浙江省杭州市萧山瓜沥片-八年级12月月考数学试题及答案
2019学年浙江省杭州市萧山区高桥初级中学八年级(上)竞赛数学试卷(12月份)解析版

2019-2020学年浙江省杭州市萧山区高桥初中八年级(上)竞赛数学试卷(12月份)一、选择题:(本大题有10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.在△ABC中,∠A﹣∠C=∠B,那么△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形2.下列命题中,真命题是()A.垂直于同一直线的两条直线平行B.有两边和其中一边上的高对应相等的两个三角形全等C.三角形三个内角中,至少有2个锐角D.有两条边和一个角对应相等的两个三角形全等3.若直角三角形的两条直角边的长分别为5和12,则斜边上的中线长是()A.6B.6.5C.13D.不能确定4.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1B2,△A2B2B3,△A3B3B4,…均为等边三角形.若OB1=1,则△A8B8B9的边长为()A.64B.128C.132D.2565.不等式组的解集表示在数轴上,正确的是()A.B.C.D.6.某种毛巾原零售价每条6元,凡一次性购买两条以上(含两条),商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折优惠”;第二种:“全部按原价的八折优惠”,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买毛巾()A.4条B.5条C.6条D.7条7.若线段CD是由线段AB平移得到的,点A(﹣1,3)的对应点为C(2,2),则点B(﹣3,﹣1)的对应点D的坐标是()A.(0,﹣2)B.(1,﹣2)C.(﹣2,0)D.(4,6)8.函数自变量x的取值范围是()A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠3 9.若kb>0,则函数y=kx+b的图象可能是()A.B.C.D.10.如图,点A,B,C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m﹣1)D.二、填空题:(本大题共6小题,每题4分,共24分)11.如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为.12.如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差km/h.13.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=.14.在平面直角坐标系中,若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在第象限.15.已知:腰长为x,底边边长为y的等腰三角形周长为12,则:y与x的函数关系式,自变量x取值范围.16.对于整数a、b、c、d规定符号=ac﹣bd,若,则b+d=.三、解答题:(本大题有7个小题,共66分).解答应写出文字说明、证明过程或推演步骤.17.先阅读,再解答问题.例:解不等式>1解:把不等式>1进行整理,得﹣1>0,即>0.则有(1)或(2).解不等式组(1)得<x<1,解不等式组(2)知其无解,所以得不等式的解为<x<1.请根据以上解不等式的思想方法解不等式<2.18.课本中有一探究活动:如图1,有甲、乙两个三角形,甲三角形内角分别为10°,20°,150°;乙三角形内角分别为80°,25°,75°.你能把每一个三角形分成两个等腰三角形吗?画一画,并标出每个等腰三角形顶角的度数.(1)小明按要求画出了图1中甲图的分割线,请你帮他作出图1中乙图的分割线;(2)小明进一步探究发现:能将一个顶角为108°的等腰三角形分成三个等腰三角形;请在图2中用两种不同的方法画出分割线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种方法)19.已知:如图,四边形ABCD中,AB⊥BC,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.20.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做和谐点,如,在图中,过点P分别作x轴、y轴的垂线,若与坐标轴围成的长方形OAPB的周长与面积相等,则点P是和谐点.(1)请判断点M(1,3),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)在直线y=x+b(b为常数)上,求a、b的值.21.已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的解析式,自变量x的取值范围;(2)当x=﹣时,函数y的值;(3)当y<1时,自变量x取值范围.22.某公交公司有A、B两种客车,它们的载客数量和租金如表;A B载客量(人/辆)4530租金(元/辆)400280红星中学根据实际情况,计划租用A,B型客车共5辆,同时送八年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题;(1)用含x的式子填写表格车辆数(辆)载客量租金(元)A x45x400xB5﹣x(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.23.如图,点D为等腰直角三角形ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求∠EDC的度数;(2)若点M在DE上,且DC=DM,求证:ME=BD.2019-2020学年浙江省杭州市萧山区高桥初中八年级(上)竞赛数学试卷(12月份)参考答案与试题解析一.选择题(共10小题)1.在△ABC中,∠A﹣∠C=∠B,那么△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形【分析】根据三角形内角和定理得到∠A+∠B+∠C=180°,则∠A+∠B=180°﹣∠C,由∠A=∠B﹣∠C变形得∠A+∠B=∠C,则180°﹣∠C=∠C,解得∠C=90°,即可判断△ABC的形状.【解答】解:∵∠A+∠B+∠C=180°,∴∠C+∠B=180°﹣∠A,而∠A﹣∠C=∠B,∴∠C+∠B=∠A,∴180°﹣∠A=∠A,解得∠A=90°,∴△ABC为直角三角形.故选:D.2.下列命题中,真命题是()A.垂直于同一直线的两条直线平行B.有两边和其中一边上的高对应相等的两个三角形全等C.三角形三个内角中,至少有2个锐角D.有两条边和一个角对应相等的两个三角形全等【分析】利用垂线的性质、全等三角形的判定、锐角的性质分别判断后即可确定正确的选项.【解答】解:A、同一平面内垂直于同一直线的两条直线平行,故错误,为假命题;B、有两边和其中一边上的高对应相等的两个三角形全等,应该是两个锐角三角形或钝角三角形全等.故错误,为假命题;C、三角形的三个角中,至少有两个锐角,故正确,为真命题;D、有两边和其中一个角对应相等的两个三角形全等,错误,为假命题,故选:C.3.若直角三角形的两条直角边的长分别为5和12,则斜边上的中线长是()A.6B.6.5C.13D.不能确定【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:∵直角三角形两直角边长为5和12,∴斜边==13,∴此直角三角形斜边上的中线的长==6.5.故选:B.4.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1B2,△A2B2B3,△A3B3B4,…均为等边三角形.若OB1=1,则△A8B8B9的边长为()A.64B.128C.132D.256【分析】根据等腰三角形的性质以及平行线的性质得出B1A1∥A2B2∥A3B3,以及a2=2a1,得出a3=4a1=4,a4=8a1=8,a5=16a1…进而得出答案.【解答】解:∵△A1B1B2是等边三角形,∴∠A1B1B2=∠A1B2O=60°,A1B1=A1B2,∵∠O=30°,∴∠A2A1B2=∠O+∠A1B2O=90°,∵∠A1B1B2=∠O+∠OA1B1,∴∠O=∠OA1B1=30°,∴OB1=A1B1=A1B2=1,在Rt△A2A1B2中,∵∠A1A2B2=30°∴A2B2=2A1B2=2,同法可得A3B3=22,A4B4=23,…,A n B n=2n﹣1,∴△A8B8B9的边长=27=128,故选:B.5.不等式组的解集表示在数轴上,正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则分析选项可得答案.【解答】解:解不等式x﹣1≤7﹣x,得:x≤4,解不等式5x﹣2>3(x+1),得:x>,∴不等式组的解集为:<x≤4,故选:A.6.某种毛巾原零售价每条6元,凡一次性购买两条以上(含两条),商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折优惠”;第二种:“全部按原价的八折优惠”,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买毛巾()A.4条B.5条C.6条D.7条【分析】设购买毛巾x条,根据题意可得不等关系:2条毛巾的价格+(x﹣2)条毛巾的价格×0.7<x条毛巾打8折的价格,根据题意列出不等式即可.【解答】解:设购买毛巾x条,由题意得:6×2+6×0.7(x﹣2)<6×0.8x解得x>6.∵x为最小整数,∴x=7,故选:D.7.若线段CD是由线段AB平移得到的,点A(﹣1,3)的对应点为C(2,2),则点B(﹣3,﹣1)的对应点D的坐标是()A.(0,﹣2)B.(1,﹣2)C.(﹣2,0)D.(4,6)【分析】根据点A(﹣1,3)的对应点为C(2,2),可知横坐标由﹣1变为2,向右移动了3个单位,3变为2,表示向下移动了1个单位,以此规律可得D的对应点的坐标.【解答】解:点A(﹣1,3)的对应点为C(2,2),可知横坐标由﹣1变为2,向右移动了3个单位,3变为2,表示向下移动了1个单位,于是B(﹣3,﹣1)的对应点D的横坐标为﹣3+3=0,点D的纵坐标为﹣1﹣1=﹣2,故D(0,﹣2).故选:A.8.函数自变量x的取值范围是()A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠3【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,x﹣1≥0且x﹣3≠0,解得x≥1且x≠3.故选:A.9.若kb>0,则函数y=kx+b的图象可能是()A.B.C.D.【分析】根据kb>0,可知k>0,b>0或k<0,b<0,然后分情况讨论直线的位置关系.【解答】解:由题意可知:可知k>0,b>0或k<0,b<0,当k>0,b>0时,直线经过一、二、三象限,当k<0,b<0直线经过二、三、四象限,故选:A.10.如图,点A,B,C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m﹣1)D.【分析】设AD⊥y轴于点D;BF⊥y轴于点F;BG⊥CG于点G,然后求出A、B、C、D、E、F、G各点的坐标,计算出长度,利用面积公式即可计算出.【解答】解:由题意可得:A点坐标为(﹣1,2+m),B点坐标为(1,﹣2+m),C点坐标为(2,m﹣4),D点坐标为(0,2+m),E点坐标为(0,m),F点坐标为(0,﹣2+m),G点坐标为(1,m﹣4).所以,DE=EF=BG=2+m﹣m=m﹣(﹣2+m)=﹣2+m﹣(m﹣4)=2,又因为AD=BF=GC=1,所以图中阴影部分的面积和等于×2×1×3=3.故选:B.二.填空题(共6小题)11.如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为.【分析】先根据∠C=30°,∠BAC=90°,DE⊥AC可知BC=2AB,CD=2DE,再由AB=AD可知点D是斜边BC的中点,由此可用a表示出AB的长,根据勾股定理可得出AC的长,由此可得出结论.【解答】解:∵∠C=30°,∠BAC=90°,DE⊥AC,∴BC=2AB,CD=2DE=2a.∵AB=AD,∴点D是斜边BC的中点,∴BC=2CD=4a,AB=BC=2a,∴AC===2a,∴△ABC的周长=AB+BC+AC=2a+4a+2a=(6+2)a.故答案为:(6+2)a.12.如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差4km/h.【分析】根据图中信息找出甲,乙两人行驶的路程和时间,进而求出速度即可.【解答】解:根据图象可得:∵甲行驶距离为100千米时,行驶时间为5小时,乙行驶距离为80千米时,行驶时间为5小时,∴甲的速度是:100÷5=20(千米/时);乙的速度是:80÷5=16(千米/时);故这两人骑自行车的速度相差:20﹣16=4(千米/时);解法二:利用待定系数法s=k甲t+b,s=k乙t,易得k甲=16,k乙=20,∵速度=路程÷时间所以k甲、k乙分别为甲、乙的速度故速度差为20﹣16=4km/h故答案为:4.13.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=8.【分析】首先确定第三边的取值范围,从而确定x﹣5和x﹣13的值,然后去绝对值符号求解即可.【解答】解:∵三角形的三边长分别是3、x、9,∴6<x<12,∴x﹣5>0,x﹣13<0,∴|x﹣5|+|x﹣13|=x﹣5+13﹣x=8,故答案为:8.14.在平面直角坐标系中,若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在第一象限.【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得不等式,根据不等式的性质,可得答案.【解答】解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故答案为:一.15.已知:腰长为x,底边边长为y的等腰三角形周长为12,则:y与x的函数关系式y =12﹣2x,自变量x取值范围3<x<6.【分析】根据等腰三角形的定义以及周长的定义即可写出函数关系式,根据三角形的边长以及三角形的三边的关系定理即可求得x的范围.【解答】解:y=12﹣2x,根据题意得:,解得:3<x<6.故答案是:y=12﹣2x,3<x<6.16.对于整数a、b、c、d规定符号=ac﹣bd,若,则b+d=±3.【分析】根据已知得到1<4﹣db<3,求出不等式组的整数解db=2,即可求出d、b的值,代入即可求出答案.【解答】解:,1<4﹣db<3,∴1<bd<3,∵bd是整数,∴db=2,∴当d=1时b=2或当d=﹣1时b=﹣2,∴b+d=±3.故答案为:±3.三.解答题(共7小题)17.先阅读,再解答问题.例:解不等式>1解:把不等式>1进行整理,得﹣1>0,即>0.则有(1)或(2).解不等式组(1)得<x<1,解不等式组(2)知其无解,所以得不等式的解为<x<1.请根据以上解不等式的思想方法解不等式<2.【分析】首先看明白例题的解法,即先移项,再通分最后根据分子、分母同大于0或分子、分母同小于0列不等式组解答即可,然后模仿例题的解法写出解的过程则可.【解答】解:将不等式<2进行整理得﹣2<0,即<0,则有(1)或(2),解不等式组(1)有:﹣6<x<2;解不等式组(2)无解.所以原不等式的解集为﹣6<x<2.18.课本中有一探究活动:如图1,有甲、乙两个三角形,甲三角形内角分别为10°,20°,150°;乙三角形内角分别为80°,25°,75°.你能把每一个三角形分成两个等腰三角形吗?画一画,并标出每个等腰三角形顶角的度数.(1)小明按要求画出了图1中甲图的分割线,请你帮他作出图1中乙图的分割线;(2)小明进一步探究发现:能将一个顶角为108°的等腰三角形分成三个等腰三角形;请在图2中用两种不同的方法画出分割线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种方法)【分析】(1)根据等腰三角形的性质,一个等腰三角形的两底角相等,故可把原三角形中的一个角分成两个角作图即可;(2)根据等腰三角形的性质,一个等腰三角形的两底角相等,故可把原三角形中的一个角分成两个角作图.【解答】解:(1)按要求作图如图:(2)按要求作图如图:或(视为同一种);19.已知:如图,四边形ABCD中,AB⊥BC,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△ACD是直角三角形,分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连结AC,在△ABC中,∵∠B=90°,AB=3,BC=4,∴AC==5,S△ABC=AB•BC=×3×4=6,在△ACD中,∵AD=13,AC=5,CD=12,∴CD2+AC2=AD2,∴△ACD是直角三角形,∴S△ACD=AC•CD=×5×12=30.∴四边形ABCD的面积=S△ABC+S△ACD=6+30=36.20.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做和谐点,如,在图中,过点P分别作x轴、y轴的垂线,若与坐标轴围成的长方形OAPB的周长与面积相等,则点P是和谐点.(1)请判断点M(1,3),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)在直线y=x+b(b为常数)上,求a、b的值.【分析】(1)根据题意可计算点M、N与坐标轴围成的长方形的面积和周长,即可得出答案;(2)根据题意先把P(a,3)代入y=x+b中,可得a+b=3,再根据和谐点的概念可得点P与坐标轴围成的长方形面积S=3a,周长C=(a+3)×2相等,可得3a=(a+3)×2,计算即可得出答案.【解答】解:(1)∵M(1,3),如图1,∴MA=1,MB=3,∴长方形MAOB的面积S=3×1=3,周长C=(1+3)×2=8,∴M不是和谐点;∵N(4,4),∴MC=4,MD=4,∴长方形NCOD的面积S=4×4=16,周长C=(4+4)×2=16,∴N是和谐点;(2)∵点P(a,3)在直线y=x+b上,∴a+b=3,又∵点P(a,3)是和谐点,∴点P与坐标轴围成的长方形面积S=3a,周长C=(a+3)×2,∴3a=(a+3)×2,解得a=6,b=﹣3.21.已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的解析式,自变量x的取值范围;(2)当x=﹣时,函数y的值;(3)当y<1时,自变量x取值范围.【分析】(1)利用待定系数法即可求得函数的解析式;(2)把x=﹣代入函数解析式求得y的值即可;(3)根据y<1即可列出不等式即可求解.【解答】解:(1)设y=kx+b,根据题意得:,解得:,则函数的解析式是:y=﹣x+5,x是任意实数;(2)把x=﹣代入解析式得:y=+5=;(3)根据题意得:﹣x+5<1,解得:x>4.22.某公交公司有A、B两种客车,它们的载客数量和租金如表;A B载客量(人/辆)4530租金(元/辆)400280红星中学根据实际情况,计划租用A,B型客车共5辆,同时送八年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题;(1)用含x的式子填写表格车辆数(辆)载客量租金(元)A x45x400xB5﹣x30(5﹣x)280(5﹣x)(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.【分析】(1)根据题意,载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,列出代数表达式即可;(2)根据题意,表示出租车总费用,列出不等式即可解决;(3)由(2)得出x的取值范围,一一列举计算,排除不合题意方案即可.【解答】解:(1)∵载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,∴B型客车载客量=30(5﹣x);B型客车租金=280(5﹣x);填表如下:车辆数(辆)载客量租金(元)A x45x400xB5﹣x30(5﹣x)280(5﹣x)(2)根据题意,400x+280(5﹣x)≤1900,解得:x≤4,∴x的最大值为4;(3)由(2)可知,x≤4,故x可能取值为0、1、2、3、4,①A型0辆,B型5辆,租车费用为400×0+280×5=1400元,但载客量为45×0+30×5=150<195,故不合题意舍去;②A型1辆,B型4辆,租车费用为400×1+280×4=1520元,但载客量为45×1+30×4=165<195,故不合题意舍去;③A型2辆,B型3辆,租车费用为400×2+280×3=1640元,但载客量为45×2+30×3=180<195,故不合题意舍去;④A型3辆,B型2辆,租车费用为400×3+280×2=1760元,但载客量为45×3+30×2=195=195,符合题意;⑤A型4辆,B型1辆,租车费用为400×4+280×1=1880元,但载客量为45×4+30×1=210,符合题意;故符合题意的方案有④⑤两种,最省钱的方案是A型3辆,B型2辆.故答案为:30(5﹣x);280(5﹣x).23.如图,点D为等腰直角三角形ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求∠EDC的度数;(2)若点M在DE上,且DC=DM,求证:ME=BD.【分析】(1)证明△ACD≌△BCD即可解题;(2)连接CM,先证明CM=CD,即可证明△BCD≌△ECM,即可解题.【解答】(1)解:∵AC=BC,∠CAD=∠CBD,∴∠DAB=∠DBA,∴AD=BD,在△ACD和△BCD中,,∴△ACD≌△BCD(SAS),∴∠ACD=∠BCD=45°,∴∠CDE=∠CAD+∠ACD=60°;(2)证明:连接CM,∵DC=DM,∠CDE=60°,∴△DMC为等边三角形,∴∠MCE=45°,∴CM=CD,在△BCD和△ECM中,,∴△BCD≌△ECM(SAS),∴ME=BD.。
人教版初二数学下学期月考试题(全等三角形与轴对称)

最新人教版初二下学期月考试题——全等三角形与轴对称检测试卷一、填空题(每题4分,共20分)1、三角形的三边长为3、7、x ,则x 的取值范围是 。
2、等腰三角形有一个角是70度,则其他两个角的度数是 .3、如图,AB =CD ,AD =CB ,O 为AC 上一点,过O 任作直线EF 分别交AD 、BC 于E 、F ,要使BE =FD,则应满足的条件是 。
4、如图4,已知⊿ABC ≌⊿ADE ,D 是∠BAC 的平分线上一点,且∠BAC=60°,则∠CAE= 。
5、如图5:在∆ABC 中,AB=AC ,∠A=50°,P 是∆ABC 内一点,且∠PBC= ∠PCA ,则∠BPC=_____.二、选择题(每题3分,共30分)1、△ABC 中,AB =4,AC =3,若E 为BC 的中点,AE =x ,则x 的取值范围为( ) A.3<x <4 B.1<x <7 C.0<x <1 D. x ≤12、锐角三角形中任意两个锐角的和必大于 ( )。
A 120°B 110°C 100°D 90° 3、若BCD ABC ∆≅∆, AB=6cm ,BD=7cm ,AD=4cm ,那么BC 的长为( )A 、6 cmB 、5 cmC 、4cmD 、不能确定4、下列说法中正确的是( )A 、轴对称图形是由两个图形组成B 、等边三角形有三条对称轴C 、两个全等三角形能组成一个轴对称图形D 、直角三角形一定是轴对称图形 5、下列命题中正确的是( )①全等三角形对应边相等;②三个角对应相等的两个三角形全等;③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。
A .4个B 、3个C 、2个D 、1个第3题图4E DCBA第5题第4题6.如图,已知AB=CD ,AD=BC ,则图中全等三角形共有( ) A .2对 B 、3对 C 、4对 D 、5对7、如图,A 在DE 上,F 在AB 上,且∠1=∠2=∠3,AC =CE ,则DE 的等于( ) A.DC B.BC C.AB D.18、如图,ΔABC 中,∠CAB=520,∠ABC=740,AD ⊥BC ,BE ⊥AC ,AD ,BE 交于F ,则∠AFB=( )度A 、126B 、120C 、116D 、1109、在钝角三角形ABC 中,把AB=AC ,D 是BC 上一点,AD 把∆ABC 分成两个等腰三 角形,则∠BAC 的度数为( )A 、150°B 、124°C 、120°D 、108°10、在∆ABC 中,AB 、BC 的垂直平分线相交于三角形内一点O ,下列结论中,错误的是( ) A 、点O 在AC 的垂直平分线上 B 、∆AOB 、∆BOC 、∆COA 都是等腰三角形 C 、∠OAB+∠OBC+∠OCA=90° D 、点O 到AB 、BC 、CA 的距离相等 三、作图题(10分)1、用一个圆、一个正三角形、一条线段设计一个轴对称图案,并说明你要表达的含义。
2022-2023学年浙江省杭州市萧山区高桥初中教育集团八年级(上)调研数学试卷(12月份)

2022-2023学年浙江省杭州市萧山区高桥初中教育集团八年级(上)调研数学试卷(12月份)一、仔细选一选(本题有10个小题,每小题3分,共30分。
下面每小题给出的四个选项中,只有一个是正确的.)1.(3分)点P(﹣5,3)在( )A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)三角形稳定性是指三角形的三边长确定时三角形的形状大小就确定了,其依据是( )A.SSS B.ASA C.AAS D.SAS3.(3分)如图,为了估计一池塘岸边两点A,B之间的距离,测得PA=100m,PB=90m ( )A.10m B.120m C.190m D.220m4.(3分)已知m>n,则下列不等式中一定成立的是( )A.m>n+1B.﹣4m>﹣4n C.m+1>n+2D.m﹣1>n﹣2 5.(3分)如图△ABC中,∠BAC=90°,点A向上平移后到A′得到△A′BC.下面说法错误的是( )A.△ABC的内角和仍为180°B.∠BA′C<∠BACC.AB2+AC2=BC2D.A′B2+A′C2<BC26.(3分)若一次函数y=(m﹣3)x﹣4的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是( )A.m<3B.m>3C.m≤3D.m≥37.(3分)若m<n,下列不等式组无解的是( )A .B .C .D .8.(3分)如图,已知在平面直角坐标系xOy 中,以O 为圆心,与x 轴、y 轴分别交于点A 、B ,再分别以A 、B 为圆心AB 长为半径作圆弧,两条圆弧交于点C .以下四组x 与y 的对应值中(x ﹣1,y )在射线OC 上的是( )A .3和﹣3B .﹣3和﹣4C .2和21D .2和﹣29.(3分)如图,已知点A ,B 分别表示数1,那么数轴上表示数﹣x +2的点应落在( )A .点A 的左边B .线段AB 上C .点B 的右边D .数轴的任意位置10.(3分)如图,已知矩形纸片ABCD ,AB =4,点P 在BC 边上,将△CDP 沿DP 折叠,PE ,DE 分别交AB 于点O ,F ,则CP 的长为( )A .B .C .D .二、认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)函数的自变量x 的取值范围是 .12.(4分)已知点P 的坐标为(3,﹣2),则点P 到x 轴的距离为 .13.(4分)如图,OP 平分∠AOB ,PD ⊥OA 于点D ,若PD =2,则PQ 的取值范围为 .14.(4分)已知y是x的一次函数,如表列出了部分x与y的对应值,则a+b的值为 .x﹣102by5a﹣4﹣7 15.(4分)如图,已知△ABC中,AB=AC,E是射线AB上的两个动点(点D在点E的右侧),且CE=DE,若∠ACE=x°,∠BCD=y° .16.(4分)如图,在Rt△ABC中,∠ACB=90°,D,AB边上的点,且DE∥AC,连结CE,过点A作AF⊥CE于点M.(1)若CM=1,AC=3,则四边形DEMF的面积为 ;(2)若DE=2,AC=3,则四边形DEMF的面积为 .三、全面答一答(本题有7个小题,共66分)17.(6分)解下列不等式(组):(1)5x+1≤3(x﹣1),并把解集在数轴上表示出来.(2).18.(8分)如图,点C在线段AE上,BC∥DE,BC=CE,延长AB分别交CD、ED于点G、F.(1)试说明:AB=CD;(2)若∠D=30°,∠E=65°,求∠FGC的度数.19.(8分)如图是由边长为1个单位长度的小正方形组成的网格.(1)画出△ABC关于y轴对称的图形△A1B1C1,并写△A1B1C1各顶点坐标.(2)若点P(a﹣7,5﹣b)与点Q(2a,2b﹣3)也是通过(1)20.(10分)如图,在平面直角坐标系中,一次函数y1=kx+b的图象与正比例函数y2=2x 的图象交于点C(m,4),直线y1=kx+b与x轴交于点A,与y轴交于点B,已知OC=AC.(1)求m、k、b的值.(2)若M是线段AB上一点,当△OAM的面积是△OAB面积的时,求点M的坐标.21.(10分)疫情期间,某学校需购买消毒剂,负责人询问过一些商家后发现:距离较近的A商家单价是50元/瓶但需自取,但需要加收配送费(配送费按次收取).如图是在B商家购买数量x(瓶)(元)之间的关系.(1)求B商家某品牌消毒剂每瓶的销售单价以及配送费各是多少元?(2)学校出资不超过5000元购买此消毒剂,小李去A商家买了25瓶,使用过程中发现消毒剂不够,让他们送货,请问最多还能在B商场购买多少瓶消毒剂?22.(12分)一次函数y1=ax﹣a+1(a为常数,且a≠0).(1)若点(﹣1,3)在一次函数y1=ax﹣a+1的图象上,求a的值;(2)若当m≤x≤m+3时,函数有最大值M,最小值N,求出此时一次函数y1的表达式;(3)对于一次函数y2=kx+2k﹣4(k≠0),若对任意实数x,y1>y2都成立,求k的取值范围.23.(12分)已知:在△ABC中,点E在直线AC上,点B、D、E在同一条直线上,∠BAE =∠D.(1)如图1,若BF平分∠ABC,求证:∠AEB+∠BCE=180°.(2)如图2,若BE平分△ABC的外角∠ABF,交CA的延长线于点E,请写出正确的结论,并证明,请说明理由.(3)如图3,在(2)的条件下,若AB⊥BC,求EC的长度.2022-2023学年浙江省杭州市萧山区高桥初中教育集团八年级(上)调研数学试卷(12月份)参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分。
浙江省杭州市西湖区保俶塔教育集团2023-2024学年上学期八年级期中数学试卷(解析版)

杭州市保椒塔教育集团2023学年第一学期期中质量检数学试题卷满分120分,考试时间120分钟一、仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确,注意可以用多种不同的方法来选取正确答案.1.下列常见的微信表情包中,属于轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.根据轴对称图形的概念求解.【详解】解:A .是轴对称图形,故本选项符合题意;B .不是轴对称图形,故本选项不合题意;C .不是轴对称图形,故本选项不合题意;D .不是轴对称图形,故本选项不合题意.故选:A .【点睛】本题考查了轴对称图形的概念,熟练掌握轴对称图形的概念是基础,找到对称轴是关键.2.如果三角形两边长分别是6厘米、8厘米,那么第三边长可能是()A.16厘米B.14厘米C.10厘米D.2厘米【答案】C【解析】【分析】本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.设此三角形第三边的长为x ,根据三角形的三边关系求出x 的取值范围,找出符合条件的x 的值即可.【详解】解:设此三角形第三边的长为x ,则8686x -<<+,即214x <<,四个选项中只有10符合条件.故选:C .3.一元一次不等式x +1>2的解在数轴上表示为()A. B.C. D.【答案】A【解析】【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】解:x +1>2,得:x >1,在数轴上表示为:故选A .【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.4.下列语句中,是真命题的是()A.已知24a =,求a 的值B.面积相等的两个三角形全等C.对顶角相等D.若a b >,则22a b >【答案】C【解析】A 不是命题;证明假命题的方法是举反例,对B ,D 假命题须举反例说明.【详解】A .已知24a =,求a 的值,不是判断语句,不是命题;B .面积相等的两个三角形全等,例如Rt ABC △和Rt DEF △,90BAC EDF ∠=∠=︒,4AB AC ==,8DE =,2DF =,∵1144822ABC S AB AC =⋅=⨯⨯= ,1182822DEF S DE DF =⋅=⨯⨯= ,∴ABC DEF S S = ,∵AB DE ≠,AC DF ≠,∴ABC 与DEF 不全等,∴原命题是假命题;C .对顶角相等,是真命题;D .若a b >,则22a b >,设1a =-,2b =-,∴a b >,∵()2211a =-=,()2224b =-=,∴14<,∴22a b <,∴原命题是假命题.故选:C .【点睛】本题主要考查了命题的判断,解决问题的关键是熟练掌握用举反例的方法说明假命题.此方法注意所举例子的题设符合原命题题设,例子的结论不符合原命题.5.如图,CD AB ⊥于点D ,EF AB ⊥于点F ,CD EF =.要根据“HL ”证明Rt Rt ACD BEF ≌ ,则还需要添加的条件是()A.A B∠=∠ B.AC BE = C.AD BE = D.AD BF=【答案】B【解析】【分析】根据直角三角形全等的判定方法进行判断即可.【详解】解:∵CD AB ⊥于点D ,EF AB ⊥于点F ,∴90ADC BFE ∠=∠=︒,∵CD EF =,∴当添加AC BE =时,根据“HL ”即可判断Rt Rt ACD BEF ≌ .故选:B .【点睛】本题主要考查了直角三角形全等的判定,掌握斜边和一条直角边对应相等的两个直角三角形全等是解答本题的关键.6.已知图中的两个三角形全等,则α∠的度数是()A.72︒B.60︒C.58︒D.50︒【答案】A【解析】【分析】根据全等三角形对应角相等,即可解答.【详解】解:∵图中的两个三角形全等,∴72α∠=︒,故选:A .【点睛】本题主要考查了全等三角形的性质,解题的关键是掌握全等三角形对应角相等.7.若实数m 、n 满足等式02m +=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长是()A.6B.6或8C.8或10D.10【答案】D【解析】【分析】本题主要考查了等腰三角形三边关系,绝对值的非负性以及平方的非负性.据此求得m 、n 的值,再根据m 或n 作为腰,进行分类求解.【详解】解:∵02m =-∴20m -=,40n -=,解得2m =,4n =,当2m =作腰时,三边为2,2,4,此时224+=,不符合三边关系定理;当4n =作腰时,三边为2,4,4,符合三边关系定理,周长为∶24410++=.故选:D8.把一些书分给同学,设每个同学分x 本.若____;若分给11个同学,则书有剩余.可列不等式8(x +6)>11x ,则横线的信息可以是()A.分给8个同学,则剩余6本B.分给6个同学,则剩余8本C.如果分给8个同学,则每人可多分6本D.如果分给6个同学,则每人可多分8本【答案】C【解析】【分析】根据代数式8(x +6)的意义,结合题意,根据不等式表示的意义解答即可.【详解】解:设每个同学分x 本,8(x +6)的意义为如果分给8个同学,则每人可多分6本,由不等式8(x +6)>11x ,可得:把一些书分给几名同学,如果分给8个同学,则每人可多分6本;若每人分11本,则有剩余.故选C .【点睛】本题考查根据实际问题列不等式,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的不等关系.9.如图,过边长为3的等边ABC 的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,且CQ PA =,连接PQ 交AC 于点D ,则DE 的长为()A.1B.32C.2D.52【答案】B【解析】【分析】作PF BC 交AC 于点F ,利用等边三角形的性质和三线合一可得APF 是等边三角形、PE 是APF 的中线,则有12AE EF AF ==、PA PF AF CQ ===,根据60AFP ACB ∠=∠=︒可得120PFD QCD ∠=∠=︒,又FDP CDQ ∠=∠可判定PFD QCD ≌△△,则322AC AF AF DF DC --===,代入DE DF EF =+即可求解.【详解】作PF BC 交AC 于点F ,ABC 是等边三角形,60A ABC ACB ∴∠=∠=∠=︒,PF BC ∥,60APF ABC ACB AFP ∴∠=∠=︒=∠=∠,APF ∴△是等边三角形,PA PF AF ∴==,又PE AC ⊥ ,PE ∴是APF 的中线,12AE EF AF ∴==,CQ PA = ,PF PA CQ ∴==,60AFP ACB ∠=∠=︒ ,120PFD QCD ∴∠=∠=︒,在PFD 和QCD 中,FDP CDQ PFD QCD PF QC ∠=∠⎧⎪∠=∠⎨⎪=⎩()PFD QCD AAS ∴ ≌,322AC AF AF DF DC --∴===,33222AF AF DE DF EF -∴=+=+=.故选:B .【点睛】本题考查的知识点是等边三角形的性质与判定、三线合一、全等三角形的性质与判定,解题关键是利用辅助线构造等边三角形,利用等边三角形的性质判定全等后求DE 的长.10.如图,在四边形ABCD 中,AC 平分BAD ∠,CE AB ⊥于点E ,180ADC ABC ∠+∠=︒,有下列结论:①CD CB =;③2AD AB AE +=;③ACD BCE ∠=∠;④2ABC ADC BEC S S S -= .其中正确的是()A.②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】本题主要考查的是全等三角形的判定与性质,等腰三角形三线合一,需要熟练掌握全等三角形的判定与性质,此外找出线段之间的和差关系是解决本题的关键.在EA 上截取EF BE =,连接CF ,根据“AC 平分BAD ∠”和“180ADC ABC ∠+∠=︒”证明出ACD ACF ≌ ,故选项①正确;由①可知,AD AF =,再根据线段间的和差关系可得:2AD AB AE +=,由三角形面积公式及等量代换可得2ABC ADC BEC S S S -= ,故选项②④正确.【详解】在EA 上截取EF BE =,连接CF,∵CE AB ⊥,∴CF CB =,BEC FEC S S = ,∴CFB B ∠=∠,∵180AFC CFB ∠+∠=︒,180ADC ABC ∠+∠=︒,∴D AFC ∠=∠,∵AC 平分BAD ∠,即DAC FAC ∠=∠,在ACD 和ACF △中,D AFC DAC FAC AC AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴()AAS ACD ACF ≌,∴CD CF =,∴CD CB =,故①正确;∵ACD ACF ≌,∴AD AF =,∴2AD AB AF AE BE AF EF AE AE AE AE +=++=++=+=,故②正确;根据已知条件无法证明ACD BCE ∠=∠,故③错误;∵ACD ACF ≌ ,∴ACD ACF S S =△△,∴2ABC ADC ABC ACF CFB BEC S S S S S S -=-== ,即2ABC ADC BEC S S S -= ,故④正确.其中正确的是①②④.故选:C .二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和需要填写的内容,尽量完整地填写答案.11.“x 与7的和大于2”用不等式表示为________.【答案】72x +>【解析】【分析】本题主要考查了列不等式,x 与7的和即为7x +,则x 与7的和大于2即为72x +>.【详解】解:由题意得,“x 与7的和大于2”用不等式表示为72x +>,故答案为:72x +>.12.命题“等腰三角形的两个底角相等”的逆命题是___________.【答案】“两个角相等的三角形是等腰三角形”【解析】【分析】逆命题就是原命题的题设和结论互换,找到原命题的题设为等腰三角形,结论为两个角相等,互换即可.【详解】解:命题“等腰三角形的两个底角相等”的逆命题是“两个角相等的三角形是等腰三角形”,故答案为:“两个角相等的三角形是等腰三角形”.【点睛】本题考查逆命题的概念,解决本题的关键是熟练掌握逆命题的概念,知道题设和结论互换.13.如图,在ABC 中,65B ∠=︒,30C ∠=︒,分别以点A 和点C 为圆心,大于12画弧,两弧相交于点M ,N ,作直线MN ,连接AD ,则BAD ∠的度数为_________.【答案】55︒##55度【解析】【分析】本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键.先根据三角形内角和定理求出BAC ∠的度数,再由线段垂直平分线的性质得出C CAD ∠=∠,进而可得出结论.【详解】解:∵在ABC 中,65B ∠=︒,30C ∠=︒,∴180653085BAC ∠=︒-︒-︒=︒,∵直线MN 是线段AC 的垂直平分线,∴30C CAD ∠=∠=︒,∴853055BAD BAC CAD ∠=∠-∠=︒-︒=︒.故答案为:55︒.14.如图,已知ABC 是等腰直角三角形,90ACB ∠=︒,4AB =,将ABC 沿直线AB 平移到DEF 的位置,当D 恰好是AB =_________.【答案】【解析】【分析】本题主要考查的是平移的性质,勾股定理的应用,等腰三角形的判定和性质,熟练运用以上知识是解题的关键.先求解4,2,AB DF AD BD BF BF ======再证明,EB DF ⊥再利用勾股定理求解即可.【详解】解:如图,连接,BE 由平移的性质可得:4AB DF ==,90ACB DEF ∠=∠=︒,AC BC DE FE ===,D 为AB 的中点,122AD BD BF AB ∴====,EB DF ⊥,又∵DE FE =,90DEF ∠=︒,∴45EDF EFD ∠=∠=︒,∴9045BED EDF ∠=-∠=︒2,EB BD ∴==AE ∴==故答案为:15.已知关于x 、y 的二元一次方程组2326x y k x y +=⎧⎨+=⎩(k 为常数).(1)若该方程组的解x ,y 满足3x y +<,则k 的取值范围为________.(2)若该方程组的解x ,y 均为正整数,且3k <,则该方程组的解为_________.【答案】①.1k <②.22x y =⎧⎨=⎩【解析】【分析】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是得出关于k 的不等式.(1)将方程组中的两个方程相加,即可得到用含k 的代数式表示出x y +,然后根据3x y +<,即可求得k 的取值范围(2)先用含k 的式子表示出方程组的解,再根据x ,y 均为正整数,且3k <,即可得到该方程组的解.【详解】解:(1)2326x y k x y +=⎧⎨+=⎩①②①+②,得3336x y k +=+,∴2x y k +=+,∵3x y +<,∴23k +<,∴1k <;故答案为:1k <;(2)由2326x y k x y +=⎧⎨+=⎩解得224x k y k =-⎧⎨=-+⎩,∵,x y 均为正整数,且3k <,∴当2k =时,2,2x y ==;当1k =时,0,3x y ==,不合题意,舍去;当1k <-时,220x k =-<,不符合题意,都舍去,由上可得,该方程组的解为22x y =⎧⎨=⎩.故答案为:22x y =⎧⎨=⎩.16.如图,折叠等腰三角形纸片ABC ,使点C 落在边AB 上的点F 处,折痕为DE .(1)已知AB AC FD BC =⊥,,则AFE ∠=________度;(2)如果46AF BF ==,,则AE =________.【答案】①.90②.295【解析】【分析】本题考查等腰三角形中的折叠问题,涉及勾股定理、三角形内角和等知识,解题的关键是掌握折叠的性质,熟练应用勾股定理列方程解决问题.(1)由AB AC =,折叠等腰三角形纸片ABC ,使点C 落在边AB 上的点F 处,可得B E ∠=∠FD ,即得BDF AFE Ð=Ð,而FD BC ⊥,故90AFE ∠=︒;(2)根据4,6AF BF ==,得10AB AF BF =+==AC ,设AE x =,则10CE x =-,在Rt AFE 中,可列方程2224(10)x x +-=,即可解得AE .【详解】(1)∵AB AC =,∴B C ∠=∠,∵折叠等腰三角形纸片ABC ,使点C 落在边AB 上的点F 处,,EFD C ∴∠=∠,B EFD ∴∠=∠180180,B EFD ∴︒-∠=︒-∠即,BDF BFD AFE BFD ∠+∠=∠+∠,BDF AFE ∴∠=∠,FD BC ⊥Q 90,BDF ∴∠=︒90,AFE ∴∠=︒故答案为:90;︒(2)4,6,AF BF ==Q 10,AB AF BF AC ∴=+==设,AE x =则10,CE x =-∵折叠等腰三角形纸片ABC ,使点C 落在边AB 上的点F 处,10,EF CE x ∴==-在Rt AFE 中,222AF EF AE +=,2224(10),x x ∴+-=解得295x =,29.5AE ∴=故答案为:295.三、全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.解不等式(组):(1)()75223x x -<+;(2)25462113x x x x -<-⎧⎪+⎨≥-⎪⎩.【答案】(1)9x <(2)142x <≤【解析】【分析】本题主要考查了一元一次不等式组,解一元一次不等式,按照步骤解题即可.(1)按照解一元一次不等式的步骤进行计算,即可解答;(2)按照解一元一次不等式组的步骤进行计算,即可解答.【小问1详解】解:()75223x x -<+7546x x-<+7645x x -<+9x <【小问2详解】25462113x x x x -<-⎧⎪+⎨≥-⎪⎩解不等式2546x x -<-,得:12x >,解不等式2113x x +≥-,得4x ≤,∴原不等式组的解集为:142x <≤.18.已知:如图,AD 、BC 相交于点O ,OA OD =,AB CD ∥,求证:AB CD =.【答案】见解析【解析】【分析】本题主要考查全等三角形的判定和性质和平行线的性质,根据题意得A D B C ∠=∠∠=∠,,即可证明AOB DOC △△≌,即有结论成立.【详解】证明:∵AB CD ∥,∴A D B C ∠=∠∠=∠,,又∵OA OD =,∴()AOB DOC AAS ≌△△,∴AB CD =.19.在如图所示的网格中,每个小正方形的边长均为1个单位.(1)请你在图1中画一个以格点为顶点,面积为3个平方单位的等腰三角形.(画一个即可)(2)请你在图2中画一条以格点为端点,长度为的线段.(画一条即可)(3)请你在图3为直角边的直角三角形.(画一个即可)【答案】(1)见解析(2)见解析(3)见解析【解析】【分析】本题考查了勾股定理,勾股定理逆定理,熟练掌握相关定理是解题的关键.(1)以2为底,3为高构造等腰三角形即可;(2)根据勾股定理,构造直角边长度分别为1和3的直角三角形,斜边即为所求;(3)根据勾股定理以及勾股定理逆定理,即可解答.【小问1详解】解:如图所示:1,2332ABC AB AC S ==⨯⨯= ,即ABC 即为所求.【小问2详解】解:如图所示:DE ==,即DE 即为所求;【小问3详解】解:如图:FH FG ===GH ==,∵22220FH FG GH +==,∴FGH 为等腰直角三角形,即FGH 即为所求.20.如图,已知在ABC 中,高线AD ,BE 相交于点H ,点F 是BH 的中点,=45ABC ∠︒.(1)求证:BHD ADC ≌;(2)若5DF =,则求AC 的长度.【答案】(1)见解析;(2)10.【解析】【分析】本题考查了全等三角形的性质和判定,等腰三角形的性质,以及斜边上的中线等于斜边的一半的性质,解题的关键是正确寻找全等三角形解决问题.(1)由,AD BE 分别是BC 和AC 边上的高,证明ACD AHE ∠=∠,再证明ACD BHD ∠=∠,由90,45ADB ABC ∠=︒∠=︒,证明BD AD =,则可证明BHD ADC ≌;(2)由90ADB ∠=︒,点F 是BH 的中点,5DF =,则210BH FD ==,再由全等10AC BH ==.【小问1详解】证明:∵,AD BE 分别是BC 和AC 边上的高,∴AD BC ⊥,BE AC ⊥,∴90ADC AEH ∠=∠=︒,∴90CAD ACD AHE CAD ∠+∠=∠+∠=︒,∴ACD AHE ∠=∠,∵AHE BHD ∠=∠,∴ACD BHD ∠=∠,∵90,45ADB ABC ∠=︒∠=︒,∴45ABD BAD ∠=∠=︒,∴BD AD =,在BDH △与ADC △中,90BDH ADC ∠=∠=︒,BHD ACD ∠=∠,BD AD =,∴()AAS BDH ADC ≌.【小问2详解】∵90ADB ∠=︒,点F 是BH 的中点,5DF =,∴210BH FD ==,∵BDH ADC△≌△∴10AC BH ==.21.如图,在ABC 中,AB AC D E =,,分别是AB BC ,的中点,连结AE ,在AE 上取点F ,使得EF AD =,延长DF 交AC 于点G .(1)当60BAC ∠=︒时,求AGD ∠的度数.(2)设BAC a AGD β∠=∠=,,探究a β,之间的关系.【答案】(1)75︒;(2)1904βα=︒-.【解析】【分析】本题考查了等腰三角形的性质,三角形内角和定理,熟练掌握等腰三角形的性质,以及三角形内角和定理是解题的关键.(1)先利用等腰三角形的三线合一性质可得30,90BAE CAE AEB ∠=∠=︒∠=︒,再利用直角三角形斜边上的中线性质可得ED AD =,从而可得30BAE AED ∠=∠=︒,然后利用等量代换可得EF ED =,从而利用等腰三角形的性质以及三角形内角和定理可得75DFE FDE ∠=∠=︒,再利用对顶角相等可得75AFG DFE ∠=∠=︒,从而利用三角形内角和定理进行计算,即可解答;(2)先利用等腰三角形的三线合一性质可得1,902BAE CAE AEB α∠=∠=∠=︒,再利用直角三角形斜边上的中线性质可得ED AD =,从而可得12BAE AED α∠=∠=,然后利用等量代换可得EF ED =,从而利用等腰三角形的性质以及三角形内角和定理可得1904DFE FDE α=︒-∠=∠,再利用对顶角相等可得1904AFG DFE α∠=∠=︒-,从而利用三角形内角和定理进行计算,即可解答;.【小问1详解】如图,连接ED ,∵,60AB AC BAC =∠=︒,点E 是BC 的中点,∴130,902BAE CAE BAC AEB ∠=∠=∠=︒∠=︒,∵点D 是AB 的中点,1,2ED AD AB ∴==∴30BAE AED ∠=∠=︒,∵EF AD =,∴EF ED =,∴180752AED DFE FDE ︒-∠∠=∠==︒,∴75AFG DFE ∠=∠=︒,∴18075AGD CAE AFG ∠=︒-∠-∠=︒,∴AGD ∠的度数为75︒;【小问2详解】1904βα=︒-,理由:∵,AB AC BAC α=∠=,点E 是BC 的中点,∴11,9022BAE CAE BAC AEB α∠=∠=∠=∠=︒,∵点D 是AB 的中点,∴12ED AD AB ==,∴12BAE AED α∠=∠=,∵EF AD =,∴EF ED =,∴18019024AED DFE FDE α︒-∠∠=∠==︒-,∴1904AFG DFE α∠=∠=︒-,∴1180180(92AGD CAE AFG α∠=︒-∠-∠=︒--104α⎫︒-⎪⎭,∴11118090244βααα⎛⎫=︒--︒-=︒- ⎪⎝⎭,即1904βα=︒-,22.为了测量一条两岸平行的河流的宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点B 处测得河北岸的树A 恰好在B 的正北方向,测量方案如下表:课题测量河流宽度工具测量角度的仪器,标杆,皮尺等小组第一小组第二小组第三小组测观测者从B 点向东走到C 点,此时观测者从B 点向东走到O 点,在观测者从B 点出发,沿着南偏量方案恰好测得45ACB ∠=︒.O 点插上一面标杆,继续向东走相同的路程到达C 点后,一直向南走到点D ,使得树、标杆、人在同一直线上.西80︒的方向走到点C ,此时恰好测得40ACB ∠=︒.测量示意图(1)第一小组认为要知道河宽AB ,只需要知道线段________的长度.(2)第二小组认为只要测得CD 就能得到河宽AB ,你认为第二小组的方案可行吗?如果可行,请给出证明;如果不可行,请说明理由(3)第三小组测得35BC =米,请你帮他们求出河宽AB .【答案】(1)BC(2)可行,证明见解析(3)35米【解析】【分析】(1)根据题意可得ABC 是等腰直角三角形,即可求解;(2)根据角边角,证明AOB DOC △≌△,根据全等三角形的性质即可得出结论;(3)根据方位角可得80DBC ∠=︒,根据三角形外角的性质,可得40A ∠=︒,继而根据等角对等边即可求解.【小问1详解】解:依题意,ABC 是等腰直角三角形,∴AB BC =,故答案为:BC ;【小问2详解】可行,理由如下,证明:在AOB 与DOC △中,ABO DCO BO CO AOB DOC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴AOB DOC △≌△,∴CD AB =,∴只要测得CD 就能得到河宽AB ;【小问3详解】解:∵80DBC ∠=︒,40ACB ∠=︒,∴40A ∠=︒,∴A ACB ∠=∠,∴BC AB =,∵35BC =米,∴35AB =米.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质,三角形外角的性质,方位角,综合运用以上知识是解题的关键.23.如图,已知在ABC 中,90B Ð=°,10AC =,6BC =,若动点P 从点B 开始,按B A C B →→→的路径运动,且速度为每秒2t秒.(1)出发2秒后,求CP 的长.(2)出发几秒钟后,BCP 的面积等于18?(3)当t 为何值时,BCP 为等腰三角形?(直接写出答案)【答案】(1)(2)3t =或214(3)3t =或5.4或6或6.5【解析】【分析】(1)根据勾股定理求出AC ,根据题意求出BP ,再根据勾股定理计算,得到答案;(2)①当P 在AB 上时,设t 秒后,BCP 的面积等于18,可得1182BC BP ⨯= ,②当P 在AC 时,如图,由BCP ABC S CP S AC = ,可得:18=110682CP ⨯⨯,可得:7.5CP =,再求解时间t 即可;(3)①当P 在AB 上、6BP BC ==时,②当P 在AC 上、6CP CB ==时,4AP =,③当P 在AC 上,PC PB =时,如图,④当P 在AC 上,6BP BC ==时,如图,过点B 作BE AC ⊥于E ,则CE PE =,根据等腰三角形的性质、建立方程求解即可.【小问1详解】解:在ABC 中,90B Ð=°,10AC =,6BC =,∴8AB ==,∵P 从点B 开始,按B A C B →→→,且速度为2,∴出发2秒后,4BP =,由勾股定理得:PC ===【小问2详解】①当P 在AB 上时,设t 秒后,BCP 的面积等于18,∴1182BC BP ⨯= ,∴162182t ⨯⨯=,解得:3t =,②当P 在AC时,如图,由BCP ABC S CP S AC = ,可得:18=110682CP ⨯⨯,解得:7.5CP =,∴107.5 2.5AP =-=,∴8 2.510.5BA AP +=+=,∴10.52124t ==,综上:出发3秒钟或214秒钟后,BCP 的面积等于18;【小问3详解】①当P 在AB 上、6BP BC ==时,26t =,解得:3t =;②当P 在AC 上、6CP CB ==时,4AP =,则28412t =+=,解得:6t =;③当P 在AC 上,PC PB =时,如图,∴C PBC ∠=∠,∵90C A PBC PBA ∠+∠=︒=∠+∠,∴A PBA ∠=∠,∴PB PA =,∴5PB PA PC ===,∴8513BA AP +=+=,∴213t =,解得: 6.5t =;④当P 在AC 上,6BP BC ==时,如图,过点B 作BE AC ⊥于E ,则CE PE =,∵11681022ABC S BE =⨯⨯=⨯ ,∴解得: 4.8BE =,∴ 3.6CE ==,∴28107.2t =+-,解得: 5.4t =,综上可得:t =3或6或6.5或5.4时,BCP 为等腰三角形.【点睛】本题考查的是勾股定理、等腰三角形的概念和性质,掌握等腰三角形的概念、灵活运用分情况讨论思想是解题的关键.24.如图,在等腰ABC 中,CAB CBA ∠=∠,作射线BC ,AD 是腰BC 的高线,E 是ABC 外射线BC 上一动点,连结AE .(1)当4=AD ,5BC =时,求CD 的长;(2)当BC CE =时;求证:AE AB ⊥;(3)设ACD 的面积为1S ,ACE △的面积为2S ,且121825S S =,在点E 的运动过程中,是否存在ACE △为等腰三角形,若存在,求出相应的BE BC 的值,若不存在,请说明理由.【答案】(1)3;(2)见解析;(3)2或116.【解析】【分析】(1)利用勾股定理求解即可;(2)证明CA CE CB ==,推出CEA CAE ∠=∠,CAB B ∠=∠,利用三角形内角和定理,可得结论;(3)由ACD S :18ACE S = :25,推出CD :18CE =:25,设18CD k =,25CE k =,则7DE k =,接下来分情况讨论求解即可.【小问1详解】解:CAB B ∠=∠ ,5AC BC ∴==,AD BE ⊥ ,90ADC ∴∠=︒,3CD ∴===;【小问2详解】BC CE = ,AC CB =,AC CE CB ∴==,CEA CAE ∴∠=∠,CAB B ∠=∠,180AEC B EAB ∠+∠+∠=︒ ,22180AEB B ∴∠+∠=︒,90AEB B ∴∠+∠=︒,90EAB ∴∠=︒,AE AB ∴⊥;【小问3详解】ACD S :18ACE S = :25,CD ∴:18CE =:25,设18CD k =,25CE k =,则7DE k =,AD EC ⊥,DE CD ≠,AC AE ∴≠,当25CE CA k ==时,25BC CA k ==,50BE BC CE k ∴=+=,2BE BC=.当25AE EC k ==时,24AD k ===,30AC k ∴===,30BC AC k ∴==,55BE BC CE k ∴=+=,5511306BE k BC k ∴==,综上所述,满足条件的BE BC 的值为2或116.【点睛】本题属于三角形综合题,考查了三角形的面积计算、等腰三角形的性质和判定,勾股定理,三角形的内角和定理的应用等知识,灵活运用分情况讨论思想是解题的关键.。
浙江省杭州市2023_2024学年高二数学上学期12月阶段联考试题含解析

考生须知:1.本卷共4页满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、学号和姓名;考场号、座位号写在指定位置;3.所有答案必须写在答题纸上,写在试卷上无效;4.考试结束后,只需上交答题纸.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1.准线方程为2y =的抛物线的标准方程是()A.24x y = B.24x y =-C.28x y= D.28x y=-2.直线210x ay +-=和直线()3110a x ay ---=垂直,则a =()A.1B.12C.1或12D.1或12-3.已知在等比数列{}n a 中,4816a a ⋅=,则6a 的值是()A.4B.-4C.±4D.164.如图,在三棱台111ABC A B C -中,且112AB A B =,设1,,AB a AC b AA c ===,点D 在棱11B C 上,满足112B D DC = ,若AD xa yb zc =++,则()A.11,,163x y z === B.111,,632x y z ===C.11,,136x y z === D.111,,362x y z ===5.已知等差数列{}n a 的前n 项和为n S ,且202220230,0S S ><,则下列说法错误的是()A.10120a < B.10110a >C.数列{}n a 是递减数列D.{}n S 中1010S 最大6.已知圆221:20(0)C x ax y a -+=>,直线:0l x =,圆1C 上恰有3个点到直线l 的距离等于1,则圆1C 与圆222:(1)(1C x y -+=的位置关系是()A.内切B.相交C.外切D.相离7.已知圆22:(4)1C x y +-=上有一动点P ,双曲线22:197x y M -=的左焦点为F ,且双曲线的右支上有一动点Q ,则PQ QF +的最小值为()A.1- B.5- C.7D.58.阅读材料:空间直角坐标系O xyz -中,过点()000,,P x y z 且一个法向量为(),,n a b c =的平面α的方程为()()()0000a x x b y y c z z -+-+-=,阅读上面材料,解决下面问题:已知平面α的方程为21x y z -+=,点()3,1,1Q -,则点Q 到平面α距离为()A.6B.2C.102D.34二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知()()2,2,2,1,2,1a b =-=-,则下列说法正确的是()A.()1,4,1a b +=-B.a∥bC.a b⊥D.3cos ,23a ab -=10.已知直线()():2220l mx m y m m R ++--=∈,圆22:(1)(2)25C x y -+-=,点P 为圆C 上的任意一点,下列说法正确的是()A.直线l 恒过定点()1,1B.直线l 与圆C 恒有两个公共点C.直线l 被圆C 截得最短弦长为D.当1m =-时,点P 到直线l 距离最大值是252+11.已知数列{}{},n n a b 满足()*123111,23n n n a a a a b n N S n++++=∈ 是{}n a 的前n 项和,下列说法正确的是()A.若2n a n n =+,则232n n nb +=B.若n b n =,则{}n a 为等差数列C.若1n b n =+,则{}n a 为等差数列D.若2nn b =,则()122nn S n =-⋅+12.已知抛物线2:4C y x =的焦点为F ,准线l 与x 轴交于点M ,过M 的直线l 与抛物线C 相交于()()1122,,,A x y B x y 两点,点D 是点A 关于x 轴的对称点,则下列说法正确的是()A.124y y =- B.4AF BF +的最小值为10C.,,B F D 三点共线D.0MB MD ⋅>三、填空题:本题共4小题,每题5分,共20分.13.在空间直角坐标系O xyz -中,已知点()()3,1,4,2,1,5M N -,则MN =__________.14.过点()0,0作圆22:430C x y y +-+=的两条切线,切点为A B 、,则劣弧长 AB =__________.15.如图,已知正方形0000A B C D 的边长为2,分别取边00000000,,,D A A B B C C D 的中点1111,,,A B C D ,并连接形成正方形1111A B C D ,继续取边11111111,,,D A A B B C C D 的中点2222,,,A B C D ,并连接形成正方形2222A B C D ,继续取边22222222,,,D A A B B C C D 的中点3333,,,A B C D ,并连接形成正方形3333,A B C D ,依此类推;记011A A B 的面积为1122,a A A B 的面积为2,a ,依此类推,()*1n n n A A B n N -∈ 的面积为n a ,若12310231024n a a a a +++=,则n =__________.16.设12F F 、是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点,P Q 为椭圆C 上的两点,且满足21260,2PF Q PF QF ∠==,则椭圆C 的离心率为__________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)如图,在长方体1111ABCD A B C D -中,12,3,4AB AD AA ===,点,E F 分别为棱1,AB DD的中点,(1)求证:1C F ⊥平面BCF ;(2)求直线1C F 与平面1DEC 所成角的正弦值.18.(本题满分12分)已知数列{}n a 满足11a =,点()*111,n n n N a a +⎛⎫∈⎪⎝⎭在直线210x y -+=上.(1)求证:数列11n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求出{}n a 的通项公式;(2)求满足11635n a ≤≤的n 的取值构成的集合.19.(本题满分12分)已知动点P 与两个定点()()1,0,4,0A B 的距离的比是2.(1)求动点P 的轨迹C 的方程;(2)直线l 过点()2,1,且被曲线C 截得的弦长为3,求直线l 的方程.20.(本题满分12分)已知等差数列{}n a 前n 项和为n S ,满足343,10a S ==.数列{}n b 满足12b =,*112,n n n nb a n N b a ++=∈.(1)求数列{}{},n n a b 的通项公式;(2)设数列{}nc 满足()*1(1)32,n n n n n c n N a b +-+=∈,求数列{}n c 的前n 项和n T .21.(本题满分12分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为正方形,2,,AB PA E F ==分别为,PB PD 的中点.(1)求平面CEF 与底面ABCD 所成角的余弦值;(2)求平面CEF 与四棱锥P ABCD -表面的交线围成的图形的周长.22.(本题满分12分)已知双曲线C 的中心为坐标原点,上顶点为()0,2,离心率为2.(1)求双曲线C 的渐近线方程;(2)记双曲线C 的上、下顶点为12,,A A P 为直线1y =上一点,直线1PA 与双曲线C 交于另一点M ,直线2PA 与双曲线C 交于另一点N ,求证:直线MN 过定点,并求出定点坐标.2023学年第一学期金华卓越联盟12月阶段联考高二年级数学参考答案命题人:东阳二中吕夏雯陆琳琳;审题人:汤溪中学张拥军一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.D 【解析】242pp =⇒=,又抛物线开口向下,所以抛物线的方程为28,D x y =-正确.2.C 【解析】()()311201a a a a -⋅+⋅-=⇒=或1,C 2a =正确.3.C 【解析】2486616,4,C a a a a ⋅==∴=±正确.4.A 【解析】1111111111111212,,3333AD AA A D A D A B AC AD AA A B AC =+=+∴=++又111111111,,,2263A B a AC b AA c AD a b c ===∴=++ ,A 正确.5.D 【解析】()()120222022101110121011101220221011002a a S a a a a +==+>⇒+>()1202320231012101220232023002a a S a a +==<⇒<,则10110a >所以数列{}n a 单调递减,{}n S 中1011S 最大.D 正确.6.B 【解析】圆上3个点到直线的距离是1,则圆心到直线的距离应是1,12aa a -∴=-,则2a =,圆1C 的圆心为()2,0,半径是2,圆2C 的圆心为(,半径是1,则12C C =,所以两圆的位置关系是相交.B 正确.7.D 【解析】圆心()0,4C ,取双曲线的左焦点()224,0,1,6F PQ QC QF QF ≥-=+ ,则()22216555PQ QF QC QF QC QF CF +≥-++=++≥+=PQ QF ∴+的最小值为5+,D 正确.8.A 【解析】平面α的法向量()1,1,2n =-,在平面α上任取一点()1,0,1A -,则()4,1,0QA =- ,556A 66QA n d n ⋅== 正确.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分.9.ACD 【解析】()1,4,1a b +=- ,选项A 正确,a b λ≠ ,选项B 错误;()()2122210a b -⋅+⋅+⋅-=∴⊥选项C 正确;()12324,2,4cos ,23236a b a a b -=--∴->=⋅,选项D 正确,正确答案是A.C.D 10.ABD 【解析】直线():2220l m x y y +-+-=,所以恒过定点()1,1.选项A 正确;因为定点()1,1在圆C 内,所以直线l 与圆C 恒有两个公共点.选项B 正确;l 被圆C 截得的最短弦长2516-=C 错误;当1m =-时,:0l x y -=,点P 到直线l 的距离的最大值是25522+=+,选项D 正确.正确答案是A.B.D11.ABD 【解析】当2n a n n =+,则11n a n n =+,所以()221322n n n n n b +++==,选项A 正确;已知12311123n a a a a n n++++= ,当1n =时,11a =,当2n ≥时,12311111231n a a a n n -++++=-- ,则(11,1n n a a n n n=∴==时也成立),所以{}n a 为等差数列,选项B 正确;已知123111123n a a a a n n++++=+ ,当1n =时,12a =,当2n ≥时,1231111231n a a a a n n -++++=- ,则(11,1n n a a n n n=∴==时不成立),所以{}n a 不是等差数列,选项C 不正确;已知123111223n n a a a a n++++= ,当1n =时,12a =,当2n ≥时,112311112231n n a a a a n --++++=- ,则1112,2(1n n n n a a n n n--=∴=⋅=时不成立),所以12,1;2,2n n n a n n -=⎧=⎨⋅≥⎩当1n =时,12S =,1n =时,12112,222322n n a S n -==+⋅+⋅++⋅ ()2122222122n nn S n n -=⋅+⋅++-⋅+⋅ ()()22314122022222212212n n n nnn S n n n ----=++++-⋅=+-⋅=-⋅-- 所以()122,1nn S n n =-⋅+=时也成立,选项D 正确.正确答案是A.B.D 12.CD【解析】设直线:1l x my =-,联立方程组224,4401y x y my x my ⎧=-+=⎨=-⎩,则121244y y m y y +=⎧⎨=⎩,选项A 不正确;221212144y y x x =⋅=,所以()121244114559AF BF x x x x +=+++=++≥=当且仅当2142x x ==时等号成立,所以4AF BF +的最小值为9,选项B 不正确;()11,D x y -,设:l x ny t =+,联立方程组224,440y x y ny t x ny t ⎧=--=⎨=+⎩,则121244y y my y t -+=⎧⎨-=-⎩,所以1t =,即直线BD 过点F ,选项C 正确;对于D 选项,()()22111,,1,MB x y MD x y =+=+-,22121212114214440MB MD x x x x y y m m ∴⋅=+++-=+-++=+>,选项D 正确.正确答案是C.D三、填空题:本题共4小题,每题5分,共20分.【解析】()1,2,1,MN MN =-∴==.14.23π【解析】圆C :22(2)1x y +-=,2,63COB COA ACB ππ∠∠∠∴==∴=,故劣弧长23AB π=.15.10【解析】由题意可知三角形的面积构成首项为12,公比为12的等比数列,12311122110231,1012102412nnn a a a a n ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭∴+++==-=∴=-.16.9【解析】如图,过1F 作12F M QF = ,连接2MF ,因为122PF QF = ,所以12260F PF PF Q ∠∠==,设2QF t =,则11222,,22,2PF t MF t PF a t MF a t ===-=-,在2PMF 中,222222||||PM PF PM PF MF +-=,即22222294846644t a at t at t a at t +-+-+=-+,化简得1210859,,99a t PF a PF a ===,所以1006480221299c t a ==,所以离心率219c a =.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.【解析】(1)方法一:因为F 是1DD 的中点,所以111112,D F D C FD DC D FC ==== 和FDC 是等腰直角三角形,所以1145D FC CFD ∠∠==,1C F CF ∴⊥,因为BC ⊥平面111,CDD C C F ⊂平面11CDD C ,所以1BC C F ⊥,,BC CF ⊂平面11BCF C F ∴⊥平面BCF方法二:以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴建立空间直角坐标系,()()()()()()()110,3,0,2,3,0,0,0,2,0,2,4,2,0,0,0,2,2,0,2,2,C B F C CB CF C F ==-=--所以111440,0,C F CF C F CB C F ⋅=-=⋅=∴⊥平面BCF ;(2)()()13,1,0,0,2,4DE DC == ,设平面1DEC 的法向量为(),,n x y z =,则130240DE n x y DC n y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,所以取()2,6,3n =- ,又()10,2,2C F =--,11132sin cos ,14||C F n C F n C F n θ⋅∴==== .直线1C F 与平面1DEC所成角的正弦值为14.18.【解析】(1)由已知得111212121,21111n n n n nn a a a a a a ++++=+∴==++,且11120a +=≠,所以数列11n a ⎧⎫+⎨⎬⎩⎭是等比数列,112n n a ∴+=,则1;21n n a =-(2)因为11635n a ≤≤,所以111,52163,626463215n n n ≤≤≤-≤∴≤≤-,得2log 66n ≤≤,又因为*n N ∈,所以n 的取值构成的集合是{}3,4,5,6.19.【解析】(1)设点(),P x y=,化简得2210210x y x +-+=,所以动点P 的轨迹C 的方程为22(5)4x y -+=;(2)由(1)可知点P 的轨迹C 是以()5,0为圆心,2为半径的圆,可计算得圆心()5,0到直线l的距离1d ==,①当直线l 的斜率不存在时,圆心到直线l 的距离是3,不符合条件,②当直线l 的斜率存在时,设直线l 的方程为()12y k x -=-,即210kx y k --+=,所以1d ==,化简得229611k k k ++=+,解得0k =或34k =-,所以直线l 的方程是1y =或34100x y +-=.20.【解析】(1)设数列{}n a 的公差为1123,4610a d d a d +=⎧∴⎨+=⎩,解得11,1,n a d a n ==∴=.()11211,2n n n n b n b n b b n n ++++=∴= ,且121b =,所以n b n ⎧⎫⎨⎩⎭是等比数列,2,2n nn n b b n n∴=∴=⋅(也可用累乘法求{}n b 的通项公式)(2)()()()()1111(1)3211(1)(1)(1)12212212n n n nn n n n n n n c n n n n n n ++++⎛⎫-+--==-+=- ⎪ ⎪+⋅⋅+⋅⋅+⋅⎝⎭,()1111(1)212n n n T n ++∴=---+⋅21.【解析】(1)以A 为原点,以AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴建立空间直角坐标系,平面ABCD 的法向量为()0,0,1m =,()()()()()2,2,0,1,0,1,0,1,1,1,2,1,1,1,0C E F CE EF =--=- ,设平面CEF 的法向量为(),,n x y z = ,所以200CE n x y z EF n x y ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩ ,所以取()1,1,3n = ,所以cos ,||||11m n m n m n ⋅〈〉=== ,所以平面CEF 与底面ABCD所成角的余弦值为11;(2)由对称性可知平面CEF 与棱PA 交于一点,设交点()()40,0,,1,0,1,1330,3Q t QE t QE n t t =-⋅=+-=∴= ,103QE QF ∴==又CE CF ==,所以围成的图形的周长为210263+22.【解析】(1)设双曲线方程为22221(0,0)y x a b a b-=>>,由上顶点坐标可知2a =,则由52c e a ==可得225,1c b c a ==-,双曲线的渐近线方程为2y x =±.(2)由(1)可得()()120,2,0,2A A -,设()()1122,,,M x y N x y ,设直线MN 的方程为y kx m =+,与2214y x -=联立可得()2224240k x kmx m -++-=,且()22Δ1640k m =-+>,则212122224,44km m x x x x k k --+==--,()2212122248,44k m m y y y y k k -+-∴+==--设()1213,1,,A P A P P t k k t t ∴=-=,2111233,4A P A P MA MA MA k k k k k ∴=-=-⋅= ,得2212MA NA k k ⋅=-2221221222441641612,124y y k m m k x x m ++---+-∴⋅=-=--,化简得22(2)3,4m m +=-。
2023-2024学年度第一学期杭州八年级数学第一次月考试卷(解答卷)

2023-2024学年度第一学期杭州八年级数学第一次月考试卷(解答卷)一、选择题(本大题共有10个小题,每小题3分,共30分)1.下列长度的三条线段,能首尾相连围成三角形的是( )A .1 cm ,2 cm ,3cmB .2 cm ,3 cm ,4 cmC .1 cm ,1 cm ,2 cmD .1 cm ,2 cm ,4 cm【答案】B2.下列四个图中,正确画出△ABC 中BC 边上的高是( )A .B .C .D .【答案】C3. 下列命题的逆命题是真命题的是( )A .全等三角形的面积相等B .对顶角相等C .两直线平行,内错角相等D .如果0a =且0b =,那么0ab =【答案】C4. 如图,用尺规作'''A O B AOB ∠=∠的依据是( )A.SAS B.ASA C.AAS D.SSS 【答案】D5.将一副三角板按如图方式重叠,则1∠的度数为()A.45°B.60°C.75°D.105°【答案】C5.在△ABC中,∠A=12∠B=13∠C,则此三角形是()A.锐角三角形 B.直角三角形C.钝角三角形D.等腰三角形【答案】B7 .如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A .SASB .ASAC .AASD .SSS【答案】D8.如图,在三角形纸片ABC 中,8=AB cm ,7BC = cm ,5AC = cm ,将CDB ∆沿过点B 的直线折叠,使顶点C 落在AB 边上的点E 处,折痕为BD , 则AED ∆的周长为( )A .5cmB .6cmC .7cmD .8cm【答案】B9 在ABC 中,12cm ABAC ==,B C ∠=∠,8cm BC =,点D 为AB 的中点. 如果点P 在线段BC 上以2cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为cm/s v ,则当BPD △与CQP 全等时,v 的值为( )A .2B .3C .1或2D .2或3【答案】D10. 如图在ABC ,ADE 中,90BAC DAE ∠=∠=°,AB AC =,AD AE =, 点C 、D 、E 点在同一条直线上,连结BD ,BE 以下四个结论:①BD CE =;②BD CE ⊥;③45ACE DBC∠+∠=°;④ACB DBC ∠=∠, 其中结论正确的个数有( )A .4B .3C .2D .1【答案】B二、填空题(本大题共有8个小题,每小题3分,共24分)11.如图,已知:∠B=∠DEF ,AB=DE ,要说明△ABC ≌△DEF ,(1)若以“ASA”为依据,还缺条件;(2)若以“AAS”为依据,还缺条件;(3)若以“SAS”为依据,还缺条件 .【答案】∠A=∠D ∠ACB=∠F BC=EF12.如图,在△ABC中,∠C=90°,BD平分∠ABC,CD=3,则点D到AB的距离是______【答案】313.如图所示,在△ABC中,AD⊥BC于点D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C= °.【答案】6514 .如图,已知∠B=∠C.添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是;15 .如图,在Rt ABC 中,∠C =90°,直线DE 是斜边AB 的垂直平分线交AC 于D .若AC =8,BC =6,则 DBC 的周长为_______【答案】1416.如图,已知∠BDC =142º,∠B =34º,∠C =28º,则∠A = .【答案】80°17 .如图,锐角ABC 中,直线l 为BC 的中垂线,BM 为的ABC ∠角平分线,l 与BM 相交于点P .若60A °∠=,24ACP °∠=,则ABP ∠的度数为 .【答案】32°18.如图,在△ABC 中,边AB 、AC 的垂直平分线分别交BC 于D 、E ,若∠BAC =100°,则∠DAE =_____.【答案】20°三、解答题(本大题共有6个小题,共46分)19.方格纸中每个小正方形的边长均为1,点A B C,,在小正方形的顶点上.(1)画出ABC中边BC上的高AD;(2)画出ABC中边AC上的中线BE;(3)求出ABE的面积.解:(1)如图所示,线段AD即为所求;(2)如图所示,线段BE即为所求;(3)S△ABC=12BC•AD=12×4×4=8.∴△ABE的面积=12S△ABC=4,故答案为:4.20.已知:如图,1234∠=∠∠=∠,.求证:AB AD =.证明:∵3=4∠∠,3180ACB ∠+∠=°,4180ACD ∠+∠=°, ∴ACB ACD ∠=∠, ∵12AC ACACB ACD ∠=∠ = ∠=∠, ∴△ACB ≌△ACD ,∴AB AD =.21.如图,点,,,A C F D 在同一直线上,,,.AF DC AB DE BC EF === 求证:.A D ∠=∠证明:AF DC =AF CF DC CF ∴−=−即AC DF =在ABC ∆与DEF ∆中,AB DE BC EF AC DF = = =()SSS ABC DEF ∴≅.A D ∴∠=∠22.如图,点A 、D 、C 、F 在同一条直线上,AD =CF , AB =DE ,BC = EF .(1)求证:△ABC ≌△DEF ;(2)若∠A =60°,∠B =80°,求∠F 的度数. 解:(1)∵AD=CF ,∴AD+CD=CD+CF ,即AC=DF ,在 ABC 和 DEF 中,AB=DE BC=EF AC=DF∴ ABC ≌ DEF (SSS ); (2)由(1)可得 ABC ≌ DEF ,∴∠F=∠ACB ,根据三角形内角和180°,∠A=60°,∠B=80°,∴∠ACB=180°-60°-80°=40°, ∴∠F=40°.23 .如图,在ABC 和ADE 中,90BAC DAE ∠=∠=°,AB AC =,AD AE =, 点C 、D 、E 三点在同一直线上,连接BD 交AC 于点F .(1)求证:BAD CAE ≌;(2)猜想BD ,CE 有何特殊位置关系,并说明理由.(1)证明:∵90BAC DAE ∠=∠=°, ∴BAC CAD EAD CAD ∠+∠=∠+∠,∴BAD CAE ∠=∠, 在BAD 和CAE 中,===AB AC BAD CAE AD AE ∠∠,∴()SAS BAD CAE ≌△△.(2)证明:猜想:BD CE ⊥,理由如下:由(1)知BAD CAE ≌,∴=BD CE ,ABD ACE ∠=∠, ∵=AB AC ,90BAC ∠=°, ∴45ABC ACB ∠=∠=°, ∴45ABD DBC ABC +==°∠∠∠, ∵ABD ACE ∠=∠, ∴45ACE DBC∠+∠=°, ∴90DBC DCB DBC ACE ACB ∠+∠=∠+∠+∠=°,∴1801809090BDCDBC DCB ∠=°−∠−∠=°−°=°, ∴BD CE ⊥.24.如图1,在ABC 中,AB AC =,AD 是ABC 的角平分线.(1) 写出图中全等的三角形______,线段AD 与线段BC 的位置关系是______;(2) 如图2,在(1)的条件下,过点B ,作BE AC ⊥,垂足为E ,交AD 于点F ,且AE BE =,请说明AEF BEC ≌的理由.解:(1)∵AD 是ABC 的角平分线,∴BAD CAD ∠=∠, ∵AB AC =,AD AD =, ∴()SAS ABD ACD ≌△△,∴ADB ADC ∠=∠, ∵180ADB ADC∠+∠=°, ∴90ADB ADC ∠=∠=°,即AD BC ⊥, 故答案为:ABD ACD △≌△;垂直(或线段AD BC ⊥); (2)由(1)得AD BC ⊥,所以90ADC ∠=°. 所以90EAF C ∠+∠=°. 因为BE AC ⊥,所以90BEC AEF ∠∠==°. 所以90CBE C ∠+∠=°.所以EAF EBC ∠=∠又因为AE BE =,90BEC AEF ∠∠==°, 所以()ASA AEF BEC ≌.。
浙江省杭州市萧山区钱江片2023-2024学年八年级上学期期中数学试卷(含解析)

2023-2024学年浙江省杭州市萧山区钱江片八年级(上)期中数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分。
下面每小题给出的四个选项中,只有一个是正确的.)1.(3分)下列长度的三段钢条,不能组成一个三角形框架的是(单位:cm)( )A.2,3,4B.3,7,7C.2,2,6D.5,6,72.(3分)下列图形中是轴对称图形的是( )A.B.C.D.3.(3分)下列命题中,是真命题的是( )A.有两条边和一个角对应相等的两个三角形全等B.等腰三角形的对称轴是底边上的高线C.在同一平面内,过一点有且只有一条直线垂直于已知直线D.同位角相等4.(3分)在△ABC中,∠A=∠B=70°,则∠C等于( )A.20°B.40°C.70°D.110°5.(3分)下列条件中,能判定△ABC为直角三角形的是( )A.∠A=30°B.∠B+∠C=120°C.∠A:∠B:∠C=1:1:2D.AB:AC:BC=2:3:46.(3分)若直角三角形的两边长分别是5和12,则它的斜边长是( )A.13B.13或C.D.12或137.(3分)如图,已知AB=AD,那么添加下列一个条件后( )A.CB=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠BCA=∠DCA 8.(3分)如图,已知在△ABC中,CD是AB边上的高线,交CD于点E,BC=5,则△BCE 的面积等于( )A.10B.7C.5D.49.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,AC长为半径画弧,再分别以点C,D为圆心,两弧交于点E,作射线AE交BC边于点F,若BC=6,则PF的取值范围是( )A.2≤PF≤3B.1≤PF≤2C.2≤PF≤4D.3≤PF≤5 10.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,交AC于点F,过点G作GD⊥AC于D;②∠BGC=90°+∠A;④设GD=m,AE+AF=n△AEF=mn.其中正确的结论有( )A.1个B.2个C.3个D.4个二、认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)命题“对顶角相等”的逆命题是 .12.(4分)已知等腰三角形的一个内角为110°,则等腰三角形的底角的度数为 .13.(4分)如图,在△ABC中,∠BAC=90°,BC=10,EF垂直平分BC,则△ABP周长的最小值是 .14.(4分)如图,已知∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,则OD = .15.(4分)如图,在△ABC中,点D在边BC上,点E,点F分别是AC,EF=3.则AC 的长为 .16.(4分)如图,在△ABC中,D为边AC上一点,过A作AE⊥BD于点E.若∠ABC+4∠C=180°,AB=5,则AE= .三、全面答一答(本大题有7个小题,共66分)17.(6分)如图,CD是△ABC的AB边上的中线,,求证:△ABC是直角三角形.将下面证明的过程补充完整.证明:∵CD是AB边上的中线(已知),∴AD=BD= ( ).∵,∴CD=AD.∴∠A=∠ ( ),同理,∠B=∠BCD,∵∠A+∠B+∠ACD+∠BCD=180°( ),∴∠A+∠B+∠ACD+∠BCD=×180°=90°,∴△ABC是直角三角形( ).18.(8分)如图,∠AOB=90°且OB=6.(1)只用直尺(没有刻度)和圆规,求作一个点P(要求保留作图痕迹,不必写出作法):①点P到O,B两点的距离相等;②点P到∠AOB的两边的距离相等;(2)在(1)作出点P后,写出OP的长.19.(8分)如图:在△ABC中,AB=AD=CD.(1)若∠C=36°,求∠B的度数;(2)若∠BAD=x°,∠C=y°,求x和y的数量关系(用x的代数式表示y).20.(10分)如图,在长方形ABCD中,AD=BC=6(cm),以1(cm/s)的速度沿BC向点C 运动(s):(1)经过t秒后,CP= 厘米;(2)当△ABP≌△DCP时,此时t= 秒;(3)在(2)的条件下,当∠APD=90°时21.(10分)在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于点E,EG⊥AG交AC的延长线于点G.求证:(1)EF=EG;(2)AB﹣AC=2BF.22.(12分)如图是某市工业开发区设计图纸的局部平面图,直线AB是一条河流,河旁边建有一个工厂P,E在直线AB上,O是工厂P的进水口.E是污水净化后的出水口,现计划在河旁边再建一座工厂Q,设计要求是:工厂Q也从点O处引水,OQ=OP,污水净化后的排污出口为AB上的点F处(1)请根据设计要求把图形补充完整;(2)已知QF=350米,PE=150米,求两个排污口E、F之间距离(不计河的宽度).23.(12分)如图一,△ABC中,D是BC的中点,交AC的平行线BG于点G,DE⊥DF,连接EG、EF.(1)求证:BG=CF;(2)如图二,当∠A=90°时,猜想BE,EF的数量关系,并说明理由;(3)如图三,在(2)的条件下,当AB=AC时2023-2024学年浙江省杭州市萧山区钱江片八年级(上)期中数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分。
2023-2024学年八年级上学期第三次月考数学试题(原卷版)

2023-2024学年八年级上学期12月份质量监测数学(本试卷共6页,25题,全卷满分:120分,考试用时:120分钟)1.答题前,先将自己的姓名、准考证号写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上相应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,将答题卡上交.一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.体育是一个锻炼身体,增强体质,培养道德和意志品质的教育过程,是培养全面发展的人的一个重要方面,下列体育图标是轴对称图形的是()A. B. C. D.2.如图,空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是()A.三角形两边之差小于第三边B.三角形两边之和大于第三边C.垂线段最短D.三角形的稳定性3.用下列长度的三条线段能组成三角形的是()A.2cm,3cm,5cmB.8cm,12cm,2cmC.5cm,10cm,4cmD.3cm,3cm,5cm4.2023年9月9日,上海微电子研发的28nm浸没式光刻机的成功问世,标志着我国在光刻机领域迈出了坚实的一步.已知28nm为0.000000028米,数据0.000000028用科学记数法表示为()A.102.810-⨯ B.82.810-⨯ C.62.810-⨯ D.92.810-⨯5.下列运算正确的是()A.()1432a a = B.236a a a ⋅= C.()32626a a -=- D.842a a a ÷=6.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4B.5C.6D.77.下列等式成立的是()A.22(1)1x x -=- B.22(1)1x x x +=++C.2(1)(1)1x x x +-+=- D.2(1)(1)1x x x -+--=--8.下列说法:①三角形的外角等于两个内角之和;②三角形的重心是三条垂直平分线的交点;③有一个角等于60︒的等腰三角形是等边三角形;④分式的分子与分母乘(或除以)同一个整式,分式的值不变,其中正确的个数有()A.0个 B.1个 C.2个 D.3个9.如图,在ABC 中,AB AC =,点D ,P 分别是图中所作直线和射线与AB ,CD 的交点.根据图中尺规作图的痕迹推断,以下结论错误的是()A.PBC ACD ∠=∠B.ABP CBP ∠=∠C.A ACD ∠=∠D.AD CD=10.如图,在ABC 中,90BAC ︒∠=,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,给出以下结论:①BE BCE S S =△A △;②AFG AGF ∠=∠;③2FAG ACF ∠=∠;④BH CH =;⑤::AC AF BC BF =.其中结论正确的有()A.2个B.3个C.4个D.5个二、填空题(本大题共6个小题,每小题3分,共18分)11.因式分解:316y y -=______.12.在平面直角坐标系中,点P (3,﹣2)关于y 轴对称的点的坐标是____.13.若分式211x x --的值为0,则x 的值为______.14.如图,PA OA ⊥,PB OB ⊥,PA PB =,26POB ∠=︒,则APO ∠=________°.15.如图,等边ABC 中,D 为AB 的中点,过点D 作DFAC ⊥于点F ,过点F 作FE BC ⊥于点E ,若4AF =,则线段BE 的长为________.16.如图,在平面直角坐标系中,点()7,0A ,()0,12B ,点C 在AB 的垂直平分线上,且90ACB ∠=︒,则点C 的坐标为________.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小逪9分,第24、25题每小题10分,共72分,解答应写出必要的文字说明,证明过程或演算步骤)17.计算:()2202301|3|120243-⎛⎫-+-+- ⎪⎝⎭.18.先化简,再求代数式221122x x x x ⎡⎤-⎛⎫-÷⎢⎥ ⎪++⎝⎭⎢⎥⎣⎦的值,其中2x =.19.如图,在ABC 中,DE 是线段AB 的垂直平分线.(1)若35B ∠=︒.求ADC ∠的度数:(2)若AD CD =.求证:AC AB ⊥.20.如图,在正方形网格中,点A 、B 、C 、M 、N 都在格点上.(1)作△ABC 关于直线MN 对称的图形△A'B'C';(2)若网格中最小正方形的边长为1,则△ABC 的面积为;(3)点P 在直线MN 上,当△PAC 周长最小时,P 点在什么位置,在图中标出P 点.21.如图,在四边形ABCD 中,AB CD ,连接BD ,点E 在BD 上,连接CE ,若12∠=∠,AB ED =.(1)求证:BD CD =.(2)若13555A BCE ∠=︒∠=︒,,求DBC ∠的度数.22.【阅读理解】若x 满足(32)(12)100x x --=.求()()223212x x -+-的值.解:设32x a -=,12x b -=.则()()3212100x x a b --=⋅=,()()321220a b x x +=-+-=.()()()22222232122202100200x x a b a b ab -+-=+=+-=-⨯=.我们把这种方法叫做换元法.利用换元法达到简化方程的目的.体现了转化的数学思想.【解决问题】(1)若x 满足()()1025x x --=.则()()22102x x -+-=________;(2)若x 满足()()222025202266x x -+-=.求()()20252022x x --的值;(3)如图,在长方形ABCD 中,25cm AB =,点E ,F 是边BC ,CD 上的点,13cm EC =,且cm BE DF x ==.分别以FC ,CB 为边在长方形ABCD 外侧作正方形CFGH 和CBMN ,若长方形CBQF 的面积为2300cm ,求图中阴影部分的面积之和.23.ABC 中,AB AC =,点D 是边AB 上一点,BCD A ∠=∠.(1)如图1,试说明CD CB =的理由;(2)如图2,过点B 作BE AC ⊥,垂足为点E ,BE 与CD 相交于点F .①试说明2BCD CBE ∠=∠的理由;②如果BDF V 是等腰三角形,求A ∠的度数.24.如图,在平面直角坐标系中,A 点在第二象限、坐标为(,)m m -.(1)若关于x 的多项式24x x m ++是完全平方式,直接写出点A 的坐标:________;(2)如图1,ABO 为等腰直角三角形.分别以AB 和OB 为边作等边ABC 和等边OBD ,连接OC ,AD ;①若4=AD ,求OC 的长;②求COB ∠的度数.(3)如图2,过点A 作AM y ⊥轴于点M ,点E 为x 轴正半轴上一点,K 为ME 延长线上一点,以MK 为直角边作等腰直角三角形MKJ ,90MKJ ∠=︒,过点A 作AN x ⊥轴交MJ 于点N ,连接EN .试猜想线段AN ,OE 和NE 的数量关系,并证明你的猜想.25.定义:若分式A 与分式B 的差等于它们的积.即A B AB -=,则称分式B 是分式A 的“可存异分式”.如11x +与12x +.因为()()1111212x x x x -=++++,11112(1)(2)x x x x ⨯=++++.所以12x +是11x +的“可存异分式”.(1)填空:分式12x +________分式13x +的“可存异分式”(填“是”或“不是”;)(2)分式4x x -的“可存异分式”是________;(3)已知分式2333x x ++是分式A 的“可存异分式”.①求分式A 的表达式;②若整数x 使得分式A 的值是正整数,直接写出分式A 的值;(4)若关于x 的分式22n mx m n +++是关于x 的分式21m mx n-+的“可存异分式”,求2619534n n ++的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甲乙丙丁北北A α(第6题图)萧山瓜沥片12月份月考试八年级数学试卷出卷人:戚雅芳 审核人:徐 芳(满分 120 分 时间90分钟)一.仔细选一选(本题有10个小题,每小题3分,共30分)1.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( ▲ )A .30° B.25° C.20° D.15°2.在平面直角坐标系中,点P (2x-6,x-5)在第四象限,则x 的取值范围是( ▲ )A .3<x<5B .-3<x<5C .-5<x<3D .-5<x<-33.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额.某同学知道自己的比赛分数后,要判断自己能否获奖,在下列13名同学成绩的统计量中只需知道一个量,它是( ▲ )A.众数B.方差C.中位数D.平均数4.如图,若乙、丙都在甲的北偏东70°方向上,乙在丁的正北方向上,且乙到丙、丁的距离相同.则α的度数是( ▲ ) A .25° B .30°C .35°D .40°5.现有一个只有三个面上印有图案的不透明的正方形纸盒,如图所示,在下面的四个图形中,往下..折叠能围成图甲的是( ▲ )6.下列说法中,其中正确..的是( ▲ ) A.对于给定的一组数据,它的众数可以不只一个 B.有两边相等且一角为30的两个等腰三角形全等C.为了防止甲型流感的传染,学校对学生测量体温,应采用抽样调查....法D.直棱柱的面数、棱数和顶点数之间的关系是面数+顶点数=棱数-27.以下展示四位同学对问题“已知a<0,试比较2a 和a 的大小”的解法,其中正确的解法个数是( ▲ )①方法一:∵2>1,a<0,∴2a<a;②方法二:∵a<0,即2a-a<0,∴2a<a;③方法三:∵a<0,∴两边都加a 得2a<a ;④方法四:∵当a<0时,在数轴上表示2a 的点在表示a 的点的左边,∴2a<a.A.1个B.2个C.3个D.4个8.如图,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,甲 AB C21则下列结论中不正确的是( ▲ ) A.∠ACD=∠B B.CH=CE=EF C.AC=AF D.CH=HD9.如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为( ▲ ) A.13cm B.12cm C.10cm D.8cm 10.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟时,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动 一个单位,那么第35秒时跳蚤所在位置的坐 标是( ▲ ) A .(4,O) B. (5,0) C .(0,5) D .(5,5)二.认真填一填(本题有6小题,每小题4分,共24分)11.P (10,a ),Q (b ,-20)关于y 轴对称,则a=__▲__,b=__▲__. 12. 若等腰三角形的周长为20,且有一边长为4,则另外两边分别是___▲___. 13.若关于x 的不等式组⎩⎨⎧<-≥-080a 9b x x 的整数解仅为1,2,3,则适合这个不等式组的整数a,b 的有序数对(a,b )的个数是 ▲个.14.若一组数据n x x x ,,,21⋅⋅⋅的平均数是a ,方差是b ,则34,,34,3421-⋅⋅⋅--n x x x 的平均数是 ▲ ,方差是 ▲ .15.勾股定理有着悠久的历史,它曾引起很多人的兴趣.l955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR 使得∠R=90°,点H 在边QR 上,点D ,E 在边PR 上,点G ,F 在边_PQ 上,那么△PQR 的周长等于 ▲ .16.如图,在平面直角坐标系中有一矩形ABCD ,其中A (0,0),B (8,0),D (0,4),若将△ABC 沿AC 所在直线翻折,点B 落在点E 处.则E 点的坐标是 ▲ .第10题图4cm 2cm5cmP Q第9题图第15题图三.全面答一答(17、18、19题各6分;20、21题各8分;22、23题各10分,24题12分;共66分)17.解不等式组⎩⎪⎨⎪⎧4x -3<5x ,x -4 2+ x +2 6≤ 1 3,并把解在数轴上表示出来.18.已知一个几何体的三视图和有关的尺寸如图所示,请描述该几何体的形状,并根据图中数据计算它的表面积.19.在一次研究性学习活动中,李平同学看到了工人师傅在木板上画一个直角三角形,方法是(如图):画线段AB ,分别以点A ,B 为圆心,以大于21AB 的长为半径画弧,两弧相交于点C ,连接AC ;再以点C 为圆心,以AC 长为半径画弧,交AC 延长线于点D ,连接DB.则△ABD 就是直角三角形.(1)请你说明工人师傅可以这么做直角三角形的理由;(2)请利用上述方法作一个直角三角形,使其一个锐角为30°(不写作法,保留作图痕迹).20.八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个)1号 2号 3号 4号 5号 总分 甲班 89 100 96 118 97 乙班1009691104500统计发现两班总分相等,此时有学生建议,可以通过考查数据中的其他信息作为参考,请解答下列问题: (1)补全表格中的数据; (2)计算两班的优秀率;2cm 4cm3cmDH GFEACB (3)计算两班的方差,并比较哪一班比较稳定? (4)请制定比赛规则并判定哪对获胜?21. 问题背景:在△ABC 中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积.(1)请你将△ABC 的面积直接填写在横线上.____ ▲_______ (2)我们把上述求△ABC 面积的方法叫做构图法....若△ABC 三边的长分别为5a 、22a 、17a (a >0),请利用图②的正方形网格(每个小正方形的边长为a )画出相应的△ABC ,并求出它的面积.(3)若△ABC 三边的长分别为m 2+16n 2、9m 2+4n 2、2m 2+n 2(m >0,n >0,且m ≠n ),试运用构图法...求出这三角形的面积. 22.某超市决定从厂家购进甲、乙、丙三种不同型号的计算器80只,其中甲种计算器的只数是乙种计算器只数的2倍,购买三种计算器的总金额不超过...3300元.已知甲、乙、丙三种计算器的出厂价格分别为:30元/只、40元/只、50元/只. (1)至少购进乙种计算器多少只?(2)若要求甲种计算器的只数不超过丙种计算器的只数,则有哪些购买方案?23.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G .(1)说明:BF AC =;(2)说明:12CE BF =; (3)试探索CE ,GE ,BG 之间的数量关系,并证明你的结论.24.如图,在△ABC 中,已知AB =AC ,∠BAC =90o,BC=6cm,,直线CM ⊥BC ,动点D 从点C 开始沿射线CB 方向以每秒2厘米的速度运动,动点E 也同时从点C 开始在直线CM 上以每秒1厘米的速度运动,连结AD 、AE ,设运动时间为t 秒. (1)求AB 的长;图①图②A C B(2)当t 为多少时,△ABD 的面积为62cm(3)当t 为多少时,△ABD ≌△ACE ,并简要说明理由(可在备用图中画出具体图形).参考答案(2011.12.15)一.仔细选一选(本题有10个小题,每小题3分,共30分)二.认真填一填(本题有6小题,每小题4分,共24分) 11 .a=-20, b=-10. 12. 8,8 . 13. 72 14.b a 16;34- 15. 31327+ 16.(245,325)三.全面答一答(17、18、19题各6分;20、21题各8分;22、23题各10分,24题12分;共66分)17.(6分)解:解不等式①,得 3x >-; ……………………………………………………2分 解不等式②,得 3x ≤. …………………………………………………… …2分 不等式①、②的解集在数轴上表示如下:………………………………1分∴不等式组的解集33x -<≤. ………………………………………1分18.(6分)直三棱柱;(1分)求出斜边5cm(1分),求出侧面积24cm 2(2分);求出表面积36cm 2(2分) 19.(6分)解:(1)连接BC. 由作图可知,AC=BC=CD ,∴∠A=∠ABC,∠CBD=∠CDB.……1分 ∵∠A+∠ABC+∠CBD+∠CDB=180°,题号 1 2 3 4 5 6 7 8 9 10 答案BACCBADDABA∴2∠ABC+2∠CBD=180°.∴∠ABC+∠CBD=90°.即∠ABD=90°. ……1分 ∴△ABD 是直角三角形.………1分 (2)如图所示,则△EFG 就是所求作的直角三角形,其中∠EGF=30°. (作图2分,结论1分)20.(8分)(1)甲班总分: 500 ;乙班3号分数: 109 ; (2分)(2)甲班:%40%10052=⨯ (1分) 乙班:%60%10053=⨯; (1分)(3))(个甲222222294)3184011(51=++++=S (1分) )(个乙22222228.38)49940(51=++++=S (1分) (4)略 (2分)21(8分) (1)3.5…………………………………………………2分(2)画图省略………1分 面积为32a ………2分(3)面积为5mn ………3分22(10分)解:(1)设购买乙种计算器x 只,则购买甲种计算器2x 只,丙种计算器(803)x -只,根据题意,列不等式:30×2x +40x +50(80-3x )≤3300………2分解得14x ≥.∴至少购进乙种计算器14台.…………2分(2)根据题意,得2803x x -≤.解这个不等式,得16x ≤.…………2分 由(1)知14x ≥.1416x ∴≤≤. …………1分 又∵x 为正整数,141516x ∴=,,.所以有三种购买方案:方案一:甲种计算器为28只,乙种计算器为14只,丙种计算器为38只;1分 方案二:甲种计算器为30只,乙种计算器为15只,丙种计算器为35只;1分 方案三:甲种计算器为32只,乙种计算器为16只,丙种计算器为32只.1分23.(10分)解:(1)∵C D ⊥AB ∴∠BDF=∠CDA=90 ∠A+∠ACD=90DH GFEACB ∵BE ⊥AC∴∠A+∠FBD=90 ∴∠FBD=∠ACD ∵45ABC ∠=° ∠BDC=90 ∴∠DCB=45ABC ∠=° ∴BD=CD ∴△BDF ≌△CDA ∴BF AC = 3分(2) ∵BE 平分ABC ∠ BE AC ⊥∴△ABC 关于直线BE 成轴对称图形∴12=CE AC ∵BF AC = ∴12CE BF = 3分 (3) 连结GC ∵∠DCB=45ABC ∠=°C D ⊥AB∴△BDC 是等腰直角三角形∵H 是BC 的中点 ∴DH 是BC 的中垂线 ∴CG=BG ∠EGC=2∠EBC=45∵BE ⊥AC ∴△GEC 是等腰直角三角形∴222CE GE CG +=且CE=GE 4分24.(12分)解(1)∵AB=AC ,∠BAC=90°∴BC=2AB ∵BC=6∴AB=32cm ………4分(2)当点D 在线段BC 上时,BD=t 26- 63)26(21=⋅-⋅=∆t S ABD t=1 ………2分当点D 在线段CB 的延长线上时,BD=62-t63)62(21=⋅-⋅=∆t S ABD t=5 ………2分由上可知,当t=1或5时,△ABD 的面积为62cm(3)动点E 从点C 沿射线CM 方向运动2秒或当动点E 从点C 沿射线CM 的反向延长线方向运动6秒时,△ABD ≌△ACE . 理由如下:① 当E 在射线CM 上时,D 必在CB 上,则需BD=CE.∵CE=t, BD =t 26- ∴t t 26-= ∴t=2 ………1分 证明:∵AB=AC ,∠B=∠ACE=45°,BD=CE ,∴△ABD ≌△ACE. ………(1分)② 当E 在CM 的反向延长线上时,D 必在CB 延长线上则需BD=CE.∵CE=t, BD =62-t ∴62-=t t ∴t=6 ………1分 证明:∵AB=AC ,∠ABD=∠ACE=135°,BD=CE∴△ABD ≌△ACE. ………1分。