完整word版,2007-2008第一学期数理统计与随机过程(研)试题-2007

完整word版,2007-2008第一学期数理统计与随机过程(研)试题-2007
完整word版,2007-2008第一学期数理统计与随机过程(研)试题-2007

北京工业大学2007-2008学年第一学期期末

数理统计与随机过程(研) 课程试题

学号 姓名 成绩

注意:试卷共七道大题,请将答案写在答题本上并写明题号与详细解题过程。

考试时间120分钟。考试日期:2008年1月10日

一、(10分)已知在正常生产的情况下某种汽车零件的重量(克)服从正态分布

),(254σN ,在某日生产的零件中抽取10 件,测得重量如下:

54.0 55.1 53.8 54.2 52.1 54.2 55.0 55.8 55.1 55.3 问:该日生产的零件的平均重量是否正常(取显著性水平050.=α)? 二、 (15分)在数 14159263.=π的前800位小数中, 数字93210,,,,, 各出现的次数记录如下

检验这10个数字的出现是否是等概率的?(取显著性水平050.=α) 三、(15分)下表给出了在悬挂不同重量(单位:克)时弹簧的长度(单位:厘米)

求y 关于x 的一元线性回归方程,并进行显著性检验. 取显著性水平050.=α, 计算结果保留三位小数. 四、(15分)三个工厂生产某种型号的产品,为评比质量,分别从各厂生产的产品中随机抽取5只作为样品,测得其寿命(小时)如下:

在单因素试验方差分析模型下,检验各厂生产的产品的平均寿命有无显著差异?取显著性水平050.=α, 计算结果保留三位小数. 五、(15分)设}),({0≥t t N 是强度为3的泊松过程, 求(1)})(,)(,)({654321===N N N P ; (2)})(|)({4365==N N P ;

(3)求协方差函数),(t s C N ,写出推导过程。

六、(15分)设{,}n X n T ∈是一个齐次马尔可夫链,其状态空间{0,1,2}I =,一步

转移概率矩阵为 121414201335250P ??

?

= ? ???

(1)求}|,,,,{202021054321======X X X X X X P ; (2)求}|{122==+n n X X P ;

(3)证明此链具有遍历性(不必求其极限分布)。

七、(15分)设有随机过程

)sin()cos()(t B t A t X ππ+=,其中A 与B 相

互独立且都是均值为零,方差为2σ的正态随机变量,

(1)分别求)(1X 和)(4

1

X 的一维概率密度;

(2)问)(t X 是否是平稳随机过程?

标准答案(仅供参考) 一、(10分)已知在正常生产的情况下某种汽车零件的重量(克)服从正态分布

),(254σN ,在某日生产的零件中抽取10 件,测得重量如下:

54.0 55.1 53.8 54.2 52.1 54.2 55.0 55.8 55.1 55.3

如果标准差不变,该日生产的零件的平均重量是否有显著差异(取05.0=α)? 解:按题意,要检验的假设是

54:0=μH ,因2σ未知,故用-t 检验法,由05.0=α,查t 分布表得临界

值2622290250.)(.=t ,由样本值算得

382514654.,.==t x

因为26222.

2.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t ,

)()]()([12123t t t X t X E -=-,

则___})(,)(,)({====654321X X X P ,___})(|)({===4365X X P

15

6

262321458!26!26!23}2)3()5(,

2)1()3(,2)0()1({}6)5(,4)3(,2)1({----=??==-=-=-====e e e e X X X X X X P X X X P 解:66

218!

26}2)3()5({}4)3(|6)5({--===-===e e X X P X X P

7、设马尔科夫链的状态空间为{0,1,2}I =,一步转移概率矩阵为:

121414201335250P ?? ?

= ? ???

,求其相应的极限分布。

解: (1) 由马尔科夫与齐次性,可得

{|}{|}{|}{|}

10213243

{|}{|}{|}546576

21313123 53545452500

P P X b X c P X c X b P X a X c P X c X a

P X a X c P X c X a P X b X c =========?========

(2) 因为所求为二步转移概率,先求二步转移概率矩阵

17/309/40

5/2(2)8/153/101/617/303/2017/90P

P P ??

?== ? ???

, 故 2

21{|}[{|}]1/6n n n n P X c X b P X c X b ++======。

北京工业大学2008—2009学年第一学期期末

数理统计与随机过程(研)课程试题

学号_____________姓名______________成绩_______________

注意:试卷共八道大题,请写明详细解题过程。

考试方式:半开卷,考试时只允许看教材《概率论与数理统计》浙江大学盛骤等编第三版(或第二版)高等教育出版社。可以看笔记、作业,但不

允许看其它任何打印或复印的资料。考试时允许使用计算器。考试时间

120分钟。考试日期:2009年1月6日

一、食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一段时间需要检查机器工作情况。现抽得10罐,测得其重量(单位:克)

495,510,505,498,503,492,502,512,497,506。

假定重量X服从正态分布N(μ,σ2),试问机器工作是否正常?(取α=0.02)

二、对某型号的电缆进行耐压试验,记录了53根电缆的最低击穿电压,数据列表如下:

问以上数据是否在0.10的水平下与正态分布相符?

三、威士忌经贮存颜色变深,味道更鲜美,下表给出了威士忌酒的贮存年限及相

1、给出威士忌酒浓度和贮存年限的关系。

2、对回归方程进行显著性检验(α=0.05,保留一位小数)。

3、解释回归系数的意义。

4、预测贮存9年的威士忌酒的浓度(点预测)。

四、用四种安眠药在兔子身上进行试验,特选24只健康的兔子,随机的将它们均分为4组,每组各服一种安眠药,睡眠时间如下所示:

相同?

五、设{N(t),t≥0}是强度为λ的泊松过程,分别求:

(1)E[N(s)N(t+s)];

(2)0

六、设{X(t),t≥0}是具有零均值和协方差C(s,t)的正态过程,则对于任意的非负数s,t和τ,证明:

(1)E[X2(t)] =C(t,t);

(2)E[X4(t)] =3 E[X2(t)];

(3)D[X2(t)] =2 C2(t,t)=2 D2[X(t)];

七、A,B,C三家公司决定在某一时间推销一种新产品。当时它们各拥有1/3的市场,然而一年后,情况发生了如下的变化:

(1)A保住40%的顾客,而失去30%给B,失去30%给C;

(2)B保住30%的顾客,而失去60%给A,失去10%给C;

(3)C保住30%的顾客,而失去60%给A,失去10%给B。

如果这种趋势继续下去,试问第二年底各公司拥有多少市场份额?从长远来看,各公司的市场占有率情况又如何?

八、设Z(t)=Xsint+Ycost,其中X,Y为相互独立同分布的随机变量,具有分布列

(1

(2)讨论Z(t)是否为平稳过程。

北京工业大学2009-20010学年第一学期期末

数理统计与随机过程(研) 课程试卷

学号 姓名 成绩

注意:试卷共七道大题,请写明详细解题过程。

考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学 盛

骤等编第三版(或第二版)高等教育出版社。考试时允许使用计算器。考试时间120分钟。考试日期:2009年12月31日

一、随机抽取某班28名学生的英语考试成绩,算得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,问:能否认为该班的英语成绩与全年级学生的英语平均成绩有显著差异(取显著性水平050.=α)?

三、某公司在为期10年内的年利润表如下:

(1)求该公司年利润对年份的线性回归方程;(2)对回归方程进行显著性检验:(取05.0=α);(3)解释回归系数的意义;(4)求第11年利润的预测区间(取

050.=α)。

四、用三种不同材料的小球测定引力常数,实验结果如下:

在单因素试验方差分析模型下,检验材料对引力常数的测定是否有显著影响?取显著性水平05.0=α, 计算结果保留三位小数。

五、某大型设备在任何长度为t 的时间区间内发生故障的次数{}+∞<≤t t N 0),(是强度λ的Poisson 过程,记设备无故障运行时间为T 。

(1)求})(|)({4365==N N P ; (2)求自相关函数),(t s R N ,写出推导过程; (3)求T 的概率分布函数; (4)已知设备已经无故障运行了10小时,求再无故障运行8小时的概率。

六、(15分)设{,}n X n T ∈是一个齐次马尔可夫链,其状态空间}4,3,2,1{,=I ,

一步转移概率矩阵为 ????

??

? ??=2/12/1004

/12/14/1004/14/12/100

2/12/1P (1)求}4,2,1,3,2{54321=====X X X X X P ; (2)求}1|3{2==+n n X X P ;

(3)讨论此链是否具有遍历性,若是遍历的求其极限分布。

七、设X(t)是平稳随机过程,若)2cos()()(Θ+=t t X t Y π,其中Θ是在)2,0(π上服从均匀分布的随机变量且与X(t)独立,问)(t Y 是否是平稳随机过程?

北京工业大学2011-2012学年第一学期期末

数理统计与随机过程(研) 课程试卷

学号 姓名 成绩

注意:试卷共七道大题,请写明详细解题过程。数据结果保留3位小数。 考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学

盛骤等编第三版(或第四版)高等教育出版社,不能携带和查阅任何其他书籍、纸张、资料等。考试时允许使用计算器。 考试时间120分钟。考试日期:2012年1月10日

1.(10分)某种导线要求其电阻的标准差不得超过0.005(Ω),今在生产的一批该种导线中取9根,测得)(007.0Ω=s . 设总体服从正态分布,问从这些样本看这批导线是否合格?(取显著性水平α=0.05)

2. (15分)袋中装有8只球,其中红、白球若干.在其中任取3只,记录红球的个数X ,然后放回,再任取3只,记录红球的个数,然后放回。如此重复进行了112次。其结果如下:

试检验假设:

{}.3,2,1,0,38335:3

833

50=???

? ?????? ??-???? ??=

=

=-k k k C C C k X P X H k

k 服从超几何分布: 是否成立?(取显著性水平050.=α)

3.

(15分)下面是对一双因素等重复观测的实际数据分析处理得到的方差分析表:

(1) 根据表中已有的信息,完成表中没有数据的“①—⑨”中的数据结果? (2) 因素A 和因素B 各包含几个水平?总共涉及了多少个观测数据?

(3) 从这个方差分析表中可以做出那些假设检验?取显著性水平050.=α,结论是什么?分别写出完整的推断依据.

4.

(1(2) 对回归方程进行显著性检验(取显著性水平α=0.05);

(3) 求y 的置信水平为95%的预测区间,并计算若x=5时y 的95%的预测区间。

5.(15分)假定某天文台观察到的流星流是一个强度为λ的泊松过程,据以往资料统计为每小时平均观察到3颗流星。试求:

(1)在上午8点到12点期间,该天文台没有观察到流星的概率?

(2)从零点开始,该天文台观察首次观察到第一颗流星的时间的分布函数?

6.(15分)根据市场调查,3月份甲型洗衣粉占有市场0.35, 乙型洗衣粉占有市场0.3,其他各型号(简记为丙)占有市场0.35. 4月份再调研得到的结果是:甲保持原有顾客的60%,分别获得乙、丙顾客的15%和30%;乙保持原有顾客的70%,分别获得甲、丙顾客的10%和20%;丙型号洗衣粉保持原有顾客的50%,分别获得甲、乙型号洗衣粉顾客的30%和15%.令状态1代表甲型,状态2代表乙型,状态3代表丙型。求:

(1)求5月份各型号洗衣粉的市场占有率;

(2)求转移步数为2时,从状态2到状态3的概率;

(3)若市场按照这种态势发展,求稳定状态时的市场占有率。

7.(15分)设有随机过程 Y X t Y t X t Z ,,sin cos )(其中+=是相互独立同分布的随机变量,具有概率分布列为

问:

(1))(t Z 是否是平稳过程?

(2))(t Z 的均值是否具有各态历经性?

北京工业大学2010-2011学年第一学期期末

数理统计与随机过程(研) 课程试卷

学号 姓名 成绩

注意:试卷共七道大题,请写明详细解题过程。数据结果保留3位小数。 考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学

盛骤等编第三版(或第四版)高等教育出版社,不能携带和查阅任何其他书籍、纸张、资料等。考试时允许使用计算器。 考试时间120分钟。考试日期:2011年1月4日

1.某茶叶制造商声称其生产的一种包装茶叶平均每包重量不低于150克,已知茶叶包装重量服从正态分布,现从一批包装茶叶中随机抽取100包,经计算得到样本均值为149.7,样本标准差为0.9,试在α=0.01的显著性水平上检验该制造商的说法是否可信?

2.

某食品市场的经理将根据预期到达商店的顾客来决定职员分配数目以及收款台的数目。为检验工作日上午顾客到达数(用5分钟时间段内进入商店的顾客数来定义)是否服从泊松分布,随机选取了一个由3周内工作日上午的128个5

050.=α)

3.

一家关于MBA 报考、学习、就业指导的网站希望了解国内MBA 毕业生的起薪是否与各自所学的专业有关,为此,他们在已经在国内商学院毕业并且获得学位的MBA 学生中按照专业分别随机抽取了5人,调查了他们的起薪情况,数据如下表所示(单 位: 万元),根据这些数据他们能否得出专业对MBA 起薪有影响的结论?(取显著性水平050.=α)

4.为定义一种变量,用来描述某种商品的供给量与价格之间的相关关系.首先要

(4) 试确定(5) 对回归方程进行显著性检验(α=0.05); (6) 当x=20时,求y 的95%的预测区间。

5.

6.设{,}n X n T ∈是一个齐次马尔可夫链,其状态空间{0,1,2}I =,其一步转移概

率矩阵为 3104

41

114243

104

4P ?? ? ?= ? ? ??

?

其初始状态的概率分布为01

(0)(),0,1,2,3i i p P X i i ====求:

(1)求2{1}P X =; (2)求2{2|1}n n P X X +==;

(3)求012{1,2,1}P X X X ===;

(4)讨论此链是否具有遍历性,若是遍历的求其极限分布。

7.设有随机过程()cos()sin()X t A t B t ωω=+,其中A 与B 独立且都是均值为零,方差为2σ的正态随机变量,求(1)()X t 的一维概率密度;(2)问()X t 是否是平稳过程?

(),0{(5)4};{(5)4,(7.5)6,(12)9};{(5)4(12)9};(4)[(5)],[(5)],[(5),(12)].N t t P N P N N N P N N E N D N Cov N N λ≥======设{}服从强度为的泊松过程,求(1) (2) (3)

北京工业大学2012-2013学年第一学期期末

数理统计与随机过程(研) 课程试卷

考试时间120分钟。考试日期:2013年1月日

一、(10分)欲对某班《数理统计与随机过程》的期末考试成绩作分析。假设这门课成绩X (单位:分)服从正态分布2(,)N μσ。若班级平均成绩在75分以上则认为该班成绩良好。现从该班中随机抽取9名同学,得到他们成绩的平均分为78.44,标准差为11.40。请根据以上结果回答如下问题:

(1)取显著性水平α=0.05,分别给出下述两个问题的检验结果:

检验问题I “H 0: 75μ≤,H 1: 75μ>” 检验问题II “H 0: 75μ≥,H 1: 75μ<”

(2)对以上结论你如何解释? 二、(15分)将酵母细胞的稀释液置于某种计量仪器上,数出每一小格内的酵母细胞数X ,共观察了413个小方格,结果见下表。试问根据该资料,X 是否服从Poisson 分布?(显著性水平取0.05α=)

三、(15分)某公司在为期8个月内的利润表如下:

(1)求该公司月利润对月份的线性回归方程;(2)对回归方程进行显著性检验:(取05.0=α);(3)解释回归系数的意义;(4)求第11月利润的预测区间(取

050.=α)。(本题计算结果保留两位小数)。

四、(15分)某消防队要考察4种不同型号冒烟报警器的反应时间(单位:秒)。今将每种型号的报警器随机抽取5个安装在同一条烟道中,当烟量均匀时观测报警器的反应时间,得数据如下:

(1) 各种型号的报警器的反应时间有无显著性差异?(显著性水平

05.0=α) (2) 如果各种型号的报警器的反应时间有显著性差异,求均值差B

A μμ-的置信水平为95%的置信区间。

五、(15分)设{N(t),t}是强度为的Poisson 过程,试求 (1) P{N(1)<2};

(2) P{N(1)=1 且 N(2)=3};

(3) P{N(1)≥2|N(1)错误!未指定书签。≥1}.

六、(15分)设{}0,≥n X n 为时齐马氏链,状态空间{}3,2,1=I ,一步转移概率矩阵为

P=????

?

?

?05

.05.05.005.05.05.00

初始分布P (X 0=1)=P (X 0=2)=0.25。

(1)求P (X 0=1,X 1=3,X 3=2, X 4=3)的值; (2)求P (X 0=3 ,X 3=1| X 1=1, X 2=2)的值;

(3)判断{}0,≥n X n 是否为遍历的,请说明理由;若是遍历的,求其平稳分布。 解:

P 2=????

??????5.025

.025

.025.05.025

.025.025

.05.0

(1)P(X 0=1, X 1=3, X 3=2, X 4=3,)= P (X 0=1)P(X 1=3|X 0=1) P(X 3=2|X 1=3,) P (X 4=3|X 3=2)

=0.25×0.5×0.25×0.5=1/64

(2)P (X 0=3 ,X 3=1| X 1=1, X 2=2) = P (X 0=3 ,X 3=1, X 1=1, X 2=2)/ P (X 1=1, X 2=2) = P (X 0=3)P (X 1=1|X 0=3)P (X 2=2|X 1=1)P (X 3=1| X 2=2)/[ P (X 1=1)P (X 2=2|X 1=1)]

=0.5×0.5×0.5×0.5÷0.375÷0.5=1/3

(3) P 2 皆正元 ,故遍历。

设平稳分布为(x 1,x 2,x 3),由(x 1,x 2,x 3)P=(x 1,x 2,x 3)及x 1+x 2+x 3=1可得平稳分布为(1/3,1/3,1/3)。

七、(15分)设有随机过程ω,式中服从瑞利分布

的随机变量,其概率密度函数为:

??

???≤>=-

0 ,00

,)(22

22x x e x x f x σσ

)2,0(~πU Θ,且Θ与A 相互独立,ω为常数,证明)(t X 为平稳过程。

(提示:Y X ,是相互独立随机变量,且)(),(y g x f 是连续函数,则)(),(Y g X f 仍然是相互独立的随机变量。)

最新随机过程考试试题及答案详解1

随机过程考试试题及答案详解 1、(15分)设随机过程C t R t X +?=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均 匀分布。 (1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。 【理论基础】 (1)? ∞ -= x dt t f x F )()(,则)(t f 为密度函数; (2))(t X 为),(b a 上的均匀分布,概率密度函数?? ???<<-=其他,0,1 )(b x a a b x f ,分布函数 ?? ??? >≤≤--<=b x b x a a b a x a x x F ,1,,0)(,2)(b a x E += ,12)()(2a b x D -=; (3)参数为λ的指数分布,概率密度函数???<≥=-0,00 ,)(x x e x f x λλ,分布函数 ?? ?<≥-=-0 ,00,1)(x x e x F x λ,λ1)(=x E ,21 )(λ=x D ; (4)2 )(,)(σμ==x D x E 的正态分布,概率密度函数∞<<-∞= -- x e x f x ,21 )(2 22)(σμπ σ, 分布函数∞<<-∞= ? ∞ --- x dt e x F x t ,21)(2 22)(σμπ σ,若1,0==σμ时,其为标准正态分布。 【解答】本题可参加课本习题2.1及2.2题。 (1)因R 为]1,0[上的均匀分布,C 为常数,故)(t X 亦为均匀分布。由R 的取值范围可知, )(t X 为],[t C C +上的均匀分布,因此其一维概率密度?? ???+≤≤=其他,0,1 )(t C x C t x f ,一维分布 函数?? ??? +>+≤≤-<=t C x t C X C t C x C x x F ,1,,0)(;

中国科学大学随机过程(孙应飞)复习题及答案

(1) 设}0),({≥t t X 是一个实的零均值二阶矩过程,其相关函数为 t s s t B t X s X E ≤-=),()}()({,且是一个周期为T 的函数,即0),()(≥=+τττB T B ,求方差函数)]()([T t X t X D +-。 解:由定义,有: )(2)0()0()}()({2)0()0()]} ()()][()({[2)] ([)]([)]()([=-+=+-+=+-+--++=+-T B B B T t X t X E B B T t EX T t X t EX t X E T t X D t X D T t X t X D (2) 试证明:如果}0),({≥t t X 是一独立增量过程,且0)0(=X ,那么它必是一个马 尔可夫过程。 证明:我们要证明: n t t t <<<≤? 210,有 } )()({})(,,)(,)()({11112211----=≤=====≤n n n n n n n x t X x t X P x t X x t X x t X x t X P 形式上我们有: } )()(,,)(,)({} )()(,,)(,)(,)({} )(,,)(,)({} )(,,)(,)(,)({})(,,)(,)()({1122221111222211112211112211112211--------------========≤= ======≤=====≤n n n n n n n n n n n n n n n n n n n n x t X x t X x t X x t X P x t X x t X x t X x t X x t X P x t X x t X x t X P x t X x t X x t X x t X P x t X x t X x t X x t X P 因此,我们只要能证明在已知11)(--=n n x t X 条件下,)(n t X 与2 ,,2,1,)(-=n j t X j 相互独立即可。 由独立增量过程的定义可知,当2,,2,1,1-=<<<-n j t t t a n n j 时,增量 )0()(X t X j -与)()(1--n n t X t X 相互独立,由于在条件11)(--=n n x t X 和0)0(=X 下,即 有)(j t X 与1)(--n n x t X 相互独立。由此可知,在11)(--=n n x t X 条件下,)(n t X 与 2,,2,1,)(-=n j t X j 相互独立,结果成立。 (3) 设随机过程}0,{≥t W t 为零初值(00=W )的、有平稳增量和独立增量的过程, 且对每个0>t ,),(~2t N W t σμ,问过程}0,{≥t W t 是否为正态过程,为什么? 解:任取n t t t <<<≤? 210,则有: n k W W W k i t t t i i k ,,2,1][1 1 =-=∑=-

随机过程试题带答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) P(BC A)=P(B A)P(C AB)。 1.为it (e -1) e λ。2. 1(sin(t+1)-sin t)2ωω。3. 1 λ 4. Γ 5. 212t,t,;e,e 33?????? 。 6.(n)n P P =。 7.(n) j i ij i I p (n)p p ∈=?∑。 8.6 18e - 9。()()()()0 t K t H t K t s dM s =+-? 10. a μ 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

《概率论与随机过程》第1章习题

《概率论与随机过程》第一章习题 1. 写出下列随机试验的样本空间。 (1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。 (2) 同时掷三颗骰子,记录三颗骰子点数之和。 (3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录 抽取的次数。 (4) 生产产品直到得到10件正品,记录生产产品的总件数。 (5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选 举的结果。 (6) 甲乙二人下棋一局,观察棋赛的结果。 (7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 (8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次 品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察 装球的情况。 (10) 测量一汽车通过给定点的速度。 (11) 将一尺之棰折成三段,观察各段的长度。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1) A 发生,B 与C 不发生。 (2) A 与B 都发生,而C 不发生。 (3) A ,B ,C 都发生。 (4) A ,B ,C 中至少有一个发生。 (5) A ,B ,C 都不发生。 (6) A ,B ,C 中至多于一个发生。 (7) A ,B ,C 中至多于二个发生。 (8) A ,B ,C 中至少有二个发生。 3. 设{}10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 (2)B A ?。 (3)B A 。 (4) BC A 。 (5))(C B A ?。 4. 设{}20≤≤=x x S ,??????≤<=121x x A ,? ?????<≤=234 1x x B ,具体写出下列各式。 (1)B A ?。 (2)B A ?。 (3)B A 。 (4) B A 。 5. 设A ,B ,C 是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,81)(=AC P ,求A , B , C 至少有一个发生的概率。 6. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1) 求恰有90个次品的概率。 (2) 至少有2个次品的概率。 7.(1)在房间里有500个人,问至少有一个人的生日是10月1日的概率是多少(设一年以365天计算)? (2)在房间里有4个人,问至少有二个人的生日在同一个月的概率是多少?

期末随机过程试题及标准答案

《随机过程期末考试卷》 1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) 1.设A,B,C 为三个随机事件,证明条件概率的乘法公式: P(BC A)=P(B A)P(C AB)。 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

(完整版)北邮研究生概率论与随机过程2012-2013试题及答案

北京邮电大学2012——2013学年第1学期 《概率论与随机过程》期末考试试题答案 考试注意事项:学生必须将答题内容(包括填空题)做在试题答题纸上,做在试卷纸上一律无效。在答题纸上写上你的班号和选课单上的学号,班内序号! 一. 单项选择题和填空题:(每空3分,共30分) 1.设A 是定义在非空集合Ω上的集代数,则下面正确的是 .A (A )若A B ∈∈A,A ,则A B -∈A ; (B )若A A B ∈?A,,则B ∈A ; (C )若12n A n =∈?A,,,,则 1 n n A ∞=∈A ; (D )若12n A n =∈?A,,,,且123A A A ??? ,则 1 n n A ∞ =∈A . 2. 设(),ΩF 为一可测空间,P 为定义在其上的有限可加测度,则下面正确的是 .c (A )若A B ∈∈F,F ,则()()()P A B P A P B -=-; (B )若12n A n =∈?F,,,,,且123A A A ??? ,则1 li ( )()m n n n n P A A P ∞→∞ ==; (C )若A B C ∈∈∈F,F,F,,则()()()()P A B C P A P AB P A BC =++; (D )若12n A n =∈?F,,,,,且,i j A i j A =??=/,1 1 ( )()n n n n P P A A ∞ ∞===∑. 3.设f 为从概率空间(),P ΩF,到Borel 可测空间(),R B 上的实可测函数,表达式为100 0()k A k f kI ω==∑,其中1000 ,, i j n n i j A A A ==??=Ω/=,则fdP Ω=? ;

概率统计与随机过程复习提纲

概率统计与随机过程 课程编号:H0600071S学分: 4 开课学院:理学院课内学时:64 课程类别:学科基础课课程性质:必修 一、课程的性质和目的 课程性质:本课程是我校有关专业的学科基础课 目的:通过本课程的学习,使学生系统地掌握概率论、数理统计和随机过程的基本理论和基本方法,为后续各专业基础课和专业课的学习提供必要的数学理论基础。另外,通过本课程的系统教学,特别是讲授如何提出新问题、思考分析问题,培养学生的抽象思维能力、逻辑推理能力以及解决实际问题的能力,从而逐步培养学生的创新思维能力和创新精神。 二、课程教学内容及基本要求 (一)课程教学内容及知识模块顺序 第一章概率论的基本概念 8学时 (1)随机试验 (2)样本空间、随机事件 (3)频率与概率 (4)等可能概型(古典概型) (5)条件概率 (6)独立性 教学基本要求: 了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,熟练掌握事件之间的关系与运算。了解事件频率的概念,理解概率的统计定义。了解概率的古典定义,会计算简单的古典概率。了解概率的公理化定义,熟练掌握概率的基本性质,会运用这些性质进行概率计算。理解条件概率的概念、概率的乘法定理与全概率公式,会应用贝叶斯(Bayes)公式解决比较简单的问题。理解事件的独立性概念。理解伯努利(Bernoulli)概型和二项概率的计算方法。 第二章随机变量及其分布 6 学时 (1)随机变量 (2)离散型随机变量及其分布律 (3)随机变量的分布函数 (4)连续型随机变量及其概率密度 (5)随机变量的函数的分布 教学基本要求: 理解随机变量的概念,了解分布函数的概念和性质,会计算与随机变量相联系的事件的概率。理解离散型随机变量及其分布律的概念,熟练掌握0-1分布、二项分布和泊松(Poisson)分布。理解连续型随机变量及其概率密度的概念,熟练掌握正态分布、均匀分布和指数分布。会根据自变量的概率分布求简单随机变量函数的概率分布。

随机过程试题及答案

一.填空题(每空2分,共20分) 1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为it (e -1) e λ。 2.设随机过程X(t)=Acos( t+),-

【免费下载】第一学期数理统计与随机过程研试题答案

北京工业大学2009-20010学年第一学期期末数理统计与随机过程(研) 课程试卷一、随机抽取某班28名学生的英语考试成绩,算得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,问:能否认为该班的英语成绩与全年级学生的英语平均成绩有显著差异(取显著性水平)?050.=α解:这是单个正态总体),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法. 解 85:0=μH ,85:1≠μH 选统计量 n s x T /0μ-=已知80=x ,8=s ,n =28,850=μ,计算得n s x T /0μ-=31.328/88580=-=查t 分布表,05.0=α,自由度27,临界值.052.2)27(025.0=t 由于,故拒绝0H ,即在显著水平05.0=α下不能认为该班的英语 052.2>T 2622.2>成绩为85分.二、某图书馆每分钟借出的图书数有如下记录:借出图书数 k 0 1 2 3 4 5 6≥7频数 f 8 16 17 10 6 2 1 0试检验每分钟内借出的图书数是否服从泊松分布? (取显著性水平) 050.=α解:由极大似然估计得.2?==x λ在X 服从泊松分布的假设下,X 的所有可能的取值对应分成两两不相交的子集A 0, A 1,…, A 8。则有估计 }{k X P ==i p ? ,7,0,!2}{?2===-k k e k X P k =0?p 三、某公司在为期10年内的年利润表如下: 年份 1 2 3 4 5 6 7 8910利润 1.89 2.19 2.06 2.31 2.26 2.39 2.61 2.58 2.82 2.9 通过管线敷设技术,不仅可以解决有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电力保护装置调试技术,电力保护高中资料试卷配置技术是指机

《概率论与随机过程》课程自学内容小结

大学2015~2016学年秋季学期本科生 课程自学报告 课程名称:《概率论与随机过程》 课程编号:07275061 报告题目:大数定律和中心极限定理在彩票选号的应用学生: 学号: 任课教师: 成绩: 评阅日期:

随机序列在通信加密的应用 2015年10月10日 摘 要:大数定律与中心极限定理是概率论中很重要的定理,较多文献给出了不同条件下存在的大数定律和中心极限订婚礼,并利用大数定律与中心极限定理得到较多模型的收敛性。但对于他们的适用围以及在实际生活中的应用涉及较少。本文通过介绍大数定律与中心极限定理,给出了其在彩票选号方面的应用,使得数学理论与实际相结合,能够让读者对大数定律与中心极限定理在实际生活中的应用价值有更深刻的理解。 1. 引言 在大数定律与中心极限定理是概率论中很重要的定理,起源于十七世纪,发展到现在,已经深入到了社会和科学的许多领域。从十七世纪到现在,很多国家对这两个公式有了多方面的研究。长期以来,在大批概率论统计工作者的不懈努力下,概率统计的理论更加完善,应用更加广泛,如其在金融保险业的应用,在现代数学中占有重要的地位。 本文主要通过对大数定律与中心极限定理的分析理解,研究探讨了其在彩票选号中的应用,并给出了案例分析,目的旨在给出大数定律与中心极限定理应用对实际生活的影响,也对大数定律与中心极限定理产生更深刻的理解。 2. 自学容小结与分析 2.1 随机变量的特征函数 在对随机变量的分析过程中,单单由数字特征无法确定其分布函数,所以引入特征函数。特征函数反映随机变量的本质特征,可唯一的确定随机变量的分布函数、随机变量X 的特征函数定义为: 定义1 ][)()(juX jux e E dx e x p ju C ==? +∞ ∞ - (1) 性质1 两两相互独立的随机变量之和的特征函数等于各个随机变量的特征函数之积。 性质1意味着在傅立叶变换之后,时域的卷积变成频域的相乘,这是求卷积的简便方法。类比可知求独立随机变量之和的分布的卷积,可化为乘法运算,这样就简便了计算,提高了运算效率。 性质2 求矩公式:0)(|) ()(][=-=u n u x n n n du C d j X E (2) 性质3 级数展开式:!)(][!|)()()(0 00n ju X E n u du u C d u C n n n n n n n n X ∑∑∞ ==∞ === (3) 2.2 大数定律与中心极限定理 定义2 大数定律:设随机变量相互独立,且具有相同的μ=)(k X E 和,...2,1,)(2 ==k X D k σ, 则0∈>?,有

学期数理统计与随机过程(研)试题(答案)

北京工业大学2009-20010学年第一学期期末 数理统计与随机过程(研) 课程试卷 学号 姓名 成绩 注意:试卷共七道大题,请写明详细解题过程。 考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学 盛 骤等编第三版(或第二版)高等教育出版社。可以看笔记、作业,但不允许看其它任何打印或复印的资料。考试时允许使用计算器。考试时间120分钟。考试日期:2009年12月31日 一、随机抽取某班28名学生的英语考试成绩,算得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,问:能否认为该班的英语成绩与全年级学生的英语平均成绩有显著差异(取显著性水平050.=α)? 解:这是单个正态总体 ),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法. 解 85:0=μH ,85:1≠μH 选统计量 n s x T /0 μ-= 已知80=x ,8=s ,n =28,850=μ, 计算得n s x T /0μ-= 31 .328/885 80=-= 查t 分布表,05.0=α,自由度27,临界值052.2)27(025.0=t . 由于052.2>T 2622.2>,故拒绝 0H ,即在显著水平05.0=α下不能认为 该班的英语成绩为85分.

050.= 解:由极大似然估计得.2?==x λ 在X 服从泊松分布的假设下,X 的所有可能的取值对应分成两两不相交的子集A 0, A 1,…, A 8。 则}{k X P =有估计 =i p ?ΛΛ,7,0, !2}{?2 ===-k k e k X P k =0?p

随机过程试题及解答

2016随机过程(A )解答 1、(15分)设随机过程V t U t X +?=)(,),0(∞∈t ,U ,V 是相互独立服从正态分布(2,9)N 的随机变量。 1) 求)(t X 的一维概率密度函数; 2) 求)(t X 的均值函数、相关函数和协方差函数。 3) 求)(t X 的二维概率密度函数; 解: 由于U ,V 是相互独立服从正态分布(2,9)N 的随机变量,所以V t U t X +?=)(也服从正态分布, 且: {}{}{}{}()()22m t E X t E U t V t E U E V t ==?+=?+=+ {}{}{}{}22()()99D t D X t D U t V t D U D V t ==?+=+=+ 故: (1) )(t X 的一维概率密度函数为:()2 22218(1) (),x t t t f x e x --- += -∞≤≤∞ (2) )(t X 的均值函数为:()22m t t =+;相关函数为: {}{} (,)()()()()R s t E X s X t E U s V U t V =?=?+??+ {}{}{} 22()13()413 st E U s t E U V E V st s t =?++??+=?++?+ 协方差函数为:(,)(,)()()99B s t R s t m s m t st =-?=+ (3)相关系数: (,)s t ρρ== == )(t X 的二维概率密度函数为: 2212222(22)(22)12(1)9(1)4(1),12(,)x s x t s t s t f x x e ρ????-----?? +????-++???????? = 2、(12分)某商店8时开始营业,在8时顾客平均到达率为每小时4人,在12时顾客的 平均到达率线性增长到最高峰每小时80人,从12时到15时顾客平均到达率维持不变为每小时80人。问在10:00—14:00之间无顾客到达商店的概率是多少?在10:00—14:00之间到达商店顾客数的数学期望和方差是多少? 解: 到达商店顾客数服从非齐次泊松过程。 将8时至15时平移到0—7时,则顾客的到达速率函数为: 419,04 ()80,47t t t t λ+≤≤?=? <≤? 在10:00—14:00之间到达商店顾客数(6)(2)X X -服从泊松分布,其均值: 6 4 6 2 2 4 (6)(2)()(419)80282m m t dt t dt dt λ-==++=???

浙江大学《概率论、数理统计与随机过程》课后习题答案张帼奋主编第七章数理统计习题__奇数

注意: 这是第一稿(存在一些错误) 第七章数理统计习题__奇数.doc 1、解 由θ θθμθ 2 ),()(0 1===? d x xf X E ,204103)(2 221θθθ=-==X D v ,可得θ的矩估计量为X 2^ =θ,这时θθ==)(2)(^X E E ,n n X D D 5204)2()(2 2 ^ θθθ= ? ==。 3、解 由)1(2)1(2)1(2)(21θθθθμ-=-+-==X E ,得θ的矩估计量为: 3 2 62121^ =-=- =X θ。 建立关于θ的似然函数:482232)1(4)1())1(2()()(θθθθθθθ-=--=L 令014 8))1ln(4ln 8()(ln =--=?-+?=??θ θθθθθθL , 得到θ的极大似然估计值:32^=θ 5、解 由33)1(3)1(3)(222+-=-+-+=p p p p p p X E ,所以得到p 的矩估计量为 ^ 32p = = 建立关于p 的似然函数:32 10)1()2 )1(3()()2)1(( )(22n n n n p p p p p p p L ---= 令0)(ln =??p p L ,求得到θ的极大似然估计值:n n n n p 222 10^++= 7、解 (1)记}4{<=X P p ,由题意有}4{}4{}4{-≤-<=<=X P X P X P p 根据极大似然估计的不变性可得概率}4{<=X P p 的极大似然估计为: 4484.05.0)6 4 ()64( 5.0)25 /2444( )25 /2444( 22^ =-Φ=-Φ-=--Φ--Φ=s s p (2)由题意得:)6 24 ( )25 /244( }{}{105.012-Φ=-Φ=≤=>-=-A s A A X P A X P ,于是经查表可求得A 的极大似然估计为0588.12^ =A

随机过程复习试题及答案

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 证明:当12n 0t t t t <<< <<时, 1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤= n n 1122n n P(X(t)-X(t )x-x X(t )-X(0)=x ,X(t )-X(0)=x , X(t )-X(0)=x )≤= n n P(X(t)-X(t )x-x )≤,又因为n n P(X(t)x X(t )=x )=≤n n n n P(X(t)-X(t )x-x X(t )=x )≤= n n P(X(t)-X(t )x-x )≤,故1122n n P(X(t)x X(t )=x ,X(t )=x , X(t )=x )≤=n n P(X(t)x X(t )=x )≤ 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

2017 2018期末随机过程试题及答案

《随机过程期末考试卷》 1 ?设随机变量X服从参数为■的泊松分布,则X的特征函数为 ___________ 。 2?设随机过程X(t)二Acos(「t+「),-::vt<::其中「为正常数,A和门是相互独立的随机变量,且A和“服从在区间10,1 1上的均匀分布,则X(t)的数学期望为。 3?强度为入的泊松过程的点间间距是相互独立的随机变量,且服从均值为_ 的同一指数分布。 4?设「W n ,n 一1是与泊松过程:X(t),t - 0?对应的一个等待时间序列,则W n服从分布。5?袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回, r 对每一个确定的t对应随机变量x(t)=」3’如果t时取得红球,则这个随机过 e t, 如果t时取得白球 程的状态空间__________ 。 6 ?设马氏链的一步转移概率矩阵P=(p j),n步转移矩阵P(n)=8(;)),二者之间的关系为。 7?设汉.,n -0?为马氏链,状态空间I,初始概率P i二P(X。二i),绝对概率 P j(n)二P^X n二j?,n步转移概率p j n),三者之间的关系为_____________ 。 8 .设{X(t),t 一0}是泊松过程,且对于任意t2t^ 0则 P{X ⑸= 6|X (3) = 4} = _______ t 9?更新方程K t二H t ? .°K t-s dF s解的一般形式为__________________ 。10?记二-EX n,对一切a 一0,当t—一:时,M t+a -M t > ____________ 3.设]X n,n — 0?为马尔科夫链,状态空间为I,则对任意整数n—0,仁I

通信原理期末考试试题及答案-(1).doc

通信原理期末考试试题及答案 一、填空题(总分24 ,共 12 小题,每空 1 分) 1、数字通信系统的有效性用传输频带利用率衡量,可靠性用差错率衡量。 2、模拟信号是指信号的参量可连续取值的信号,数字信号是指信号的参量可离 散取值的信号。 3、广义平均随机过程的数学期望、方差与时间无关,自相关函数只与时间间隔有 关。 4、一个均值为零方差为n2的窄带平稳高斯过程,其包络的一维分布服从瑞利分布, 相位的一维分布服从均匀分布。 5 、当无信号时,加性噪声是否存在?是乘性噪声是否存在?否。 6 、信道容量是指:信道传输信息的速率的最大值,香农公式可表示为: C B log 2 (1S ) 。 N 7、设调制信号为 f(t)载波为cos c t,则抑制载波双边带调幅信号的时域表达式为 f (t) cos c t,频域表达式为1 [ F ( c ) F ( c )]。2 8、对最高频率为 f H的调制信号 m (t )分别进行 AM 、DSB 、SSB 调制,相应已调 信号的带宽分别为2f H、2f H、 f H。 9、设系统带宽为W ,则该系统无码间干扰时最高传码率为2W波特。 10 、PSK 是用码元载波的相位来传输信息, DSP 是用前后码元载波的相位差来传 输信息,它可克服PSK 的相位模糊缺点。 11 、在数字通信中,产生误码的因素有两个:一是由传输特性不良引起的码间串 扰,二是传输中叠加的加性噪声。 12 、非均匀量化的对数压缩特性采用折线近似时, A 律对数压缩特性采用13折线 近似,律对数压缩特性采用15折线近似。

二、简答题(总分18 ,共 4 小题) 1 、随参信道传输媒质的特点?( 3 分) 答:对信号的衰耗随时间变化、传输的时延随时间变化、多径传播 2、简述脉冲编码调制的主要过程。(6 分) 抽样是把时间连续、幅值连续的信号变换为时间离散,幅值连续的脉冲信号;量化是 把时间离散、幅值连续的脉冲信号变换为幅值离散、时间离散的多电平脉冲信号;编 码是把幅值、时间均离散的多电平脉冲信号用一组数字序列表示。 3 、简单叙述眼图和系统性能之间的关系?( 6 分) 最佳抽样时刻对应眼睛张开最大时刻;对定时误差的灵敏度有眼图斜边的斜率决定;图的阴影区的垂直高度,表示信号幅度畸变范围;图中央横轴位置对应判决门 限电平;抽样时刻上,上下阴影区的间隔距离之半为噪声容限。 4、简述低通抽样定理。( 3 分) 一个频带限制在( 0,f H)内的时间连续信号m(t) ,如果以T 1 2 f H的时间 间隔对它进行等间隔抽样,则m(t) 将被所得到的抽样值完全确定 2 、设信息序列为 100000000001100001 ,试编为 AMI 码和 HDB 3 码(第一个非零码编 为 +1 ),并画出相应波形。(6 分) 100000000001100001 AMI+10000000000-1+10000-1 HDB3 +1 0 0 0+V-B 0 0-V 0 0+1-1+B 0 0+V-1 +1 0 0 0+1-1 0 0-1 0 0+1-1+1 0 0+1-1 AMI HDB3

随机过程复习题(含答案)

随机过程复习题 一、填空题: 1.对于随机变量序列}{n X 和常数a ,若对于任意0>ε,有 ______}|{|lim =<-∞ >-εa X P n n ,则称}{n X 依概率收敛于a 。 2.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t , ,则 15 92}6)5(,4)3(,2)1({-??= ===e X X X P , 618}4)3(|6)5({-===e X X P 15 32 62 32 92! 23!2)23(!23}2)3()5({}2)1()3({}2)0()1({} 2)3()5(,2)1()3(,2)0()1({} 6)5(,4)3(,2)1({----??=???==-=-=-==-=-=-====e e e e X X P X X P X X P X X X X X X P X X X P 66 218! 26}2)3()5({}4)3(|6)5({--===-===e e X X P X X P 3.已知马尔可夫链的状态空间为},,{321=I ,初始分布为),,(4 1 2141, ?????? ?? ????????? ?=434 103 13131043 411)(P ,则167)2(12=P ,161}2,2,1{210====X X X P

???????? ?????? ????=48 31481348 436133616367 164167165)1()2(2P P 16 7 )2(12=P 16 1 314341}2|2{}1|2{}1{}2,1|2{}1|2{}1{} 2,2,1{12010102010210=??=================X X P X X P X P X X X P X X P X P X X X P 4.强度λ的泊松过程的协方差函数),min(),(t s t s C λ= 5.已知平稳过程)(t X 的自相关函数为πττcos )(=X R , )]()([)(π?δπ?δπω-++=X S 6. 对于平稳过程)(t X ,若)()()(ττX R t X t X >=+<,以概率1成立,则称)(t X 的自相关函数具有各态历经性。 7.已知平稳过程)(t X 的谱密度为2 3)(2 42 ++=ωωωωS ,则)(t X 的均方值= 2 121- 222 2221 1221)2(22211122)(+??-+??=+-+= ωωωωωS ττ τ-- -=e e R X 2 12 1)(2

2007-2008第一学期数理统计与随机过程(研)试题(解答)

北京工业大学2007-2008学年第一学期期末 数理统计与随机过程(研) 课程试题 标准答案(仅供参考) 一、(10分)已知在正常生产的情况下某种汽车零件的重量(克)服从正态分布 ),(254σN ,在某日生产的零件中抽取10 件,测得重量如下: 54.0 55.1 53.8 54.2 52.1 54.2 55.0 55.8 55.1 55.3 问:该日生产的零件的平均重量是否正常(取显著性水平050.=α)? 解:按题意,要检验的假设是 54:0=μH ,因2σ未知,故用-t 检验法,由05.0=α,查t 分布表得临界 值2622290250.)(.=t ,由样本值算得 382514654.,.==t x 因为26222.

1255804101145701312680122222222 9 2 2 .)()(==++++++++= -=∑ =i i i i np np f χ 查表得919160502 9.).(=χ 因为9191612552..<=χ, 所以接受0H ,认为X 服从 等概率分布. 三、(15分)下表给出了在悬挂不同重量(单位:克)时弹簧的长度(单位:厘米) 求y 关于x 的一元线性回归方程,并进行显著性检验. 取显著性水平050.=α, 计算结果保留三位小数. 346.9,857.16==y x 根据计算结果可得: (1) 回归方程:X Y 1845.0244.6+=∧ ?????? ???? ??? =??-?=-=====??-==?-=244.61845.01187142.6571??1845.0857.454906.83?906.8342.65118717.1186857.4541187 124442x b y a S S b S S xx xy xy xx 于是得

概率论与随机过程题集

第二章 概率论与随机过程 2-16 图P2-16中的电路输入为随机过程X(t),且E[X(t)]=0,xx φ(τ) =2 σδ(τ),即X(t)为白噪 过程。 (a )试求谱密度yy Φ(f )。 (b )试求yy φ(τ)和E[Y 2(t)]。 图P2-16 解:(a )xx φ= 2222)()(σττδσττφτπτπ==?? +∞ ∞ --+∞ ∞ --d e d e f j f j xx 又系统函数)(f H = ) () (f X f Y =fc j fc j R fc j πππ2112121 +=+ ∴2 2222 22 2 41)2(11)()()(c f R fcR f H f f xx yy πσπσφφ+= +== (b) E [)(2 t y ]=)0(yy φ τπττ πσπσφτφRc f j f j yy yy e Rc df e c f R df e f 12 22 2 2 2 2 2241)()(- ∞ +∞ -∞ +∞ -= +==? ? ∴E [)(2 t y ]=Rc yy 2)0(2 σφ= 2-20 一离散时间随机过程的自相关序列函数是k k )2/1()(=φ,试求其功率密度谱。 解:由功率密度谱的定义知 )(f Φ= ∑+∞ -∞=-k fk j e k πφ2)( = ∑+∞ -∞=-k fk j k e π2)2 1(

=fk j k k e π21 )21(----∞=∑+fk j k k e π2 )21 (-+∞ =∑ =k f j k e )21(21π∑+∞ =+k f j k e )21(20π-+∞=∑ =f j f j e e ππ2221121-+f j e π22111 -- ∴ )(f Φ =f j f j e e ππ2221121-+f j e π22 111-- 即为所求。 2-23 试证明函数 )(t f k = ) 2(2)] 2(2sin[W k t W W k t W -- ππ,k = 0,1±,2±,… 在区间[+∞∞-,]上为正交的,即 所以,抽样定理的重建公式可以看作带限信号)(t s 的级数展开式,其中权值为)(t s 的样值,且{)(t f k }是级数展开式中的正交函数集。 证明: 由题得 ? +∞ ∞ -dt t f t f j k )()(=? +∞ ∞ -)2(2)]2(2sin[W k t W W k t W -- ππ ) 2(2)]2(2sin[W j t W W j t W --ππdt = ? +∞ ∞ -2 1)2)(2(] )(4cos[)cos[(j wt k wt j k wt k j πππππππ--+---dt ∴命题得证。 2-24 系统的噪声等效带宽定义为 ?∞= 02 )(1df f H G B eq

相关文档
最新文档