第三次课大M法对偶

合集下载

运筹学课后总结

运筹学课后总结

《运筹学》大M法和两阶段法课后总结十一过后,我们班的同学分为两组,对线性规划的部分内容进行讨论学习,通过上一周各位同学在讲台上的精彩讲演,让我从中学到了很多,引发了我诸多的思考和在运用这两种方法时的注意事项:一、关于人工变量·用单纯形法解题时,需要一个单位矩阵作为初始可行基;当约束条件是“《”时,加入松弛变量就形成了初始基;但当实际存在“》”或“=”时,没有现成的单位矩阵;所以需要增加变量构造初始基,所加的变量就成为人工变量。

·人工变量是在等式中人为加入的,只有它等于0时,约束条件才是它本来的意义。

二、关于大M法·为保证人工变量是0,在目标函数中令其系数为M,M为任意大正数。

·倘若人工变量不为0,则目标函数就永远达不到最优,所以必须将人工变量逐步从基变量中替换出,若人工变量仍然没有置换出去,则目标函数没有可行解,也就没有最优解。

·用单纯形表解答时,对于maxZ问题,依然要选择检验数бj=Cj-Zj》0值最大的为换入变量,比值最小的为换出变量。

三、关于两阶段法·因为在大M法中,M值为任意大的正数,因而在计算目标函数的最优解问题的过程中容易产生一定的误差,两阶段法正是解决误差的方法之一。

·第一阶段:不考虑原问题是否存在基可行解,给原线性规划问题加入人工变量,并构造仅含人工变量的目标函数和要求实现最小化,例如minW=X6+X7(X6\X7均为人工变量)。

然后用单纯形表求解上述目标函数。

若得到W=0,则说明原问题存在基可行解,可进行第二阶段计算,否则原问题无可行解,停止结算。

·第二阶段:将第一阶段得到的最终表去除人工变量,将目标函数行的系数换为原问题目标函数系数,作为第二阶段计算的初始表,然后用单纯形法来计算求得目标函数的最优解。

四、关于退化在求解过程中,有时会存在两个以上的相同的最大(最小)的检验数(比值),因而在计算过程中容易出现循环现象,所以我们在选取检验数时,选择бj=Cj-Zj》0中下标最小的非基变量为换入变量,同样,最下比值中选择下标最小的基变量为换出变量,就可以避免循环现象的发生。

《管理运筹学》02-4两阶段法和大m法

《管理运筹学》02-4两阶段法和大m法

大M法的优势与局限性
优势
大M法能够处理大规模的整数规划问题,且计算过程相对简单,容易实现。
局限性
大M法只能求得问题的近似解,而非最优解,且当M值选取不合适时,可能导致求解结果偏离最优解 较远。同时,对于一些特殊问题,如非线性、非凸等问题,大M法可能无法得到满意的结果。
04
大M法实施步骤
确定问题与目标
局限性
两阶段法需要花费更多的计算时间和资源,因为需要进行多次迭 代和优化。此外,两阶段法对于初始解的选择比较敏感,如果初 始解不好,可能会导致算法陷入局部最优解,而非全局最优解。
02
两阶段法实施步骤
阶段一:问题建模与求解
80%
确定问题目标
明确问题的目标,并将其转化为 可量化的数学模型。
100%
建立数学模型
两阶段法案例
总结词
两阶段法是一种常见的求解线性规划问题的方法,通过将问题分解为两个阶段进行求解, 可以找到最优解。
详细描述
在第一阶段,两阶段法首先确定一个初始解,然后通过迭代不断改进这个解,直到满足 一定的收敛条件。在第二阶段,两阶段法使用一种称为对偶单纯形法的方法来求解子问
题,最终得到最优解。
大M法案例
输出求解结果,包括最优解、最优值等。
分析结果与决策
结果分析
对求解结果进行分析,包括最优解的合理性、最优值的可行性等。
制定决策方案
根据分析结果,制定相应的决策方案,包括最优解的实施方案、次 优解的备选方案等。
方案评估与选择
对制定的决策方案进行评估和选择,确保方案符合实际需求和可行 性。
05
案例分析
《管理运筹学》02-4两阶段法 和大m法

CONTENCT

3对偶理论

3对偶理论

4
0
0 4
8
C (2, 3)
b
16
12
X
(x1, x2 )T
x1 x2
max Z 2x1 3x2
x1 2x2 8
4
x1
16 4x2 12
x1, x2 0
max
z
(2, 3)
x1 x2
CX
1 2
8
4 0
0 4
x1 x2
16 12
总利润(元)
单位产品旳利润(元/件)
产品产量(件)
max z c1x1 c2x2
c2 x2
s.t.
a11x1 a12x2
a1n xn xn1
b1
a21x1 a22 x2
a2n xn
xn2
b2
am1x1 am2 x2
消耗旳资源(吨) x1
x2
单位产品消耗旳资源(吨/件)
amn xn xn xn1 xn2
2x1 3x2 7x3 4x4 2
x1 0,x2 0, x3、x4无约束
答案: 1. maxW 2 y1 3 y2 5 y3
2y1 3y 2 y 3 2
3y
5y
1 1
y 2 4y 3 7y 2 6y 3
2 4
y1 0, y 2 .y 3 0
2. maxW 3 y1 5 y2 2 y3
对偶问题
min W 5 y1 4 y2 6 y3
4 y1 3 y2 2 y3 2
y1 3 y1
2 y2
3 y3 3 4 y3 5
2 y1 7 y2 y3 1
y1 0, y2 0, y3无约束
例4、线性规划问题如下:

第3次课_逻辑函数化简

第3次课_逻辑函数化简
0
1
0
0
1
1
1
第二章 逻辑代数(44)
2.3 图解法(卡诺图)化简逻辑函数 卡诺图化简的步骤
1 按照循环码规律指定卡诺图变量取值;
2 在函数最小项对应的小方块填“1”,其他方块填“0”;
3 合并相邻填“1”的小方块,两个方块合并消去一个变量 (一维块);4个方块合并消去两个变量(二维块);
5
第二章 逻辑代数(29)
2.3 图解法(卡诺图)化简逻辑函数
最小项的定义 设一个函数表达式中有n个变量,由它们组
成的具有n个变量的“与项”中,每个变量 以原变量或反变量的形式出现且仅出现一 次,这个与项为最小项。 例如:n=3,对A、B、C,有8个最小项
AB C A BC
6
AB C A BC
2.3 图解法(卡诺图)化简逻辑函数 最大项与最小项的关系
(1)对于所有的i,相同i的最大项与最小项互补
M i mi mi M i
mi 和 (2) 对于所有的i,
13
Mi
互为对偶式
公式法化简(不唯一、不好判断)
Y = ������������������ + ������������������ + ������������ + ������������ + ������������ + ������������������ Y = ������������ + ������������ + ������������ + ������������ Y = ������������ + ������������ + (������ + ������)������ Y = ������������ + ������������ + ������ ������������ Y = ������������ + ������ ������������ + ������������ Y = ������������ + ������ + ������������

应用运筹学基础:线性规划(4)-对偶与对偶单纯形法

应用运筹学基础:线性规划(4)-对偶与对偶单纯形法

应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。

引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。

现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。

但假如现在我们不⽣产产品,⽽是要把原料都卖掉。

设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。

对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。

11LP问题的单纯形法大M法,无解

11LP问题的单纯形法大M法,无解
0 00 0 0 4 10 0 最优吗?查什么?不是!谁进基? 检x1验的2020/数1系1/10 最数大有的正x的1进吗基?求, 谁比出值基??
练习㈠. 单纯形表
4 10 0 x3 0 1 3 1 0 7 7 x4 0 4 2 0 1 9 9/4
0 00 0 0
4 10 0
基变量列中_x_4_换为_x_1_,
0 4 改C 列,___换为___. B 2020/11/10
Excel
练习㈠用单纯形法
迭代

CB
次数 变量
x1
4
x2
1
x3
0
x4
0
bi

x3 0 1 3 1 0 7 7
0
x4 0 4 2
zj
00
0 1 9 9/4 000
σj=Cj- zj 4 1 0 0
迭代 次数
基 变量
CB
x1
x2
x3
x4
bi
Max z =4 x1+x2+0x3+0x4-Mx5
x1 + 3x2 + x3
=7
s.t. 4x1 + 2x2 -x4+x5=9
基再是引谁进?一这 理x个1个?, “x“2 人,-”x工3如,变x何4, 处x5≥ 0
量”x5 2020/11/10
练习㈡.用单纯形法
Max z =4x1+x2+0x3+0x4-Mx5
4 10 0 x3 0 1 3 1 0 7 x4 0 4 2 0 1 9
0 00 0 0
4 1 0 0 基?
填目标函数系数,填基变量列, 填20C20/11/1B0 列,计算Zj,计算检验数σj,

第三章 线性规划及其对偶问题

第三章  线性规划及其对偶问题

第三章 线性规划及其对偶问题线性规划是最优化问题的一种特殊情形,也是运筹学的一个重要分支,它的实质是从多个变量中选取一组适当的变量作为解,使这组变量满足一组确定的线性式,而且使一个线性目标函数达到最优(最大或最小).线性规划的应用极为广泛,自1949年美国数学家G. B. Dantzing 提出一般线性规划问题求解的方法——单纯形法之后,线性规划无论在理论上、计算方法和开拓新的应用领域中,都获得了长足的进步,线性规划从解决技术问题的最优化设计到工业、农业、商业、交通运输业、军事、经济计划和管理决策等领域都有广泛的发展和应用.本章主要从线性规划的基本概念、数学模型、单纯形法、对偶理论、灵敏度分析等方面进行介绍.§3.1 线性规划数学模型基本原理一、线性规划的数学模型满足以下三个条件的数学模型称为线性规划的数学模型:(1)每一个问题都用一组决策变量T n x x x ][21,,, 表示某一方案;每一组值就代表一个具体方案.(2)有一个目标函数,可用决策变量的线性函数来表示,按问题的不同,要求目标函数实现最大化或最小化.(3)有一组约束条件,可用一组线性等式或不等式来表示. 线性规划问题的一般形式为1211221111221121122222112212max(min)()()()..()0n n n n n n n m m mn n m n f x x x c x c x c x a x a x a x b a x a x a x b s t a x a x a x b x x x =++++++≤=≥⎧⎪+++≤=≥⎪⎪⎨⎪+++≤=≥⎪⎪≥⎩,,,,,,,,,,,,,.这里,目标函数中的系数n c c c ,,, 21叫做目标函数系数或价值系数,约束条件中的常数m b b b ,,, 21叫做资源系数,约束条件中的系数;,,,m i a ij 21(= )21n j ,,, =叫做约束系数或技术系数.二、线性规划问题的标准形式所谓线性规划问题的标准形式,是指目标函数要求min ,所有约束条件都是等式约束,且所有决策定量都是非负的,即1211221111221121122222112212min ()..0n n n n n n n m m mn n mn f x x x c x c x c x a x a x a x b a x a x a x b s t a x a x a x b x x x =++++++=⎧⎪+++=⎪⎪⎨⎪+++=⎪⎪≥⎩,,,,,,,,,,,或简写为11min ()12..012nj j j nij ji j jf X c x a x b i m s t x j n ===⎧==⎪⎨⎪≥=⎩∑∑,,,,,,,,,,. 可以规定各约束条件中的资源系数0(12)i b i n ≥=,,,,否则等式两端乘以“1-”.线性规划问题的矩阵表示为min ()..0f X CX AX b s t X ==⎧⎨≥⎩,,,其中12[]n C c c c =,,,,12[]T n X x x x =,,,,11121212221212n n n m m mn a a a a a a A P P P a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦[,,,],12[]T n b b b b =,,,. 任意的线性规划模型都可以转化为标准形式:(1)若目标函数是求最大值的问题,这时只需将所有目标函数系数乘以“-1”,求最大值的问题就变成了求最小值的问题,即)](min[)(max X f X f --=.求其最优解后,把最优目标函数值反号即得原问题的目标函数值.(2)若约束条件为不等式,这里有两种情况:一种是“≤”不等式,则可在“≤”不等式的左端加入一个非负的新变量(叫松驰变量),把不等式变为等式;另一种是“≥”不等式,则可在“≥”不等式的左端减去一个非负松驰变量(也叫剩余变量),把不等式变为等式.松驰变量在目标函数中对应的系数为零.(3)若存在取值无约束的变量k x ,可令k k k x x x ''-'=,其中k x ',0≥''k x . 例3.1 将下列线性规划问题化为标准形式123123123123123max ()2372.3250f X x x x x x x x x x s t x x x x x x =-+++≤⎧⎪-+≥⎪⎨-++=⎪⎪≥⎩,,,,,,为无约束. 解 将目标函数变为)](min[X f -,令543x x x -=,其中450x x ≥,,在第一个约束不等式中加入松驰变量6x ,在第二个约束不等式中减去剩余变量7x ,则可得标准形式12456712456124571245124567min[()]23()00()7()2.32()5,,,,,0f X x x x x x x x x x x x x x x x x s t x x x x x x x x x x -=-+--++++-+=⎧⎪-+--=⎪⎨-++-=⎪⎪≥⎩,,,,.三、线性规划的解的概念和基本定理 考虑线性规划标准形式的约束条件0AX b X =≥,,其中A 为n m ⨯矩阵,m n >,b 是m 维向量.假定增广矩阵,A b []的秩=矩阵A 的秩m =,把矩阵A 的列进行可能的重新排列,使,A B N =[].这里B 为m m ⨯矩阵,且有逆矩阵存在,即0||≠B ,称B 为该线性规划问题的一个基.不失一般性,设111211212,,,m m m m mm a a a B PP P a a a ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦[], 称(12)j P j m =,,,为基向量,与基向量对应的变量(12)j x j m =,,,称为基变量,记为12T B m X x x x =[,,,],其余的变量称为非基变量,记为12T N m m n X x x x ++=[,,,].令m n -个非基变量均为0,并用高斯消元法,可得一个解12[][00]T T T T B N m X X X x x x ==,,,,,,,,称X 为该约束方程组的基解,其中b B X B 1-=.满足非负约束条件0≥X (基解的非零分量都0≥)的基解称为基可行解.对应于基可行解的基称为可行基.基可行解的非零分量个数小于m 时,称为退化解.线性规划的解的基本定理:引理3.1 线性规划问题的可行解12[]T n X x x x =,,,为基可行解的充要条件是X 的正分量所对应的系数列向量是线性无关的.证 必要性由基可行解的定义可知.下证充分性若向量组k P P P ,,,21线性无关,则必有m k ≤;当m k =时,它们恰构成一个基,从而12[00]T k X x x x =,,,,,,为相应的基可行解.当m k <时,则一定可以从其余的列向量中取出k m -个与k P P P ,,,21构成最大的线性无关向量组,其对应的解恰为X ,所以它是基可行解. 定理3.1 线性规划问题的基可行解X 对应于可行域D 的顶点. 证 不失一般性,假设基可行解X 的前m 个分量为正,故∑==mj jj b xP 1.(3.1)现在分两步来讨论,分别用反证法.(1)若X 不是基可行解,则它一定不是可行域D 的顶点.根据引理3.1,若X 不是基可行解,则其正分量所对应的系数列向量m P P P ,,, 21线性相关,即存在一组不全为零的数12i i m α=,,,,,使得02211=+++m m P P P ααα (3.2)用一个0>μ的数乘式(3.2),再分别与式(3.1)相加和相减,得到111222()()()m m m x P x P x P b μαμαμα-+-++-=,111222()()()m m m x P x P x P b μαμαμα++++++=.现取11122[()()()00]T m m X x x x μαμαμα=---,,,,,,,21122[()()()00]T m m X x x x μαμαμα=+++,,,,,,,由21X X ,可得121122X X X =+,即X 是21X X ,连线的中点.另一方面,当μ充分小时,可保证012i i x i m μα±≥=,,,,,即21X X ,是可行解,这证明了X 不是可行域D 的顶点.(2)若X 不是可行域D 的顶点,则它一定不是基可行解.因为X 不是可行域D 的顶点,故在可行域D 中可找到不同的两点,(1)(1)(1)112[]T nX x x x =,,,,T nx x x X ][)2()2(2)2(12,,, =,使12(1)01X X X ααα=+-<<,.设X 是基可行解,对应向量组m P P P ,,, 21线性无关,当m j >时,有0)2()1(===j j j x x x ,由于21X X ,是可行域的两点,应满足∑∑====mj mj jj j j b xP b x P 11)2()1(,.将这两式相减,即得∑==-mj j j jx xP 1)2()1(0)(.因21X X ≠,所以上式系数)()2()1(j j x x -不全为零,故向量组m P P P ,,, 21线性相关,与假设矛盾,即X 不是基可行解.定理3.2 若可行域有界,线性规划问题的目标函数一定可以在其可行域的顶点上达到最优.证 设k X X X ,,, 21是可行域的顶点,若0X 不是顶点,且目标函数在0X 处达到最优*0()f X CX =(标准形式是*()min ()f X f X =).因0X 不是顶点,所以它可以用D 的顶点线性表示为01101kki i i i i i X X ααα===≥=∑∑,,.因此011k ki i i i i i CX C X CX αα====∑∑.(3.3)在所有的顶点中必然能找到某一个顶点m X ,使m CX 是所有i CX 中最小者,并且将m X 代替式(3.3)中的所有i X ,得到∑∑===≥ki ki m m i ii CX CX CX11αα,由此得到m CX CX ≥0.根据假设,0CX 是最小值,所以只能有m CX CX =0,即目标函数在顶点m X 处也达到最小值.§3.2 线性规划迭代算法单纯形法是求解线性规划问题的迭代算法.一、单纯形法的计算步骤单纯形法的基本思路是:从可行域中某个基可行解(一个顶点)开始,转换到另一个基可行解(顶点),直到目标函数达到最优时,基可行解即为最优解.单纯形法的基本过程如图3.1所示.为计算方便,通常借助于单纯形表来计算,从初始单纯形表3.1开始,每迭代一步构造一个新单纯形表.单纯型表中B X 列中填入基变量m x x x ,,, 21;B C 列中填入基变量的价值系数m c c c ,,, 21;b 列中填入约束方程组右端的常数;j θ列的数字是在确定换入变量后,按θ规则计算填入;最后一行称为检验数行,对应各非基变量j x 的检验数是∑=-=-=mi j j ij i j j z c a c c 1σ,1j m n =+,,(这里令∑==mi ijj j ac z 1).(1)找出初始可行基,确定初始基可行解,建立初始单纯形表. (2)检验各非基变量j x 的检验数∑=-=-=mi j j iji j j z c ac c 1σ(1j m n =+,,).若所有0≥j σ,则已得到最优解,停止计算.否则转入下一步.(3)在0(1)j j m n σ<=+,,,中,若所有0≤jk a ,则此问题无最优解,停止计算.否则转入下一步.(4)根据min{|0}j j k σσσ<=,确定k x 为换入变量.按θ规则计算min 0i l ik ik lkb ba a a θ⎧⎫=>=⎨⎬⎩⎭, 可确定l x 为换出变量,转入下一步.(5)以lk a 为主元素进行迭代(用高斯消元法),把k x 所对应的列向量120010k k k lk mk a a P l a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=−−−→⎢⎥⎢⎥←⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦变换成第行, 将B X 列中的l x 换为k x ,得到新的单纯形表,重复步骤(2)—步骤(5),直到终止.单纯形法的流程图如图3.2所示.若目标函数要求实现最大化,一方面可将最大化转换为最小化,另一方面也可在上述计算步骤中将判定最优解的0≥j σ改为0≤j σ,将换入变量的条件min{|0}j j k σσσ<=改为max{|0}j j k σσσ>=.二、初始可行基的确定 (1) 若线性规划问题是11min ()12..012nj j j nij ji j jf X c x a x b i m s t x j n ===⎧==⎪⎨⎪≥=⎩∑∑,,,,,,,,,,, 则从(12)j P j n =,,,中一般能直接观察到存在一个初始可行基12100010[,,,]001m B P P P ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦.(2)对所有约束条件是“≤”形式的不等式,可以利用化标准形式的方法,在每个约束条件的左端加入一个松驰变量,经过整理重新对j x 及ij a 进行编号,可得下列方程组.,,m n mn m m m m n n m m n n m m b x a x a x b x a x a x b x a x a x =+++=+++=+++++++++ 11,2211,221111,11显然得到一个m m ⨯单位矩阵B 可作为初始可行基12100010[,,,]001m B P P P ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦. (3)对所有约束条件是“≥”形式的不等式及等式约束情况,若不存在单位矩阵时,可采用人工变量,即对不等式约束减去一个非负的剩余变量后,再加入一个非负的人工变量;对等式约束再加入一个非负的人工变量,总可得到一个单位矩阵作为初始可行基.例3.2 求解线性规划问题12121212max ()2328416..4120f X x x x x x s t x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩,,,,,. 解:将线性规划问题化为标准形式12345123142512345min[()]2300028416..4120f X x x x x x x x x x x s t x x x x x x x -=--+++++=⎧⎪+=⎪⎨+=⎪⎪≥⎩,,,,,,,,.作初始单纯形表,按单纯形法计算步骤进行迭代,结果如下(表3.2).表3.2最后一行的检验数均为正,这表示目标函数值已不可能再减小,于是得到最优解*42004T X =[,,,,],目标函数值14)(*=X f .三、单纯形法的有关说明对线性规划问题min ()..0f X CX AX b s t X ==⎧⎨≥⎩,,,(3.5) 若系数矩阵中不含单位矩阵,没有明显的基可行解时,常采用引入非负人工变量的方法来求初始基可行解.下面分别介绍常用的“大M 法”和“两阶段法”.(一)大M 法在约束条件式(3.5)中加入人工变量,人工变量在目标函数中的价值系数为M ,M 为一个很大的正数.在迭代过程中,将人工变量从基变量中逐个换出,如果在最终表中当所有检验数0≥j σ时,基变量中不再含有非零的人工变量,这表示原问题有解,否则无可行解.例3.3 求解线性规划问题12312312313123min ()3211423..210f X x x x x x x x x x s t x x x x x =-++-+≤⎧⎪-++≥⎪⎨-+=⎪⎪≥⎩,,,,,,. 解:将原问题化为标准形式并引入人工变量,得12345671234123561371234567min ()300211423..210f X x x x x x Mx Mx x x x x x x x x x s t x x x x x x x x x x =-++++++-++=⎧⎪-++-+=⎪⎨-++=⎪⎪≥⎩,,,,,,,,,,.用单纯形法计算,得表3.3.根据表 3.3的最后一行的检验数均0≥,得最优解*4190000T X =[,,,,,,],最优值2)(*-=X f ,由于人工变量的值均为零,故得原问题的最优解*419T X =[,,],最优值为2)(*-=X f .(二)两阶段法两阶段法是把线性规划问题的求解过程分为两个阶段:第一阶段,给原问题加入人工变量,构造仅含价值系数为1的人工变量的目标函数且要求实现最小化,其约束条件与原问题相同,即11111111211221112min ()00..0n n m n n n n nn n n m mn n n m m n m g X x x x x a x a x x b a x a x x b s t a x a x x b x x x ++++++=++++++++=⎧⎪+++=⎪⎪⎨⎪+++=⎪⎪≥⎩,,,,,,,. 然后用单纯形法求解上述问题,若得到0)(=X g ,这说明原问题存在基可行解,可进入第二阶段计算,否则原问题无可行解,停止计算.第二阶段,将第一阶段计算得到的最终表,除去人工变量,将目标函数行的系数换为原问题的目标函数系数,作为第二阶段计算的初始单纯形表进行计算.例3.4 用两阶段法求解线性规划问题12312312313123min ()3211423.210f X x x x x x x x x x s t x x x x x =-++-+≤⎧⎪-++≥⎪⎨-+=⎪⎪≥⎩,,,,,,. 解 第一阶段,标准化并引入人工变量,得如下的线性规划=)(min X g 76x x +,1234123561371234567211423.210x x x x x x x x x s t x x x x x x x x x x -++=⎧⎪-++-+=⎪⎨-++=⎪⎪≥⎩,,,,,,,,,. 用单纯形法计算该线性规划(见表 3.4),最优解为*[011120000]T X =,,,,,,,,最优值0)(*=X g .表3.4由于人工变量076==X X ,所以得原问题的基可行解为[011120]T X =,,,,.于是进入第二阶段计算(见表3.5),最优解为*[41900]T X =,,,,,最优值2)(*-=X f ,于是原问题的最优解为*[419]T X =,,,最优值为2)(*-=X f .§3.3 对偶问题的基本原理一、对偶问题的提出对偶性是线性规划的重要内容之一,每一个线性规划问题必然有与之相伴而生的另一个线性规划问题,我们称一个叫原问题,另一个叫对偶问题,这两个问题有着非常密切的关系,让我们先分析一个实际的线性规划模型与其对偶线性规划问题的经济意义.例3.5 某工厂计划在下一生产周期生产3种产品1A ,2A ,3A ,这些产品都要在甲、乙、丙、丁4种设备上加工,根据设备性能和以往的生产情况知道单位产品的加工工时,各种设备的最大加工工时限制,以及每种产品的单位利润(单位:千元),如表3.6所示,问如何安排生产计划,才能使工厂得到最大利润?解 设321x x x ,,分别为产品321A A A ,,的产量,构造此问题的线性规划模型为1231231231312123max ()8102237042280..3152250,,0f X x x x x x x x x x s t x x x x x x x =++++≤⎧⎪++≤⎪⎪+≤⎨⎪+≤⎪⎪≥⎩,,,,,.现在从另一个角度来讨论该问题.假设工厂考虑不安排生产,而准备将所有设备出租,收取租费.于是,需要为每种设备的台时进行估价.设4321y y y y ,,,分别表示甲、乙、丙、丁4种设备的台时估价.由表3.6可知,生产一件产品1A 需用各设备台时分别为h h h h 2342,,,,如果将h h h h 2342,,,不用于生产产品1A ,而是用于出租,那么将得到租费43212342y y y y +++.当然,工厂为了不至于蚀本,在为设备定价时,保证用于生产产品1A 的各设备台时得到的租费,不能低于产品1A 的单位利润8千元,即823424321≥+++y y y y .按照同样分析,用于生产一件产品2A 的各设备台时h 1,h 2,0,h 2所得的租费,不能低于产品2A 的单位利润10千元,即1022421≥++y y y .同理,还有223321≥++y y y .另外,价格显然不能为负值,所以01234iy i ≥=,,,,. 企业现在设备的总以时数为70h ,80h ,15h ,50h ,如果将这些台时都用于出租,企业的总收入为422150158070)(y y y y Y g +++=.企业为了能够得到租用设备的用户,使出租设备的计划成交,在价格满足上述约束的条件下,应将设备价值定得尽可能低,因此取)(Y g 的最小值,综合上述分析,可得到一个与例3.5相对应的线性规划,即123412341231231234min ()70801550243282210..3220g Y y y y y y y y y y y y s t y y y y y y y =++++++≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩,,,,,,,.称后一个规划问题为前一个规划问题的对偶问题,反之,也称前一个规划问题是后一个规划问题的对偶问题.二、原问题与对偶问题的表达形式和关系在线性规划的对偶理论中,把如下线性规划形式称为原问题的标准形式11221111221121122222112212min ()..0n n n n n n m m mn n mn f X c x c x c x a x a x a x b a x a x a x b s t a x a x a x b x x x =++++++≥⎧⎪+++≥⎪⎪⎨⎪+++≥⎪⎪≥⎩,,,,,,,. 而把如下线性规划形式称为对偶问题的标准形式11221111221121122222112212max ()..0n n m m m m n n mn m nm g Y b y b y b y a y a y a y c a y a y a y c s t a y a y a y c y y y =++++++≥⎧⎪+++≥⎪⎪⎨⎪+++≥⎪⎪≥⎩,,,,,,,. 若用矩阵形式表示,则原问题和对偶问题分别可写成如下形式:原问题min ()..0f X CX AX b s t X =≥⎧⎨≥⎩,,.(3.6)对偶问题max ()..0g Y Yb YA C s t Y =≤⎧⎨≥⎩,,.(3.7)原问题与对偶问题的关系见表3.7.例3.6 求下面线性规划问题的对偶问题123412341342341234min ()23535224..600f X x x x x x x x x x x x s t x x x x x x x =+-++-+≥⎧⎪+-≤⎪⎨++=⎪⎪≤≥⎩,,,,,,,无约束. 解:根据表3.7可直接写出上述问题的对偶问题12312131********max ()546223..325100g Y y y y y y y y s t y y y y y y y y y =+++≥⎧⎪+≤⎪⎪-++≤-⎨⎪-+=⎪⎪≥≤⎩,,,,,,,无约束. 三、对偶理论定理3.3(弱对偶定理) 对偶问题(max )的任何可行解︒Y ,其目标函数值总是不大于原问题(min )任何可行解︒X 的目标函数值.证 由定理所设及问题(3.6)和问题(3.7)容易看出︒︒︒︒≤≤CX AX Y b Y .定理3.4(对偶定理) 假如原问题或对偶问题之一具有有限的最优解,则另一问题也具有有限的最优解,且两者相应的目标函数值相等.假如一个问题的目标函数值是无界的,则另一问题没有可行解.证明从略.定理3.5(互补松驰定理) 假如︒X 和︒Y 分别是原问题(3.6)和对偶问题(3.7)的可行解,︒U 是原问题剩余变量的值,︒V 是对偶问题松驰变量的值,则︒X 、︒Y 分别是原问题和对偶问题最优解的充要条件是0=+︒︒︒︒X V U Y .证 由定理所设,可知有0AX U b X U ︒︒︒-=︒≥,,,(3.8) 0Y A V C Y V ︒︒︒︒︒+=≥,,.(3.9)分别以︒Y 左乘式(3.8),以︒X 右乘式(3.9),两式相减,得b Y CX X U U Y ︒︒︒︒︒︒-=+.若0=+︒︒︒︒X V U Y ,根据弱对偶定理知CX b Y CX Yb ≤=≤︒︒.这说明︒X ,︒Y 分别是原问题和对偶问题最优解,反之亦然.根据互补松驰定理和决策变量满足非负条件可知,在最优解时,︒︒U Y 和︒︒X V 同时等于0,所以有)21(000n j x v j j ,,, ==, )21(000m i u y i i ,,, ==. 于是,互补松驰定理也可以这样叙述:最优化时,假如一个问题的某个变量取正数,则相应的另一个问题的约束条件必取等式;或者一个问题中的约束条件不取等式,则相应于另一问题中的变量必为零.例3.7 已知线性规划问题123451234512445min ()23523234.2330125jf X x x x x x x x x x x s t x x x x x x j =++++⎧++++≥⎪-+++≥⎨⎪≥=⎩,,,,,,,.已知其对偶问题的最优解为5)(5/35/4**2*1===Y g y y ,,,试用对偶理论找出原问题的最优解.解:先写出它的对偶问题12121212121212max ()4322(1)3(2)235(3)..2(4)33(5)0g Y y y y y y y y y s t y y y y y y =++≤⎧⎪-≤⎪⎪+≤⎪⎨+≤⎪⎪+≤⎪≥⎪⎩,,,,,,,.将*2*1y y ,的值代入约束条件,得(2),(3),(4)为严格不等式,由互补松驰定理得***2340x x x ===,因021≥y y ,,原问题的两个约束条件应取等式,故有**1534x x +=, **1523x x +=.求解后得到**1511x x ==,,故原问题的最优解为 **10001()5TX f X ==[,,,,],.四、对偶问题的迭代算法对偶单纯形法是对偶问题的迭代算法,其基本思想是:从原问题的一个基本解出发,此基本解不一定是可行解,但它对应着对偶问题的一个可行解;然后检验原问题的基本解是否可行,即是否有负的分量.如果有小于零的分量,则进行迭代,求另一个基本解,此基本解对应着另一个对偶可行解.如果得到的基本解的分量皆非负,则该基本解为最优解.也就是说,对偶单纯形法在迭代过程中始终保持对偶解的可行解,使原问题的基本解由不可行逐步变为可行.当同时得到对偶问题与原问题的可行解时,便得到原问题的最优解.对线性规划问题的标准形式min ()..0f X CX AX b s t X =≥⎧⎨≥⎩,,.对偶单纯形法的计算步骤如下:(1)找出原问题的一个基,构成初始对偶基可行解,使所有检验数0≥j σ,构成初始对偶单纯形表.(2)若所有0≥i b ,则当前的解是最优解,停止计算,否则计算min{|0}l i i b b b =<,则l 行为主行,该行对应的基变量为换出变量.(3)若所有0≥lj a ,则对偶问题无界,原问题无解,停止计算,否则计算min |0j k lj lj lka a a σσθ⎧⎫⎪⎪=<=⎨⎬--⎪⎪⎩⎭,则k 列为主列,该列对应的基变量为换入变量.(4)以lk a 为主元素进行迭代,然后转回步骤(2). 对偶单纯形法的流程图如图3.3所示.例3.8 用对偶单纯形法求解下述线性规划问题123123123123min ()23423..2340f X x x x x x x s t x x x x x x =++++≥⎧⎪-+≥⎨⎪≥⎩,,,,,.解:首先将“≥”约束条件两边反号,再加入松驰变量,可得原问题的一个基123451234123512345min ()2340023..2340f X x x x x x x x x x s t x x x x x x x x x =++++---+=-⎧⎪-+-+=-⎨⎪≥⎩,,,,,,,.图3.3从表3.8看出,所有检验数0≥j σ,则对应对偶问题的解是可行的,因b 列数字为负,需进行迭代,计算min 344--=-{,}.所以5x 为换出变量.又因为24min 123θ⎧⎫=-=⎨⎬⎩⎭,,,所以1x 为换入变量,以换入、换出变量所在行列交叉处元素“-2”为主元素,按单纯形法计算步骤进行迭代,得表3.9.由表3.9的最后一行看出,所有检验数0≥j σ,故原问题的最优解为*[11/52/50]T X =,,.若对应两个约束条件对偶变量为1y ,2y ,则可得对偶问题的最优解为*[8/51/5]T Y =,.§3.4 线性规划问题灵敏度在建立实际的线性规划模型时,所收集到的数据不是很精确;另一方面在实际应用中,各种信息瞬息万变,已形成的数学模型中的某些数据需要随之而变.因此,对于一个线性规划问题,研究当数据发生变动时解的变化情况是很重要的.下面仅介绍两种数据变化而导致解的变化的情况,这就是灵敏度分析问题.一、价值系数的变化假设只有一个系数k C 变化,其它系数保持不变 ,k C 的变化只影响检验解而不影响解的非负定性,下面分别就k C 是非基变量系数和基变量系数两种情况进行讨论.(1)k C 是非基变量的系数由于B C 不变,因而j Z 对任何j 都不变.这时非基变量的系数k C 的变化只影响与k C 有关的一个检验数k σ的变化,而对其它j σ没有影响,设系数从k C 变化到k C ',这时检验数k k k Z C -=σ被k k kZ C -'='σ所代替,在当前解是原问题的最优解时,有0≥-=k k k Z C σ,假如()(k k k k k k C Z C Z C σ'''=-=-+)0k C -<,则k X 必须引进基,单纯形法继续进行,否则原解仍是k C 变化后的新问题的最优解,最优解不变相当于k C '变化的界限为)(k k k kZ C C C --≥'. (2)k C 为基变量的系数当k C 被k C '所代替时,j Z 变成j Z ',j j Z C '-可计算为kj k kj j j j a C C Z C Z C )(-'--='-. (3.10)特别是当k j =时,0=-k k Z C ,且1=kk a ,因此k k k k C C Z C -'='-,仍为零.由式(3.10)知,基变量k x 的价值系数k C 的变化会引起整个价值系数行的变化,变化值为)(k k C C -'-乘以最终表相应该基变量k x 所在的k 行的数值kj a .k 列本身则调整为0='-'k k Z C .由式(3.10)可看出,当对某个非基变量j x ,式(3.10)为负时会引起基的变化,若要保持最优解不变,分析变化值)(k k C C -'且大于或小于零以及kj a 值是正或负的情况,得出会保持最优解不变的k C '的变化界限为max 0min 0j j j j k kj k k kj j jkj kj C Z C Z C a C C a a a ⎧⎫⎧⎫--⎪⎪⎪⎪'+<≤≤+>⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭.例3.8 以例3.2的最终表为例,设基变量2x 的系数2C 变化2C ∆,在原最优解不变条件下,确定2C ∆的变化范围.解 此时例3.2的最终表便成为表3.10为了保持原最优解不变,则2x 的检验数应当为零,进行行初等变换,得表3.11.从表(3.11)可得02232≥∆-C 且08812≥∆+C . 由此可得2C ∆的变化范围为312≤∆≤-C ,即2x 的价值系数2C 可以在[0,4]之间变化,而不影响原最优解.二、资源系数的变化假设资源系数k b 变化为k b ',k b 的变化将会影响解的可行性,但不会引起检验数的符号变化.根据基可行解的矩阵表示可知,b B X B 1-=,所以只要k b 变化必定会导致最优解的数值发生变化,最优解的变化分为两类:一类是保持01≥-b B ,最优基B 不变;另一类是b B 1-中出现负分量,这将使最优基B 变化,若最优基不变,则只需将变化后的k b 代入B X 的表达式重新计算即可;若b B 1-中出现负分量,则要通过迭代求解新的最优基和最优解.设系数k b 变化到k k k b b b ∆+=',而其它系数都不变,这样使最终表中原问题的解相应变化为11111100k B k k k k m mk m b a b X B b b B b B b b b a b ---⎡⎤⎡⎤⎢⎥⎢⎥'⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'=+∆=+∆=+∆⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 其中B X 为原最优解,i b '为B X 的第i 个分量,ik a 为1-B 的第i 行第k 列元素,为了保持最优基不变,应使0≥'B X ,即110k k m mk a b b b a '⎡⎤⎡⎤⎢⎥⎢⎥+∆≥⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦. 由此可得到保持最优基不变时,资源系数的变化界限为max 0min 0i i k ik k k ik ik ik b b b a b b a a a ⎧⎫⎧⎫''--⎪⎪⎪⎪'+>≤≤+<⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭.例3.9 若例3.2的第二个约束条件中2b 变化为22b b ∆+,在最优解不变的条件下,求2b ∆的变化范围.解 计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡≥∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆+--000812141244002211b b B b B可得2224/(1/4)164/(1/2)82/(1/8)16b b b ∆≥-=-∆≥-=-∆≤--=,,.所以2b ∆的变化范围是(-8,16).显然2b 的变化范围是(8,32).。

2017管理运筹学-重点知识

2017管理运筹学-重点知识

一、考试知识点第二章线性规划2.1 线性规划的标准形式2.2 线性规划的基本解基本可行解2.3规范形式线性规划的单纯形算法、大M法求解线性规划列出初始单纯形表2.4 单纯型算法求解线性规划的唯一最优解、无解、无界解、无穷多解的判定方法第三章对偶规划3.1 线性规划的对偶规划3.2对偶规划规划的基本性质(证明题、计算题)3.3灵敏度分析(关于目标函数系数C、右端向量b)第四章运输问题4.1目标规划的图解法Vogel 法)、检验、4.2标准形式运输问题的表上作业法,包括求出初始方案(最小元素法、调整等4.3 带弹性约束的运输问题转化为标准形式的运输问题第五章整数规划整数规划问题建模指派问题的匈牙利算法第六章动态规划6.1离散确定型动态规划的标号算法(练习题 6.1 )6.2运用动态规划原理求解生产存储问题、投资决策问题、零部件安全性问题第七章图论(6.3,6.5)7.1 寻找最小生成树7.2 Dijkstra 算法寻找最短路7.3 寻找最大流、最小割第十章博弈论占优策略均衡、反复剔除的占优策略均衡划线法求纯策略纳什均衡混合策略纳什均衡向归纳法求动态博弈的纳什均衡二、考试题型1 、选择题 2*10 =202、计算题: 5道大题共计80分三、考试时间和地点6月 28 日( 17 周日) 9 :30-11 : 30地点:教学楼 5-105 (上午班) 5-107 (下午班)按序号指定位置就座,现场可查询自己班内序号。

试卷上要写明自己的班内序号欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【解】首先将数学模型化为标准形式
max Z 3 x1 2 x2 x3 4 x1 3 x2 x3 x4 4 x x 2 x x 10 1 2 3 5 2 x1 2 x2 x3 1 x j 0, j 1,2, ,5
最优解X=(31/3,13,19/3,0,0)T;最优值Z=152/3 注意: (1)M 是一个很大的抽象的数,不需要给出具体的数 值,可以理解为它能大于给定的任何一个确定数值; (2)人工变量是帮助我们寻求原问题的可行基,人工变
量从模型中推出后,说明原问题有可行解,但不能
肯定有最优解。
1.5 单纯形法 Simplex Method
1.6 线性规划的对偶模型 Dual model of LP
【例1】 某企业计划生产甲乙两种产品,生产单位产品所需设备
A、B、C台时及产品的单位利润如下表:
生产能力 工时/天
产品 车间(资源) A B C
利润(百元/件)
单耗(工时/件) 甲 乙 x1 x2 1 0 0 2 3 4 3 5
8 12 36
max Z C X A X b X 0
由于 X s 对应的系数矩阵为单位阵,故容易确定初始基变量为 X s , 得到如下初始单纯形表: C X A -C 0 Xs E 0
CB Xs
b 0
而对于一般的基B为
1
B A ( B A B ),
A 的子矩阵,
1 1
1.5 单纯形法 Simplex Method
引入松弛变量
X s ( xn1 , xn 2 , , xn m )
max Z CX 0 X s AX EX s b X 0, X s 0
T
化为标准形如下:
1.5 单纯形法 Simplex Method
X 记 X , A A E , C C 0, 则上述标准形式为 X s
式中x4,x5为松弛变量,x5可作为 一个基变量,第一、三约束中分 别加入人工变量 x6 、 x7 ,目标函 数中加入―Mx6―Mx7一项,得到 人工变量单纯形法数学模型
4 x1 3 x2 x3 x4 x6 4 x x 2x x5 10 1 2 3 2 x 2 x x x 1 1 2 3 7 x j 0, j 1,2, ,7
1.5 单纯形法 Simplex Method
maxZ CX AX b s.t. X 0
maxZ CX AX b s.t. X 0
1.大M法 2.两阶段法
maxZ CX AX IX S b s.t. X , XS 0
maxZ CX AX IX S b s.t. X , XS 0
大值,因此原问题只要有可行解,新的线性规划问
题的最优解中人工变量的取值一定为0, 这种方
法称为大M单纯形法(简称大M法)。
1.5 单纯形法 Simplex Method
大M法中加入人工变量后新的线性规划问题为
max Z’=c1x1+c2x2+…+cnxn –Mxn+1 – … –Mxn+m
a11x1 a12 x2 a1n xn xn 1 b1 a x a x a x x b 21 1 22 2 2n n n2 2 a x a x a x x b m1 1 m2 2 mn n nm m x 0 , j 1 , 2 , , n , n 1 , , n m j
3
-6
5
0
-1
0 0 0 0
1 0 0
3/5
0
-1 σj 2
x5
x3 x2
Z 0x4 + 0x50 -Mx6 8 max- 3x2 x3 +0 1 Mx 7 0 33 x1 2 x x 2 x x 10 1 6M-5 2 3 -5M 5 0 2 x1 2 x2 x3 x7 1 3/5 1 0 - 6/5 x j 0, j 1,2, ,7 31/5 3/5 0 0 3 x2 x32 x4 1 x6 4 0 1 4 x12 -
1.5 单纯形法 Simplex Method
1.5.2 大M和两阶段单纯形法 在实际问题中有些模型并不含有单位矩阵,为
了得到一组基向量和初始基可行解,在约束条件的
等式左端加一组虚拟变量,得到一组基变量。这种
人为加的变量称为人工变量,构成的可行基称为人
工基,用大M法或两阶段法求解,这种用人工变量 作桥梁的求解方法称为人工变量法。
max Z 3 x1 2 x2 x3
1.5 单纯形法 Simplex Method
4 x1 3 x2 x3 x4 4 x x 2 x x 10 1 2 3 5 2 x1 2 x2 x3 1 x j 0, j 1,2, ,5 max Z 3 x1 2 x2 x3 +0x4 +0x5-Mx6 Mx7
Simplex Method
因为r(B)=m(或|B|≠0)所以B -1存在,因此可有
BX B b NX N X B B (b NX N ) B 1b B 1 NX N 令非基变量XN=0,XB=B—1b,由B是可行基的假设,
则得到基本可行解 X=(B-1b,0)T 消去目标函数中的基变量,于是目标函数可写成
新的线性规划问题的最优解中人工变量取值必为0,否则原 问题无可行解,在得到新问题的最优解后,去掉人工变量便得到 原问题的最优解,相应的在新问题的最终单纯形表中去掉人工变 量那一块即为原问题的最优单纯形表。
注: (1) 迭代过程中人工变量一旦出基就不会再进基,所以当
某个人工变量出基后,其对应的列可不再计算,以减少计算量;
X B 则X可表示成 X , 同理将C 写成分块矩阵 X N CB=(C1,C2,…,Cm), CN=(Cm+1Cm+2,…,cn), C=(CB,CN),
则 AX=b 可写成
X B ( B,N ) BX B NX N b X N
1.5 单纯形法
建立总收益最大的数学模型。
产品 【解】设x1,x2分别为产品 甲、 乙的产量,则线性规划数学模 车间 型为: (资源) max z 3 x1 5 x 2 minW 8 y 12 y 36 y 1 2 3 8 x1 y1 A y1 3 y3 3 x2 6 y2 B s .t . 3 x1 4 x 2 36 2 y2 4 y3 5 C y 3 x1 , x 2 0 利润(百
1.5 单纯形法 Simplex Method
一、 大M 单纯形法
对于线性规划问题的标准形式:
max Z=c1x1+c2x2+…+cnxn
a11 x1 a12 x2 a1n xn b1 1、思想: a x a x a x b 21 1 22 2 2 n n 2 a x a x a x b m1 1 m2 2 mn n m x 0 , j 1 , 2 , , n j
C CB B 1 A C 0 CB B 1 A E C CB B 1 A CB B 1
C X 0 Xs b
CB
XB
B-1A
CB B-1A-C
B-1
CB B-1
B-1b
CB B-1 b
σj
1.6 线性规划的对偶模型
Dual Model of LP
一、引例
1
X B Z (CB , C N ) CB X B C N X N X N CB ( B 1b B 1 NX N ) CN X N
CB B 1b (CN CB B 1 N ) X N
1.5 单纯形法
Simplex Method
CB XB B
1.5 单纯形法
Simplex Method
不妨假设A=(P1, P2, … ,Pn)中前m个列向量构成一个可
行基,记为B=(P1, P2 ,… ,Pm)。矩阵A中后n-m列构成
的矩阵记为N=(Pm+1, … ,Pn), 则A可以写成分块矩阵
A=(B,N)。对于基B,基变量为XB=(x1, x2 ,… , xm )T, 非基变量为XN=(xm+1, xm+2,…, xn)T。
(2)在加入人工变量时,实际上不一定每个约束都加入人工变量, 例如某约束是“≤”型,则在加入松弛变量后,该松弛变量可作 为基变量;
1.5 单纯形法
Simplex Method
解的判断 唯一最优解的判断:最优表中所有非基变量的检验 数非零,则线性规划具有唯一最优解。 多重最优解的判断: 最优表中存在非基变量的检验 数为零,则线性规划具有多重最优解。 无界解的判断 : 某个 σk>0 且 aik≤ 0 (i=1 , 2,…,m) ,则 线性规划具有无界解。 无可行解的判断:当用大M单纯形法计算得到最优解 并且存在非零人工变量时,则表明原线性规划无可行 解。
1.5 单纯形法 Simplex Method
新约束要与原约束等价当且仅当所有的人工变
量取值为零,为确保引入人工变量后新的线性规划
问题与原线性规划问题求解一致,我们在新的线性 规划目标函数中设人工变量的系数为-M(M>0为一 充分大的数),其作用为罚因子,这样只要人工变 量是基变量且取值大于0,目标函数就不可能达到最
1.5 单纯形法 Simplex Method
由于系数矩阵A中不包含m×m 维单位子矩阵,我们 在每个约束中人为的加入一个变量,将约束化为
相关文档
最新文档