汽车系统动力学研究内容综述

合集下载

车辆系统动力学【可编辑全文】

车辆系统动力学【可编辑全文】

可编辑修改精选全文完整版车辆系统动力学车辆系统动力学是一门涉及汽车系统的动力性研究的学科,旨在分析和模拟汽车的动力性能。

它是由应用力学和流体力学原理来研究动态特性,从而为汽车开发工程人员提供关键性信息和支持,以实现车辆系统的有效运行。

车辆系统动力学的研究分为两个主要方面:静动力学和结构动力学。

静动力学是研究汽车静力学和动力学系统,以及它们之间的相互作用。

静动力学的研究内容包括汽车的刚性构件的静力学计算,汽车转矩和加速度的动态测定,车辆悬架系统的构造、测量和控制,动力性能的行驶特性测定,以及汽车的操纵和漂移特性的研究。

结构动力学包括研究汽车结构,如悬架、底盘和发动机,以及这些系统的动态特性测定。

车辆系统动力学的研究可以分为三个主要领域:实验动力学、分析动力学和仿真动力学。

实验动力学主要负责试验机械结构以及机械系统的动力特性测定。

它可以分析出机械系统的动力特性,以及机械系统和动力学分析模型之间的关系。

分析动力学是通过数学分析的方法,计算和分析汽车的动力特性。

仿真动力学则使用计算机模拟技术,模拟汽车在不同行驶条件下的性能,并进行动力学和控制分析。

车辆系统动力学是一个复杂的研究领域,需要广泛的原理、理论和技术来支持。

它为车辆开发工程人员提供关键的研究信息,以便更好地了解汽车的动力性能,从而更好地解决汽车发动机、悬架和底盘等系统的限制问题,实现更低排放、更安全的汽车运行。

车辆系统动力学的研究目标是提高汽车的动力性能:提高燃油经济性、排放控制效果,降低汽车维护成本,延长汽车使用寿命,减少汽车故障发生率,并提高汽车在不同地形环境下的行驶质量。

未来,随着新技术的发展,车辆系统动力学的研究将不断进步,为汽车的改进和开发提供可靠的技术支持。

从而,车辆系统动力学是一门跨学科领域的非常重要的研究领域,它不仅涉及传统的汽车工程学科,还涉及力学、控制、物理、流体、电子、计算机等学科,是一门复杂而又有应用前景的学科。

因此,车辆系统动力学是汽车研发、维护和诊断的重要基础,也是汽车系统安全、经济、高效运行的关键。

车辆系统动力学知识点

车辆系统动力学知识点

车辆系统基础知识1. 车辆系统中主要有哪几种非线性关系:(线性化方法、原理。

)轮轨接触几何关系:线性化时踏面锥度、重力刚度、重力角刚度为常数。

蠕滑率-力规律:蠕滑系数在线性化后也为常数。

车辆的悬挂特性:2. 车辆系统动力学研究内容:蛇形运动稳定性;车辆曲线通过时运动状态和轮轨作用力;车辆对轨道不平顺的响应;过曲线时抗脱轨、抗倾覆性能;车辆纵向动力学,车辆间相互作用;新型悬挂形式,主动、半主动悬挂,径向转向架;弓网系统动态特性:受流、噪音;车辆系统空气动力学。

3. 轨道车辆的不平顺及其对应的车辆振动类型:(此处需要补充各种常用轨道谱表示方式,以及不同振动形式耦合程度大小与关系)直线区段的四种不平顺分别为:垂向轨道不平顺,引起车辆的垂向振动,水平轨道不平顺,引起车辆的横向滚摆耦合振动;方向不平顺,引起车辆的侧滚和左右摇摆;轨距不平顺轨距不平顺对轮轨磨耗、车辆运行稳定性和安全性有一定影响。

车辆系统动力学指标及评价标准1. 车辆运行安全性及评价标准:脱轨系数:评定防止车轮脱轨稳定性的脱轨系数,为某一时刻作用在车轮上的横向力Q和垂向力P的比值。

脱轨系数临界值定义为当轮轨接触的切向力T等于摩擦系数乘以接触法向力N时的Q/P值。

(有两类脱轨系数,一种与时间相关、一种与时间无关,像这种评价指标的原理,虽与考试没什么关系,但是可以尝试弄清楚,谁整理好了可以弄进来。

还有不同标准,比如《铁道机车动力学性能试验鉴定方法及评定标准》(TB/T 2360-93)《高速试验列车动力车强度及动力学性能规范》(95J 01-L)《高速试验列车动力车强度及动力学性能规范》(95J 01-M )的限定值,这些个常用标准,值得整理)轮重减载率:评定车辆在轮对横向力为零或接近于0的条件下,因一侧车轮严重减载而脱轨的安全性指标。

(同上)倾覆系数:评价车辆在侧向风力、离心力和横向振动惯性力的最不利组合下是否会导致使车辆向一侧倾覆。

(同上)2. 车辆运行平稳性及评价指标:Sperling :评定车辆本身的运行品质以及旅客乘坐舒适度,根据振动加速度及其振动频率来衡量,不同类型的振动(横向、垂向、不同频率范围内的振动)得到的W值不同,然后汇总取算术平均得到总的平稳性指标。

《2024年系统动力学简介及其相关软件综述》范文

《2024年系统动力学简介及其相关软件综述》范文

《系统动力学简介及其相关软件综述》篇一一、系统动力学简介系统动力学(System Dynamics)是一种定性与定量相结合的计算机仿真技术,旨在分析和研究复杂系统的行为模式和动态演化过程。

该方法基于系统思考的理念,通过对系统内部各要素及其相互关系的建模和模拟,探索系统行为的本质规律,从而为决策者提供科学的决策依据。

系统动力学主要应用于管理、经济、社会、生态等多个领域,特别适用于解决那些具有复杂结构、相互依赖和反馈机制的动态问题。

其核心思想是利用计算机仿真技术,将复杂的系统分解为若干个相互关联的子系统,通过建立因果关系和反馈机制,揭示系统内部各要素之间的相互作用和影响。

二、系统动力学软件综述随着系统动力学理论的发展和应用,越来越多的软件工具被开发出来,以支持系统动力学的建模和仿真过程。

下面将介绍几款常用的系统动力学软件。

1. Vensim软件Vensim是一款功能强大的系统动力学建模软件,具有友好的用户界面和丰富的建模工具。

它支持多层次、多变量的复杂系统建模,提供了丰富的函数库和符号库,方便用户建立复杂的因果关系和反馈机制。

此外,Vensim还支持模型的敏感性分析和政策模拟,可以帮助决策者了解不同政策对系统行为的影响。

2. Stella软件Stella是一款专门用于教育目的的系统动力学软件,适合初学者使用。

它提供了简单的建模工具和友好的用户界面,可以帮助用户快速了解系统动力学的原理和方法。

虽然Stella的功能相对简单,但它对于初学者来说是一个很好的入门工具。

3. AnyLogic软件AnyLogic是一款集成了多种建模方法的综合性仿真软件,其中包括系统动力学建模。

它具有强大的建模功能和灵活的仿真引擎,支持多种类型的模型构建和分析。

AnyLogic还提供了丰富的可视化工具和交互式界面,方便用户进行模型的演示和交流。

4. 其他软件除了。

汽车系统动力学

汽车系统动力学

1汽车系统动力学的主要研究内容、范围及其发展方向。

答:内容和范围:严格地说,车辆动力学是研究所有与车辆系统运动有关的学科。

它涉及的范围很广,除了影响车辆纵向及其子系统的动力学响应(如发动机、传动、加速、制动、防抱死和牵引力控制系统等方面的因素)外,还有车辆在垂向和横向两个方面的动力学内容,即行驶动力学和操纵动力学。

行驶动力学主要研究由路面的不平激励,通过悬架和轮胎垂向力引起的车身跳动和俯仰以及车轮的运动;而操纵动力学研究车辆的操纵特性,主要与轮胎侧向力有关,并由此引起车辆的侧滑、横摆和侧倾运动。

发展方向:计算机技术和控制技术共同推动了现代汽车系统动力学的发展。

随着各种底盘控制系统在车辆中应用的增长趋势及各功能控制系统集成程度的日益提高,车辆动力学在未来车辆控制系统设计中的作用将愈加重要,可以预见,未来的发展将在车辆主支控制、车辆多体动力学和向“人—车—路”闭环系统的扩展等方面有所体现。

2汽车空气阻尼及怎么样降低汽车空气阻力。

答:汽车直线行驶时受到的空气作用力在行驶方向上的分力成为空气阻力。

空气阻力是空气对前进中的汽车形成的一种反向作用力,它的计算公式是:×sc w v2其中v为行车速度;s为汽车横截面面积,c w为风阻系数。

空气阻力跟速F D=116度成平方正比关系,也就是说:速度增加1倍,汽车受到的阻力会增加3倍。

因此高速行车对空气阻力的影响非常明显,车速高,发动机就要将相当一部分的动力,或者说燃油能量用于克服空气阻力。

换句话说,空气阻力小不仅能节约燃油,在发动机功率相同的条件下,还能达到更高的车速。

空气阻力的大小除了取决于车的速度外,还跟汽车的截面积s和风阻系统c w有关。

通过改善汽车的空气动力学性能,比如变化尾翼、底盘罩、前部进风口和轮毂帽,都能降低风阻系数。

而降低车身高度,等于减小了截面积,或使车身更多地着盖住轮子,也有利于降低空气阻力。

3描述主动悬架的工作原理。

答:主动悬架的控制环节中安装了能够产生抽动的装置,采用一种以力抑力的方式来抑制路面对车身的冲击力及车身的倾斜力。

车辆系统动力学复习重点

车辆系统动力学复习重点

车辆系统动⼒学复习重点1.系统动⼒学研究内容及发展趋势研究内容长期以来,⼈们⼀直在很⼤程度上习惯按纵向、垂向和横向分别独⽴研究车辆动⼒学问题;⽽实际中的车辆同时会受到三个⽅向的输⼊,各⽅向所表现的运动响应特性必然是相互作⽤、相互耦合的.纵向动⼒学:纵向动⼒学研究车辆直线运动及其控制的问题,主要是车辆沿前进⽅向的受⼒与其运动的关系。

按车辆⼯况的不同,可分为驱动动⼒学和制动动⼒学两⼤部分。

⾏驶动⼒学:主要是研究由路⾯的不平激励,通过悬架和轮胎垂向⼒引起的车⾝跳动和俯仰以及车辆的运动。

操纵动⼒学:主要研究车辆的操纵特性,主要与轮胎侧向⼒有关,并由此引起车辆侧滑、横摆和侧倾运动。

操纵动⼒学的研究范围分为三个区域:线性域:侧向加速度越⼩于0.4kg时,通常意味着车辆在⾼附着路⾯做⼩转向运动;⾮线性域:在超过线性域且⼩于极限侧向加速度(约为0.8kg)范围内;⾮线性联合⼯况:通常指车辆在转弯制动或转弯加速时的情况。

发展趋势:(1)车辆主动控制:ABS,TCS等逐步向车⾝侧倾控制,可切换阻尼的半主动悬架和四轮底盘控制系统的集成,转向等当⾯扩展。

通过控制算法、传感器技术和执⾏机构的开发实现的⾃动调节。

(2)车辆多体运动动⼒学:车辆的多刚体模型逐步向多柔体模型发型。

可以准确分析虚拟样机的性能,检查虚拟样机的缺陷从⽽缩短产品的设计周期,节约试制费⽤,同时提⾼物理样机与最终产品之间的相似性。

(3)“⼈—车—路”闭环系统:充分考虑驾驶员模型以及车辆本⾝的⼀些动⼒学问题来提⾼汽车稳定性。

2.轮胎滚动阻⼒概念及其分类:概念:当充⽓的轮胎在理想路⾯(通常指平坦的⼲、硬路⾯)上直线滚动时,其外缘中⼼对称⾯与车轮滚动⽅向⼀致,所受到的滚动⽅向相反的阻⼒。

分类:弹性迟滞阻⼒、摩擦阻⼒和风扇效应阻⼒。

3.什么是滚动阻⼒系数?影响因素有哪些?其值等于相应载荷作⽤下滚动阻⼒F R与车轮垂直载荷F X的⽐值。

影响因素:车轮载荷(反⽐)、胎压(反⽐)、车速(正⽐,先缓慢增加,再明显增加)、轮胎的结构设计、嵌⼊材料和橡胶混合物的选⽤。

车辆工程毕业论文文献综述

车辆工程毕业论文文献综述

车辆工程毕业论文文献综述近年来,汽车行业不断发展,对于相关研究的需求也在不断增加。

作为车辆工程专业的学生,我们需要关注并了解前沿的研究动态、技术突破和未来的发展方向。

本文将梳理车辆工程领域的相关文献,以帮助读者了解当前研究的热点和趋势,并提供参考资源。

一、车辆动力系统车辆动力系统是汽车的核心部分,包括发动机、变速器、传动轴和差速器等。

在汽车行业的发展中,提高动力系统的效率和减少排放成为了重要的研究方向。

相关文献中涉及的研究主题包括但不限于发动机燃烧过程优化、混合动力系统的设计与控制、新型变速器的研发等。

二、汽车电子与控制技术随着电子技术的进步,汽车电子与控制技术在车辆工程中的应用越来越广泛。

相关研究的文献综述主要包括汽车电子控制单元(ECU)的设计与优化、车载通信系统的研究、自动驾驶技术的发展等。

这些研究在提高汽车的安全性、降低事故风险、提升驾驶舒适度方面具有重要意义。

三、新能源汽车技术随着可再生能源的不断发展和环境问题的日益突出,新能源汽车技术成为了国内外研究的热点之一。

文献综述的研究领域主要包括电动汽车的电池技术、充电与储能技术、新能源汽车的安全性与可靠性等。

这些研究对于新能源汽车的发展具有重要的推动作用。

四、车辆安全与 pass:通过减伤技术车辆安全一直是汽车工程的重要研究方向之一,相关文献综述主要涉及车辆碰撞安全的 pass:防护设计、 pass:改善车辆结构强度、车辆安全 pass:气囊技术、主动安全系统等。

这些研究在保障驾乘人员的安全、降低事故损失方面有着重要的意义。

五、车辆 aerodynamics:空气动力学与降低 aerodynamics:气动阻力的研究车辆 aerodynamics:空气动力学在改善车辆性能和降低 aerodynamics:气动阻力方面起着重要的作用。

文献综述的内容主要包括车辆aerodynamics:空气动力学优化设计的方法、减少 aerodynamics:气动阻力的新技术、车辆 aerodynamics:空气动力学模拟与测试等。

《车辆动力学 综述》

《车辆动力学 综述》

《车辆动力学综述》第一篇:车辆动力学综述车辆动力学综述人们常说控制一辆高速机动车的主要作用力产生于四块只有手掌般大小的区域——车轮与地面的接触区。

这种说法恰如其分。

对充气(橡胶)轮胎在路面生所产生的力和力矩的认识。

是了解公路车辆动力学的关键。

广义上,车辆动力学包括了各种运输工具——轮船、飞机、有轨车辆、还有橡胶轮胎车辆。

各种类型运输工具的动力学所包含的原理,各不相同并且十分广泛。

车辆动力学主要分为车辆系统动力学和车辆行驶动力学。

因为车辆性能——在加速、制动、转向和行驶过程中运动的表现——是施加在车辆上的力的响应。

,所以多是车辆动力学的研究必须涉及两个问题:怎样以及为什么会产生这些力。

在车辆上影响性能的主要作用力是地面对轮胎产生的反作用力。

因此,需要密切关注轮胎特性,这些特性有轮胎在各种不同工况下产生的力和力矩所表征。

研究轮胎性能。

而不彻底了解其在车辆中的重要意义,是不够的:反之亦然。

车辆系统动力学的研究的主要方向是如何提高车辆的平顺性、稳定性以及安全性。

主要将动力学原理用于车辆行驶系统的控制以及优化控制,包括轮胎、转向、悬架以及电控系统的分析研究,进而得到更优的力学特性。

1、悬架传统的被动悬架具有固定的悬架刚度和阻尼系数,设计的出发点是在满足汽车平顺性和操纵稳定性之间进行折中。

被动悬架在设计和工艺上得到不断改善,实现低成本、高可靠性的目标,但无法解决平顺性和操纵稳定性之间的矛盾。

20世纪50年代产生了主动悬架的概念,这种悬架在不同的使用条件下具有不同的弹簧刚度和减振阻尼器。

汽车悬架可分为被动悬架和主动悬架。

主动悬架根据控制方式,可分为半主动悬架、慢主动悬架和全主动悬架。

目前,主动悬架的研究主要集中在控制策略和执行器的研发两个方面。

图1所示为上述各种悬架系统的结构示意图,其中k代表悬架弹性元件刚度,代表轮胎等效刚度,c。

代表减振器阻尼,代表主动装置,代表非悬挂质量,代表悬挂质量。

(a)被动悬架(b)阻尼可测试半主动悬架(c)刚度可调式半主动悬架(d)慢主动悬架(e)全主动悬架图1各类悬架结构示意图(1)半主动悬架半主动悬架系统介于被动悬架系统和全主动悬架系统之间。

系统动力学研究综述

系统动力学研究综述

系统动力学研究综述摘要本文首先对系统动力学进行简要概述,并回顾其在国外和国内的发展历程。

其次通过对文献综述的方式,对系统动力学的研究领域进行梳理和罗列,并且介绍了系统动力学的研究成果和应用情况。

本文的目的在于对系统动力学的发展和应用进行清洗明确的概括的,增进系统动力学的了解,并表述其目前的发展趋势。

关键词:系统动力学、综述、应用现状、研究成果一、引言系统动力学自创立以来,其理论、方法和工具不断完善,应用范围不断拓展,在解决经济、社会、环境、生态、能源、农业、工业、军事等诸多领域的复杂问题中发挥了重要作用。

随着现代社会复杂性、动态性、多变性等问题的逐步加剧,更加需要类似系统动力学这样的方法,综合系统论、控制论、信息论等,并于经济学、管理学交叉,使人们清晰认识和深入处理产生于现代社会的非线性和时变现象,做出长期的、动态的、战略的分析和研究。

这位系统动力学方法的进一步发展提供了广阔的平台,也为深入研究系统动力学的应用提供了机遇和挑战。

为此,本文从系统动力学的研究与应用现状着手,通过总结和分析当前系统动力学的应用情况,探寻系统动力学未来的应用前景和方向,希望能促进系统动力学方法在现代社会中的广泛应用。

二、系统动力学概述系统动力学(System Dynamics,简称SD)起源于控制论。

自Wienes在40年代建立控制论以来,随着现代工业与科学技术的日益发展,控制论的概念、领域和工具也得以拓展。

五十年代初,中国把自动控制理论翻译为“自动调节原理”。

苏联的B.B. COJIOJIOBHNKOB教授,在研究有关随即控制问题时,引入“系统动力学”的概念。

钱学森先生结合龚恒问题,编著了《工程控制论》,也阐述了系统动力学的有关问题。

苏联与后总共对系统动学的研究,是针对工程技术问题,限于自然科学领域。

美国在50年代后期,在系统动力学方面取得了很大的突破。

JW Forrester等发表了一系列关于SD方面的论文,使它的应用不限于工程技术,而是拓展到工业、经济、管理、生态、医药等各个领域,并出现了五花八门的各种动力学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档