应用于解题,以下是几个例子:1、证明根号2是无理数。

假设根号2是有理数,可以表示为p/q,其中p,q互质。

则根号2=p/q,两边平方得到2=p*p/q*q,化简可得到p*p=2*q*q,由于2是质数,而p*p是偶数,就可以推出p也是偶数。

那么p=2k,代入原式可得到2=q*k,则q也是偶数。

这与p,q互质矛盾,因此假设不成立,根号2是无理数。

2、证明平方根小数是无限不循环小数。

假设平方根的小数部分有限、循环。

设其小数部分为a.b(c)。

则有a.b(c)=x/10^t+y/(10^(t+1))+z/(10^(t+2))+…,即表示成有限的分数形式。

那么可以将该分数转换为最简分数a’/b’,然后平方可得到(a’)^2/(b’)^2=2+2y/(10^t)+(y/(10^t))^2+(2z/(10^(t+1))+(z/(10^(t+1)))^2+……3、证明勾股数不存在除1以外的公因数。

假设勾股数存在除1以外的公因数d,则可以表示a=dm,b=dn。

那么c^2=a^2+b^2=d^2(m^2+n^2),即c也能被d整除,此时c/d也是一个整数,且满足c/d是勾股数a/d,b/d的最大公因数。

这与a/d,b/d互质矛盾,因此假设不成立,勾股数不存在除1以外的公因数。

以上几个例子展示了反证法在初中数学解题中的应用,可以看到反证法是一种极为重要的证明方法。

在解题过程中,可以运用一些技巧,如化简、分解因式、求幂、辗转相除等,帮助分析矛盾的来源,找到反证的破绽,从而得出正确的结论。

浅谈反证法在中学数学中的应用

浅谈反证法在中学数学中的应用

浅谈反证法在中学数学中的应用反证法是一种间接法,证明定理的一种方法,先提出和定理中的结论相反的假定,然后从这个假定中得出和已知条件相矛盾的结果来,这样就否定了原来的假定而肯定了定理,也叫归谬法. 反证法是一种间接证法,它不直接证明论题“若A则B”(即A→B)为真,而是从反面去证明它的否定命题“既A且B”为假,从而肯定“若A则B”为真的证明方法.1.2 反证法的来源1.2.1 古希腊的反证法反证法,无论是逻辑上的还是数学上的,它的概念都是一致的.即是反证法是证明的一种方法.西方数学在毕达哥拉斯学派的影响下,认为万物皆数.但随着这个表征数学史第一次危机“根号2”的问题的出现,使得希腊人重新审视了自己的数学,这最终导致希腊人放弃了以数为基础的几何.1.2.2 中国古代数学的反证法在我们中国的传统数学中,本身对于演绎的证明一般就不太重视,而且中国传统逻辑学的不完备,尽管我们中国的先辈们认识到了一些逻辑规律,并且在魏晋时期就已经大兴辩难之风,但是他们大多使用的都是类似于反驳,在他为《九章算术》作注释时也多次采用了归谬论证法,墨子也使用归谬法.但是应该指出,明确的反证法的用法却是凤毛麟角,在这一点上与西方存在着差别极大,而在中国数学中,即便是刘徽这位我国古代在理论与逻辑方面都很擅长的数学大师,也只是用到了反驳(如:举反例).1.2.3 反证法的其他来源① 墨子的“归谬法”例如:“学之益也,说在诽者.”通过证明“学习无益”是假,而得到“学习有益”的命题是真.这是一个非常有意思的反证法的特例.而将其归为归谬论证欠妥切,归谬是反驳的一种方法,显然在这里是证明一个命题为真.② 刘徽的“证伪法”在我们的数学中,我们都只将证明与反驳对应为直接证明、归谬法(如反例法)与间接证明(如反证法).从这意义来说,刘徽他并没有使用过反证法,他仅仅只是在使用归谬法,只是在推翻一些假命题,即在证伪.1.3 反证法的一般步骤学习反证法应把握它的一般步骤:反设:假定所要证的结论不成立,而设结论的反面(否定命题)成立;归谬:将“反设”作条件,由此出发经过正确的推理,导出矛盾——与已知条件、已知的公理、定义、定理及明显的事实矛盾或自相矛盾.结论:因为推理正确,产生矛盾的原因在于“反设”的谬误.既然结论的反面不成立,从而肯定了结论成立.具体方法:命题r=在C下,若A则B反证:若A则¬B,证明¬B与A的矛盾例1求证 A(原论题)证明 (1)设非A真(非A为反论题)(2)如果非A,则B(B为由非A推出的论断)(3)非B(已知)(4)所以,并非非A(根据充分条件假言推理的否定后件式)(5)所以,A(非非A=A).例2如果a是大于1的整数,而所有不大于a的素数都不能整除a,则a是素数.证明假设a是合数,记a=bc (b、c∈Z,且b, c>1),由于a不能被大于1且不大于a的素数整除,所以b>a,c>a,从而bc>a,这与假设a=bc矛盾,故a是素数.2. 反证法的适用范围究竟什么样的命题可以用反证法来证呢?当然没有绝对的标准,但证题的实践告诉我们:下面几种命题一般用反证法来证比较方便.2.1否定性命题即结论以“没有……”“不是……”“不能……”等形式出现的命题,直接证法一般不易入手,而反证法有希望成功.例3 求证:在一个三角形中,不能有两个角是钝角.已知:∠A,∠B,∠C是三角形ABC的三个内角.求证:∠A,∠B,∠C中不能有两个钝角.证明假如∠A,∠B,∠C中有两个钝角,不妨设∠A>900,且∠B>900,则∠A+∠B+∠C>1800.这与“三角形内角和为1800”这一定理相矛盾. 故∠A,∠B均大于900不成立.所以一个三角形不可能有两个钝角.2.2限定式命题即结论中含有“至多”、“至少”、“不多于”或“最多”等词语的命题.例4 求证:素数有无穷多个.证明假设素数只有n个: P1、P2……Pn,取整数N=P1?P2……Pn+1,显然N不能被这几个数中的任何一个整除.因此,或者N本身就是素数(显然N不等于“P1、P2、……Pn中任何一个),或者N含有除这n个素数以外的素数r,这些都与素数只有n个的假定相矛盾,故素数个数不可能是有限的.2.3某些存在性命题例5 设x,y∈(0,1),求证:对于a, b∈R ,必存在满足条件的x,y,使|xy - ax - by|≥31成立.证明假设对于一切x,y∈〔0 , 1〕使|xy - ax- by| <31恒成立,令x = 0, y = 1 ,则|b|<31令x = 1 , y = 0,得| a| <31令x = y = 1,得| 1 - a - b| <31.但| 1 -a - b| ≥1 - | a| - | b| >1 -31-31=31产生矛盾,故欲证结论正确.2.4一些不等量命题的证明如:不等式,反证法是证明它的一种重要方法,但当结论反面有无穷多种情况时,一般不宜用反证法.2.5基本命题例6. 求证:两条相交直线只有一个交点.已知:如图,直线a、b相交于点P,求证:a、b只有一个交点.证明假定a,b相交不只有一个交点P,那么a, b至少有两个交点P、Q.于是直线a是由P、Q两点确定的直线,直线b也是由P、Q两点确定的直线,即由P、Q两点确定了两条直线a,b.与已知公理“两点只确定一条直线”相矛盾,则a,b不可能有两个交点,于是两条相交直线只有一个交点.2.6整除性问题例7. 设a、b都是整数,a2+b2 能被3整除,求证:a和b都能被3整除.证明假设a、b不都能被3整除.分三种情况讨论:(1)a、b都不能被3整除,因a不能被3整除,故a2不能被3整除,同理,b2不能被3整除,所以a2+b2也不能被3整除,矛盾.(2)a能被3整除,b不能被3整除,可得a2能被3整除,b2不能被3整除,故a2+b2也不被3整除,矛盾.(3)同理可证第三种情况.由(1)(2)(3)得,原命题成立.参考文献[1]赵雄辉.证明的方法[M].湖南:湖南人民出版社.2001:85-92.[2]龙朝阳.反证法的理论基础与适用范围[J].安顺师专学报.1999(2):40-46.[3]陈国祥.适合用反证法证明的几类问题[J].中学数学教学参考.1994(7):22-23.[4]颜长安.反证法初探[J].数学通讯. 2001(13):22-24.[5]高珑珑.反证法例说[J].中学数学月刊. 1997(4):33-35.[6]徐加生.例谈正难则反的解题策略[J]. 数学教学研究.1999(4):12-13.。

浅谈反证法在初中数学解题中的应用

浅谈反证法在初中数学解题中的应用

浅谈反证法在初中数学解题中的应用作者:莫美珍来源:《学周刊》2018年第17期摘要:反证法在初中数学中有着广泛的应用,它的解题技巧对数学解题有很大的帮助,尤其针对一些难以着手的问题。

教师通过研究反证法在中学数学中解题的范围和其在几种常用命题中的应用技巧,对反证法的分类进行讨论,根据用反证法在各类命题中的应用步骤、类型和规律分析,总结出反证法在初中数学范畴中的重要性。

最后论述反证法这种思维方式在初中数学中所起的作用,要求学生能够用逆向思维来解决更多的数学问题,并结合生活的需要,解决生活中的难题。

关键词:初中数学;反证法;逆向思维中图分类号:G63 文献标识码:A 文章编号:1673-9132(2018)17-0043-02DOI:10.16657/ki.issn1673-9132.2018.17.026反证法的思维方式与正向思维方式相反,它遵循“由果溯因”这种思维模式。

在数学解题中,教师要注意培养学生的逆向思维,从而提高学生的数学能力。

反证法中独特、巧妙的思维方式可以使那些难以着手的数学问题迎刃而解。

例如下面涉及的这几类问题,其思维方式都比较巧妙,这种解题方法对于提高学生解决数学问题的能力有很大的帮助,更能够帮助学生提高分析问题、灵活运用数学知识解决问题的能力。

反证法在初中数学教学中的应用比较广泛,通常在一些基本的性质、定理和重要结论中都有所体现,在某些难度较大的题目中更是不可或缺的。

一、反证法的定义及理论依据(一)反证法的定义反证法的基本理念是:在否定了原命题(真命题)后,找出必要矛盾,就可以证明原命题。

在对一个命题进行证明时,可以先假设命题结论的对立面是成立的,若由已知条件可以得出两个矛盾的结论,或者导出的结果与定义、定理、已知公理、已知条件之一相矛盾,此时就可以说明假设是不成立的,同时也就证明了原命题一定成立。

利用这种方式对命题进行证明的方法称为反证法。

反证法可以归纳为:“否定结论,寻找矛盾。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈反证法在初中数学解题中的应用
反证法是一种常用的数学解题方法,在初中数学中也有广泛的应用。

它的基本思想是,在证明某一命题时,先假设该命题不成立,然后通过推导得出矛盾结论,最后证明假设不成立,从而得出原命题的正确性。

在初中数学中,反证法常用于证明“存在性”或“唯一性”等命题。

例如,要证明函数f(x)在区间[a,b]内至少存在一个零点,可以先假设函数f(x)在区间[a,b]内不存在任何零点,然后通过对函数进行推导,得出矛盾结论,最后证明假设不成立,得出函数f(x)在区间[a,b]内至少存在一个零点的结论。

反证法在初中数学中的应用还有:
1.证明几何图形的性质,如证明直线平分圆弧的结论,可以先假设直线不平分
圆弧,然后通过推导得出矛盾结论,最后得出直线平分圆弧的结论。

2.证明数学定理,如证明勾股定理,可以先假设勾股定理不成立,然后通过推
导得出矛盾结论,最后得出勾股定理的正确性。

反证法是一种非常有效的数学解题方法,在初中数学中有广泛的应用。

学会使用反证法,可以帮助学生更好地理解数学知识,提高解题能力。

相关文档
最新文档