方差-P

合集下载

常见分布的数学期望和方差

常见分布的数学期望和方差

E( X
2)
n k0
k 2Ckn
pkqnk
n
np
k 1
k
(k
(n 1)! 1)!(n
k )!
p k 1q n k
n np (k
k 1
1) (k
(n 1)! 1)!(n
k )!
pk1q nk
n k 1
(k
(n 1)! 1)!(n
k )!
pk1q nk
np[(n 1) p 1],
EX 2 4 ,试求 a 和 b( a b ).
解 DX EX 2 (EX )2 3 ;
ab 2
(b a)2 12
EX 1, DX 3

a b 2, b a 6 ;
a 2, b 4 .
因此 X 在区间[2,4] 上均匀分布.
21
第21页
例3 假设随机变量 X 和 Y 相互独立,且都在区间(0,1) 上 均匀分布,试求随机变量 Z X Y 的数学期望.
0.90 .
12
第12页
二、常见持续型分布旳数学盼望和方差
1. 均匀分布 X ~ U (a, b) .
1
f
(
x)
b
a
,
a xb
0 , 其它
b1
E( X ) xf ( x)dx x dx
a ba
1 b2 a2 a b .
ba 2
2
13
第13页
二、常见持续型分布旳数学盼望和方差
望 与
指数 分布
f
(
x)
e x
0,
,
x0 else
( 0)
p
npab 2 1源自pqnpq(b a)2 12 1

方差检验的p值计算公式

方差检验的p值计算公式

方差检验的p值计算公式【原创实用版】目录1.引言2.方差检验的基本概念3.p 值计算公式4.左侧检验、右侧检验和双侧检验的 p 值计算5.结论正文一、引言方差检验是一种常用的统计分析方法,用于检验两组数据之间是否存在显著差异。

在方差检验中,我们通常使用 p 值来判断是否拒绝原假设。

本文将介绍方差检验的 p 值计算公式及左侧检验、右侧检验和双侧检验的 p 值计算方法。

二、方差检验的基本概念方差检验是通过比较两组数据的方差是否显著不同来判断它们之间是否存在显著差异。

方差检验的基本假设是原假设(H0):两组数据的方差相等;备择假设(H1):两组数据的方差不相等。

三、p 值计算公式p 值是用来判断是否拒绝原假设的一个阈值,表示当原假设为真时,得到当前观察结果或更极端结果的概率。

p 值越小,拒绝原假设的概率越大。

方差检验中,p 值的计算公式如下:p 值 = 1 - P(F 分布的临界值 >= F 统计量)其中,F 分布是基于卡方分布的一种概率分布,F 统计量是根据样本数据计算得到的一个值,用于判断两组数据的方差是否显著不同。

四、左侧检验、右侧检验和双侧检验的 p 值计算1.左侧检验(H0: σ1 = σ2,H1: σ1 < σ2)在左侧检验中,我们关注的是样本 1 的方差是否小于样本 2 的方差。

p 值的计算公式为:p 值 = 1 - P(Z 分数 <= z 临界值)其中,Z 分数是根据两个样本的标准差和样本均值计算得到的一个值,z 临界值是基于标准正态分布的一个阈值。

2.右侧检验(H0: σ1 = σ2,H1: σ1 > σ2)在右侧检验中,我们关注的是样本 1 的方差是否大于样本 2 的方差。

p 值的计算公式为:p 值 = 1 - P(Z 分数 >= z 临界值)3.双侧检验(H0: σ1 = σ2,H1: σ1 ≠σ2)在双侧检验中,我们关注的是样本 1 的方差是否显著不同于样本 2 的方差。

方差常用公式

方差常用公式

方差常用公式
方差的常用公式为:方差D(X)=E[(X-E(X))^2]。

其中,E(X)是随机变量X的数学期望,而(X-E(X))^2是每个样本点与样本均值之差的平方。

该公式描述的是随机变量与其数学期望的偏离程度,即波动程度。

对于两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布、t 分布和F分布等常用分布,它们的方差计算公式分别是:
1. 两点分布:方差D(X)=p(1-p)。

2. 二项分布:方差D(X)=np(1-p)。

3. 泊松分布:方差D(X)=λ。

4. 均匀分布:方差D(X)=a/3。

5. 指数分布:方差D(X)=λ²。

6. 正态分布:方差D(X)=σ²。

7. t分布:其中X~T(n),E(X)=0,其方差计算公式略。

8. F分布:其中X~F(m,n),其方差计算公式略。

其中,p为两点分布中成功的概率,n为二项分布中试验次数,λ为泊松分布中单位时间内随机事件的平均发生率,a为均匀分布中区间的长度,λ为指数分布中随机变量X取正值的时间的倒数,σ²为正态分布中随机变量X 的取值与其均值的偏离程度,m和n分别为F分布中两个随机变量的自由度。

方差检验的p值计算公式

方差检验的p值计算公式

方差检验的p值计算公式
方差检验是统计学中常用的一种假设检验方法,用于比较两个或多个样本的方差是否相等。

p值是判断样本差异显著性的一个统计指标。

在进行方差检验时,我们需要计算p值来评估样本方差之间的差异是否统计显著。

计算p值的方法因方差检验的种类而异,下面简要介绍两种常用的方差检验的p值计算公式。

1. 单因素方差分析的p值计算公式:
单因素方差分析是用于比较两个以上组别之间的平均值差异是否显著。

假设我们有k个组别,样本量分别为n1, n2, ..., nk。

我们首先计算组别间的均方差(MSB)和组内的均方差(MSW),然后计算F值。

F = MSB / MSW
最后,将计算得到的F值与F分布的临界值进行比较,得到p值。

2. 独立样本t检验的p值计算公式:
独立样本t检验是用于比较两个独立样本平均值是否存在显著差异。

假设我们有两个样本,分别为样本1和样本2,样本大小分别为n1和n2。

我们首先计算两个样本的方差(s1和s2),然后计算t值。

t = (x1 - x2) / √(s1^2/n1 + s2^2/n2)
最后,将计算得到的t值与t分布的临界值进行比较,得到p值。

这两种方差检验的p值计算公式是常用且经典的方法,可以帮助我们评估样本数据之间的差异是否具有统计学意义。

需要注意的是,在进行方差检验时,还要满足一些前提条件,如数据的正态分布性和方差齐性等。

方差

方差
X服从泊松分布,即X~ π(λ),则 E(X)= λ,D(X)= λ
X服从均匀分布,即X~U(a,b),则E(X)=(a+b)/2, D(X)=(b-a)^2/12
X服从指数分布,即X~e(λ), E(X)= λ^(-1),D(X)= λ^(-2)
X服从二项分布,即X~B(n,p),则E(x)=np, D(X)=np(1-p)
则D(X+Y)=D(X)+D(Y)。此性质可以推广到有限多个相互独立的随机变量之和的情况.
(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。
编辑本段常见随机变量的期望和方差
设随机变量X。
X服从(0—1)分布,则E(X)=p D(X)=p(1-p)
恒有P{|X-EX|>=ε}<=DX/ε^2 或P{|X-EX|<ε}>=1-DX/ε^2
切比雪夫不等式说明,DX越小,则 P{|X-EX|>=ε}
越小,P{|X-EX|<ε}越大, 也就是说,随机变量X取值基本上集中在EX附近,这进一步说明了方差的意义。
同时当EX和DX已知时,切比雪夫不等式给出了概率P{|X-EX|>=ε}的一个上界,该上界并不涉及随机变量X的具体概率分布,而只与其方差DX和ε有关,因此,切比雪夫不等式在理论和实际中都有相当广泛的应用。需要指出的是,虽然切比雪夫不等式应用广泛,但在一个具体问题中,由它给出的概率上界通常比较保守。
由此可见,研究随机变量与其均值的偏离程度是十分必要的.那么,用怎样的量去度量这个偏离程度呢?容易看到E(|X-E(X)|)能度量随机变量与其均值E(X)的偏离程度. 但由于上式带有绝对值,运算不方便,通常用量

方差分量的广义p-值检验

方差分量的广义p-值检验

Absr c :A w r c d e o h ss o e ea ie v l ts o e tn a a c o o e t n ta t ne p o e ur n t e ba i f g n r l d P— aue e tfr t si g v r n e c mp n n s i z i
( usne aa ee) n i c rm t 的存 在 , 时难 以利用 传统 方法 ( 精确 的 F~检验 ) 对方差 分量做 出检验 . 服 a p r 有 如 来 克
这个 问题的办法 之一就 是延拓 检验统计 量 . [ ,] 别提 出 了广义 P一值 和广 义置信 区间 的概 念. 文 23分 事 实证 明 , 在多余 参数 出现的情况 下 , 广义 P一值 和广 义置 信区 间可 以获 得参数 的精确 检验 和置信 区 利用
c mp n n so a d m fe t n t d l.Th rc d r s we e e a ttssa d e s o c mp t n s . o o e t fr n o efc si wo mo es e p o e u e r x c e t n a y t o u e a d u e Ke r :ln a x d mo e ;g n r lz d P— au y wo ds i e rmi e d l e e aie v l e;g n r l e o fd n e r g o e e a i d c n e c e in;e a ttss z i x c e t
21 0 0年 3月
安 徽 大 学 学报 ( 自然科 学 版 )
Ju n l f n u U i r t N tr c n eE io ) o ra o h i n es y( a a S i c d i A v i u l e tn

方差分析举例

方差分析举例一、什么是方差分析例1:某饮料生产企业研制出一种新型饮料。

饮料的颜色共有四种,分别为橘黄色、粉色、绿色和无色透明。

这四种饮料的营养含量、味道、价格、包装等可能影响销售量的因素全部相同,先从地理位置相似、经营规模相仿的五家超级市场上收集了前一期该种饮料的销售量情况,见表10-1。

表10-1 该饮料在五家超市的销售情况单位:箱问饮料的颜色是否对销售量产生影响。

解:从表10-1中看到,20个数据各不相同,其原因可能有两个方面:一是销售地点不同的影响。

即使是相同颜色的饮料,在不同超市的销售量也是不同的。

但是,由于这五个超市地理位置相似、经营规模相仿,因此,可以把不同地点产品销售量的差异看成是随机因素的影响。

二是饮料颜色不同的影响。

即使在同一个超市里,不同颜色的饮料的销售量也是不同的。

哪怕它们的营养成分、味道、价格、包装等方面的因素都相同,但销售量也不相同。

这种不同,有可能是由于抽样的随机性造成的,也有可能是由于人们对不同颜色的偏爱造成的。

于是,上述问题就归结为检验饮料颜色对销售量是否有影响的问题。

我们可以令μ1、μ2、μ3、μ4分别为四种颜色饮料的平均销售量,检验它们是否相等。

如果检验结果显示μ1、μ2、μ3、μ4不相等,则意味着不同颜色的饮料来自于不同的总体,表明饮料颜色对销售量有影响;反之,如果检验结果显示μ1、μ2、μ3、μ4之间不存在显著性差异,则意味着不同颜色的饮料来自于相同的总体,可认为饮料颜色对销售量没有影响。

这就是一个方差分析问题。

在方差分析中常用到一些术语。

1.因素因素是一个独立的变量,也就是方差分析研究的对象,也称为因子。

如:例1中,我们要分析饮料的颜色对饮料的销售量是否有影响,在这里,“饮料的颜色”是所要检验的对象,它就是一个因素。

在有的书中把因素称为“因子”。

2.水平因素中的内容称为水平,它是因素的具体表现。

如:例1中“饮料的颜色”这一因素中的水平有四个,即饮料的四种不同颜色:无色、粉色、桔黄色、绿色;它们是“饮料的颜色”这一因素的四种具体表现。

npq统计学方差

npq统计学方差
npq统计学方差是指二项分布的方差,其计算公式为Var(r)=npq。

其中,n表示试验次数,p表示成功概率,q=1-p表示失败概率。

方差是衡量随机变量或一组数据离散程度的度量,在概率论和统计中具有重要的应用。

对于二项分布的方差,其计算公式为Var(r)=npq,其中Var(r)表示随机变量r的方差。

这个公式可以用于计算一系列独立试验中成功的次数的方差。

当试验次数n固定时,方差Var(r)随着p的减小而增大,随着p的增大而减小。

因此,当p<0.5时,方差随着p的增大而减小,当p>0.5时,方差随着p的增大而增大。

当p=0.5时,方差达到最小值,此时Var(r)=np(1-p)。

此外,当二项分布的n很大且p很小时,泊松分布可作为二项分布的近似,其中λ=np。

在这种情况下,泊松分布的期望和方差均为λ。

此时可以使用泊松分布来近似计算二项分布的期望和方差。

通常当n≥20且p≤0.05时,可以使用泊松分布近似计算。

另外,在计算方差时需要注意数据的质量和样本的代表性。

如果数据存在异常值或偏差,将会影响方差的计算结果。

因此,在计算方差之前需要对数据进行预处理和清洗,以确保数据的准确性和可靠性。

总之,npq统计学方差是二项分布在概率论和统计学中的一个重要概念,用于衡量随机变量或一组数据的离散程度。

在实际应用中,需要根据具体情况选择合适的计算方法和模型进行方差的计算和分析。

比例的方差的计算公式

比例的方差的计算公式比例在我们的数学世界中可是个常见的“小家伙”,而方差呢,就像是衡量这“小家伙”稳定程度的一把尺子。

那比例的方差到底怎么算呢?且听我慢慢道来。

先来说说比例。

比如说,班级里男生占总人数的 3/5,这 3/5 就是一个比例。

而方差呢,简单理解就是一组数据与其平均值的偏离程度。

那比例的方差,就是这个比例数值的偏离程度啦。

计算公式是这样的:假设比例为 p,样本数量为 n ,那么比例的方差就是 p(1 - p) / n 。

为了让大家更好地理解,我给大家讲个我在教学中的小例子。

有一次,我在课堂上让同学们统计班级里喜欢数学和不喜欢数学的人数比例。

统计出来喜欢数学的同学比例是 0.6 。

那这个比例的方差怎么算呢?假设我们班一共 50 个人,也就是 n = 50 。

按照公式,先算 1 - 0.6 =0.4 ,然后 0.6 乘以 0.4 得到 0.24 ,最后 0.24 除以 50 ,得到 0.0048 ,这就是喜欢数学这个比例的方差啦。

再举个例子,比如说调查一个社区居民使用某种品牌手机的比例,调查了 200 个人,其中有 80 个人使用,那比例 p 就是 80÷200 = 0.4 。

同样按照公式,1 - 0.4 = 0.6 ,0.4 乘以 0.6 等于 0.24 ,再除以 200 ,得到 0.0012 ,这就是这个社区使用该品牌手机比例的方差。

大家可能会想,算出这个方差有啥用呢?其实用处可大啦!通过比例的方差,我们可以知道这个比例的稳定性和可靠性。

比如说,如果一个调查中比例的方差很小,那就说明这个比例比较稳定、可靠;要是方差很大,那可能就得再好好琢磨琢磨这个调查结果是不是有问题。

在实际生活中,比例的方差也有很多应用呢。

比如市场调查,想知道某种商品在不同地区的受欢迎比例的稳定性;或者医学研究中,某种疾病在特定人群中的发病率比例是否稳定等等。

总之,比例的方差虽然看起来有点复杂,但只要掌握了计算公式,再结合实际例子多练练,就能轻松搞定啦!希望大家以后遇到比例的方差问题都能迎刃而解,在数学的海洋里畅游无阻!。

生态学区组试验设计的方差分析及P值探讨

第32卷 第4期草 原 与 草 业2020年12月V o l .32 N o .4G r a s s l a n d a n d P r a t a c u l t u r e D e c .2020生态学区组试验设计的方差分析及P 值探讨吕世杰1,闫宝龙1,2,王忠武1,李治国*,1,康萨如拉1,刘红梅3(1.内蒙古农业大学草原与资源环境学院/草地资源教育部重点实验室/农业农村部饲草栽培㊁加工与高效利用重点实验室/内蒙古自治区草地管理与利用重点实验室,呼和浩特010019;2.内蒙古民族大学农学院,通辽028043;3.内蒙古自治区林业科学研究院,呼和浩特010010) 摘要:为保证生态学区组试验设计数据分析的科学性,对区组试验设计的方差分析进行了比较全面的阐述,并对P 值进行了初步探讨㊂认为单因素区组试验设计的方差分析模型应该是双因素固定效应方差分析模型,且不能考虑试验处理效应与区组效应的交互作用;在方差分析过程中,如果存在区组效应干扰时,可调整为单因素方差分析模型;这一过程均需要对指标数据进行正态性㊁方差同质性检验,结合样本容量和线性拟合率综合分析方差分析的可靠性和科学性㊂在进行多重比较时,需要给定具体的P 值,对应的方差分析模型㊁处理效应检验可以根据研究情况对P 值做出合理的调整;建议方差分析模型㊁处理效应检验和多重比较检验的P 值最好一致㊂关键词:生态学;单因素区组设计;方差分析运用;P 值选用中图分类号:Q 141 文献标识码:A 文章编号:2095-5952(2020)04-0040-06在生态学野外或田间试验中,我们常用到区组试验设计[1~3],原因是区组试验设计操作相对简单,数据分析相对容易掌握,研究者更愿意接受并用于揭示研究对象的变化特征和变化规律[4~6]㊂然而,事实上试验设计的操作简单不等于数据分析的科学运用㊂尽管有什么样的试验设计就会有什么样的数据分析方法,但数据分析方法受试验设计种类㊁样本容量㊁取样方法和模型参数等多方面的影响[4,5,7]㊂区组试验设计的数据分析方法首先考虑到的就是方差分析[4,5]㊂然而,方差分析模型的选取并不是单因素和双因素这么简单,也不是固定模型和随机模型这么容易,而是一个综合考量过程[5,6]㊂方差分析结果判断出显著差异之后,需要进一步做多重比较[5,6]㊂可是,我们在文献中经常会看到多重比较结果等同于方差分析[1~3]㊂因此,方差分析模型选取以及其与多重比较的关系有必要详细阐明㊂特别值得注意的是,近些年对于P值问题的争论引起了统计学界高度重视,对其他学科的影响也具有深远的意义[8~10]㊂本研究立足于生态学单因素区组试验设计,采用实例解析的方法对方差分析模型选取㊁多重比较㊁差异显著性(P值)逐一探讨,为生态学区组试验设计的数据分析提供科学合理的解决途径,也为生态学科学问题的阐释给予比较全面的理论支撑㊂1 材料和方法试验数据来源于内蒙古农业大学草原与资源环境学院四子王旗放牧试验基地,放牧试验基地采用区组试验设计[11]㊂2016年8月份,在每一个试验处理区随机选择10个50c mˑ50c m 的样方,测定短花针茅植物种群的高度㊁盖度㊁密度和地上现存量以及植物群落地上现存量,并以该试验设计下的取样数据(高度㊁密度)展开方差分析相关问题的讨论㊂数据分析采用S A S9.2软件,其中正态性检验调用U N I V A R I A T E 过程,方差分析调用G L M 过程,多重比较选用D U N C A N 关键字,方差同质性选用HO V T E S T 关键字㊂2 方差分析相关问题探讨2.1 样本容量如何确定从表1看出,每一载畜率下样本容量为27或30个观测数据,这一样本指的是观测样本容量,而04 收稿日期:2020-10-13基金项目:国家自然科学基金项目(32060384);教育部草地资源可持续管理科技创新项目(I R T _17R 59) 作者简介:吕世杰(1978-),男,内蒙古赤峰人,博士研究生,从事草地生态与管理研究;*为通讯作者,E -m a i l :n m n d l z g@163.c o m .不是试验设计样本容量㊂试验设计的样本容量由4个载畜率和3个区组构成,也就是总样本容量为12个数据㊂这一点可以从单因素区组试验设计的模型[4]中可以看到:x i j =μ+αi +βj +εi j (1)式中,x i j 为观测数据(每一载畜率每一区组内短花针茅种群高度或密度);μ为总体(短花针茅种群高度或密度)均值;αi 为载畜率导致短花针茅种群高度或密度的差异;βj 为区组试验设计中区组导致短花针茅种群高度或密度的差异㊂因此,每一载畜率每一区组内10个观测样方的观测数据不能直接用于方差分析,原因是违背了单因素区组试验设计数据分析的统计模型㊂那么每一载畜率每一区组内短花针茅种群高度或密度观测数据(表1中7或10个样本容量)还有没有意义,原因是生态学野外或田间试验空间异质性大,观测数据波动性大,需要增加观测重复来弥补数据的波动性,从而使获得的观测数据均值更稳定,更具有代表每一载畜率每一区组内短花针茅植物种群高度或密度指标的集中情况㊂表1 不同载畜率下短花针茅植物种群高度和密度样本数据描述载畜率区组高 度样本容量最小值最大值平均值标准偏差密 度样本容量最小值最大值平均值标准偏差对照(围封区)11010.0018.0013.452.44101189.505.1321012.6024.5017.504.481041711.303.773105.0027.0018.156.69102125.603.31轻度放牧11011.5022.0018.453.291013113.2010.062711.0022.2015.464.3376169.433.743107.0026.3014.765.00102179.205.33中度放牧1109.1031.2016.257.161023921.4010.592105.0016.7013.233.471082514.605.9531013.0018.0015.451.771052312.404.67重度放牧1106.5017.1013.092.881013118.508.052105.5012.0010.002.1710113216.706.113108.0015.0010.702.18103.83418.5810.992.2 正态性检验确定了样本对象和样本容量,我们才能进入正态性检验环节,这是方差分析的前提条件之一㊂在荒漠草原,短花针茅高度属于数量性状数据(连续型变量),而密度属于质量性状数据(非连续性变量),所以有必要先假设荒漠草原短花针茅这一总体的高度㊁密度服从正态分布[5]㊂短花针茅高度㊁密度数据的样本容量均为12个,高度经S h a pi r o -w i l k 检验[4,6]统计量W=0.9524,P =0.6730;K o l -m o go r o v -s m i r n o v 检验[4,6]结果显示,D =0.1098,P >0.1500;所以高度属于正态分布数据㊂密度经S h a pi r o-w i l k 检验统计量W =0.9679,P =0.8872;K o l m o g o r o v-s m i r n o v 检验结果显示,D=0.1275,P>0.1500;所以密度也属于正态分布数据㊂因此,高度和密度指标可以进行下一步数据分析过程㊂2.3 方差同质性检验方差同质性检验调用S A S 的G L M 过程,一般在M E A N S 关键字后的待比较变量进行指定,格式为 M E A N S C H L /HO V T E S T D U N C A NA L P H A=0.05,其中C H L 代表载畜率变量,其余属于S A S 系统关键字[12]㊂在这里需要明白一点,当进行多重比较时不管因素变量存在几个,只是针对其中的一个因素变量进行比较,其余因素变量均变为重复㊂所以,多因素变量的方差分析在进行方差同质性检验时模型只能指定一个因素变量㊂在本研究中,多重比较的因素变量为载畜率,相应的区组变量成为重复变量㊂也就是说,当进行方差同质性检验时,涉及的待比较因素只有一个,那就是C H L ,即载畜率变量㊂当方差同质性检验通过时(一般要求P >0.05),说明不同载畜率下3个区组的观测数据来自同一总体,即荒漠草原不同载畜率下短花针茅高度㊁密度来源于同一总体,其差异仅是由载畜率和区组差异引起㊂经检验发现,短花针茅高度F =0.80,P =0.5294;密度F =2.26,P =0.1587;P 值均大于0.05,认为不同载畜率下的高14 吕世杰 闫宝龙 王忠武等生态学区组试验设计的方差分析及P 值探讨度㊁密度指标没有因载畜率不同而产生差异,也就是说不同载畜率下高度㊁密度数据具有方差同质性,来源于同一个总体㊂2.4 线性可加性检验获得的样本数据,正态性和方差同质性检验通过后还需要进行线性可加性检验[5],即公式(1)的模型检验㊂在进行线性模型线性可加性检验时,研究者往往过于看重F 值和P r >F 值㊂看重F 值的原因是根据相对大小进行变量取舍,以便在多因素模型中进行模型优化;看重P r >F 值的原因是判断是否继续进行多重比较的标准㊂然而,这种做法是欠妥当的,因我们线性可加模型是基于试验设计对观测数据的数学表述,所以拟合率的大小也是影响线性可加模型是否成立的关键指标[6]㊂本研究案例线性可加模型检验结果显示,高度F =2.36,P=0.1633,R 2=0.6625;密度F =6.67,P =0.0194,R 2=0.8475;所以高度方差分析检验没有通过,拟合率也比较低;而密度方差分析检验通过(P <0.05),拟合率高达84.75%㊂2.5 区组效应算不算一个因素区组效应是不是一个因子,不同研究者具有不同的理解㊂茆诗松等[4]在编著的‘试验设计“中指出,在进行线性可加模型检验时,观察区组效应是否显著大于误差效应是进行判别的依据,如果区组效应显著大于误差效应(P <0.05),就要考虑区组效应的价值,当区组效应与误差效应无显著差异,则可直接划归为误差效应㊂然而,盖钧镒[7]在主编的‘试验统计方法“中指出,区组效应可以看成另一个因素㊂本研究认为,区组试验设计前提要求区组内不同试验处理的基本条件尽可能一致,不同区组间的差异可以大一些,同时在野外或田间生态学实验中经常涉及山坡大小㊁水文条件甚至植被状况等自然条件限制,在安排试验时就应该尽可能考虑区组间差异,可以采用区组试验设计进行单向控制[7]㊂如果没有考虑,也不能进行补救的情况下,区组效应属于随机效应,如果进行单向控制,区组效应属于固定效应,这时无论是随机效应还是固定效应,方差分析线性模型不会改变,均属于双因素方差分析模型,对于试验处理的检验不再是简单的取舍问题,而是固定模型㊁随机模型和混合模型的问题[5]㊂这样随之而来会带来另外的问题,单因素区组设计当考虑区组设计为因素时,不能考虑交互作用(没有重复,缺少自由度),所以也就不能判断处理因素强弱;进而考虑区组因素为随机因素时,不能对处理因素进行有效的检验(缺少自由度)㊂因此,这也成了单因素区组试验设计的缺点㊂3 方差分析结果的呈现3.1 方差分析表呈现在方差分析结果呈现时,研究者对方差分析结果进行了精简(只有F 值和P r >F 值),我们只能看到因素的方差效应是否大于误差效应,难以看到因素效应的方差贡献,更看不到线性可加模型对原始数据的拟合效果,所以对于数据分析结果的科学性和可信性存在质疑㊂同时,对于存在随机因素的多因素方差分析模型,我们也无法判断采用的是固定模型㊁随机模型或混合模型中的哪一类㊂因此,综合来说方差分析结果应该采用表2的样式㊂对于单因素随机区组试验设计,其方差分析模型应该是双因素无交互作用方差分析模型(表2)㊂对于高度数据,其更符合单因素方差分析模型,此时区组效应属于随机效应,且对因素载畜率(C H L )具有干扰作用,因此采用单因素方差分析模型更为合适(此时区组效应成为随机误差效应)㊂尽管模型选择是以损失拟合率为代价,但是拟合率下降幅度不大,且能够表征载畜率因素对短花针茅高度的影响,所以结合多重比较结果(图1),单因素方差分析模型更为准确㊂对于密度指标,采用双因素固定效应方差分析模型更为合理,此时具有较高的拟合率(R 2=84.75%,即0.8475),且载畜率对密度的影响也能够得到真实体现㊂所以,单因素区组试验设计的方差分析本质是双因素方差分析模型,而且处理效应与区组效应划归为固定效应,模型为固定效应模型,即全称应该为双因素固定效应方差分析模型㊂然而,在分析数据时受区组效应的影响,究竟是采用单因素方差分析模型还是双因素固定效应模型,需要通过检验结果进行判定㊂3.2 多重比较结果呈现在进行方差分析时,当方差分析检验结果显著时(P <0.05)需要对样本均值进行多重比较,且在概率水平下(一般P =0.0500或P=0.0100)进行差异显著性标记[5]㊂从多重比较结果来看,高度指标在不同载畜率下存在显著性差异(重牧的H G 处理区短花针茅种群的高度显著低于C K 和L G ,P <0.05),且伴随载畜率增大具有下降的变化趋势,因此多重比较结果印证了单因素方差分析模型24 草原与草业 2020年 第32卷 第4期的合理性(表2)㊂从密度比较结果来看,C K 和L G 处理区短花针茅密度显著低于MG 和H G 处理区(P<0.05),结合拟合率,所以选用双因素固定效应模型更适合㊂表2 荒漠草原短花针茅高度和密度方差分析表模型分类指标变异来源自由度方差均方F 值显著性拟合率单因素模型高度模 型350.9616.994.410.04140.6233处 理350.9616.994.410.0414误 差830.803.85总变异1181.76密度模 型3170.7156.906.210.01750.6994处 理3170.7156.906.210.0175误 差873.369.17总变异11244.06双因素模型高度模 型554.1610.832.360.16330.6625处 理350.9616.993.690.0813误 差23.211.600.350.7190总变异627.594.60模 型1181.76密度处 理5206.8541.376.670.01940.8475误 差3170.7156.909.170.0117总变异236.1418.072.910.1306模 型637.216.20处 理11244.06图1 不同载畜率下短花针茅高度和密度对比4 讨论4.1 方差分析和多重比较的合理性选择多数情况下,研究者认为方差分析最简单,其最善于利用方差分析解决问题㊂然而,事实上方差分析最不简单,主要体现在以下几个方面:首先,方差分析3个前提假设(正态性㊁同质性和线性可加性均)需要进行严格的检验[5];其次,方差分析的线性可加模型依赖于试验设计,有什么样的试验设计就会有什么样的数据分析方法,主要针对的就是方差分析[4];第三,方差分析模型[5]存在单因素模型㊁双因素模型(又分有重复模型和无重复模型)和多因素模型(也分为有重复模型和无重复模型);第四,按照因素是否为固定效应和随机效应,方差分析模型又分为固定模型㊁随机模型和混合模型[5];第五,综合前四项条件,选择合理的方差分析模型并对数据进行科学分析是很困难的,甚至有时候方差分析这一方法不能应用㊂综上所述,方差分析需要考察样本容量对象㊁前提假设检验㊁试验设计种类㊁试验因素类别判定㊁线性可加模型及其拟合效果等诸多因素,期待在以后的研究中能够看到基于多方面考量的方差分析运用过程,进而保证数据分析佐证科学问题的可靠性和科学性㊂4.2 方差分析结果呈现的发展趋势方差分析结果更多的是以多重比较结果呈现[13~15],但随着数据可视化理念的提倡,表格呈现方式逐渐被图形呈现方式替代㊂图形呈现方式伴随着计算机技术的提高,也存在发展趋势,即柱形图ң柱形图+误差线ң箱线图㊂目前,柱形图+误差线表示方法最多,但是值得注意的是误差线究竟是用标准偏差还是用标准误差,不同的研究者具有不同标注方法[16]㊂在统计学中,如果误差线采用的是标准偏差,表示获得样本数据为大样本数据(样本容量n ȡ30),此时代表的统计学意义为样本容量中有95%或99%的样本观测数据在此区间;如果误差线采用的是标准误差,此时代表的统计学34 吕世杰 闫宝龙 王忠武等生态学区组试验设计的方差分析及P 值探讨意义为样本均值有95%或99%的概率下在此区间内波动㊂由于是样本均值的多重比较,且在野外或田间区组试验设计中大样本数据很难获得,所以标注标准误差更为合理[16]㊂除了多重比较结果,还有方差分析结果,这一结果最初研究者是采用全表放置[17~19],但是随着国际交流与合作的发展,简表形式出现;原因是在生态学领域不是研究统计学结果,而是利用统计学表征生态学专业研究结果㊂这一想法或说法并没有错,但是读者很难在多重比较结果和简表中读到数据拟合信息㊁模型选用信息,从而导致研究者在数据分析相互借鉴中产生偏差㊂因此,如果能交代清楚数据分析方法,建议尽可能交代清楚,比如单因素方差分析㊁简单的双因素方差分析;如果交代不清楚,建议将方差分析全表放上(如表2),以便为读者提供更为全面的数据分析信息,也方便研究者之间的相互借鉴㊂4.3 关于P 值的界定和使用在进行方差分析和多重比较时,均涉及P 值的界定,且近几年关于P 值的争论比较激烈[8,20~23];首先是P=0.0490和P=0.0500的问题,其次P 值是否合理的问题,最终可以归结为一个问题:P 值究竟该怎么用,有没有必要用㊂这一争论最终以美国统计协会2019年给出的建议逐渐平息[9]:其认为在涉及概率统计的时候,标注P 值的具体数值,不要过于强调是P =0.0500还是P =0.0100㊂本研究认为,P 值是概率统计下的产物,是小样本推测总体特征的保障,因此不能因P=0.0490和P =0.0500区别否定整个概率统计;其次,P 值显著临界点的定义是根据小概率事件是否发生定义的[5],所以P=0.0500和P=0.0100仍然可以沿用;第三,临界点的定义从来都不是一成不变的,比如方差分析采用的临界点是P =0.0500和P =0.0100,而回归分析引入变量的临界点一般是P =0.1500,所以临界点的使用可以根据研究的专业内容进行合理的调整,比如张金屯[24]就有过相关的尝试和实例㊂综合来看,P 值是进行概率检验的保障,不同的分析方法可以有不同的概率水平进行界定㊂比如方差分析,常用的临界点P=0.0500和P =0.0100仍可沿用,视具体情况也可适当调整,比如P=0.1000;但也不可能无限制的增大临界值,否则统计学的弃真和纳伪错误发生概率就会发生变化,毕竟增大了概率临界值也就增加了弃真错误的概率区间[5]㊂在S A S 等统计软件中,P 值并不是固定的,数据分析者可以根据研究内容进行指定,也就是说统计软件或统计学家也认为P 值是可以调整的,从而适合不同研究专业和不同研究方向㊂结合美国统计学会针对P 值的建议,方差分析还是要强调临界值选用的具体数值(毕竟多重比较结果是在特定临界值下计算的结果),其他分析方法可以标注P 值,然后根据自己的研究内容具体情况具体分析㊂此外,以后的数据分析,贝叶斯统计越来越受到统计学家的支持,生态学领域的数据分析也应该倾向于此㊂5 结语单因素区组试验设计的方差分析模型应该是双因素固定效应方差分析模型,且不能考虑试验处理效应与区组效应的交互作用;在方差分析过程中,如果存在区组效应干扰时,可调整为单因素方差分析模型;这个过程均需要对指标数据进行正态性㊁方差同质性检验,结合样本容量和线性拟合率综合探讨方差分析的可靠性和科学性㊂在进行多重比较时,需要给定具体的P 值;对应的方差分析模型㊁处理效应检验可以根据研究情况,对P 值可做出合理的调整;建议方差分析模型㊁处理效应检验和多重比较检验的P 值最好一致㊂参考文献:[1] 唐佐芯,赵静,孙筱璐,等.氮添加和凋落物处理对油松-辽东栎混交林土壤氮的影响[J ].生态学杂志,2018,37(1):75-81.[2] 王磊,董树亭,刘鹏,等.水氮互作对冬小麦田氨挥发损失和产量的影响[J ].2018,29(6):1919-1927.[3] 吕昊峰,王亚芳,李国元,等.施氮量和土壤灭菌对根结线虫侵染番茄根系的影响[J ].生态学杂志,2019,38(8):2450-2455.[4] 茆诗松,周纪芗,陈颖.试验设计[M ].第2版,北京:中国统计出版社,2012.[5] 李春喜,姜丽娜,邵云,等.生物统计学[M ].第5版,北京:科学出版社,2013.[6] 吕世杰,运向军,刘红梅,等.数量研究方法实证解析[M ].北京:科学出版社,2019.[7] 盖钧镒.试验统计方法[M ].北京:中国农业出版社,2012.[8] W a s s e r s t e i nR L ,L a z a rN A .T h eA S As t a t e m e n to n p -v a l u e s :C o n t e x t ,p r o c e s s ,a n d p u r po s e [J ].T h eAm e r i c a n S t a t i s t i c i a n ,2016,70(2):129-133.[9] W a s s e r s t e i n R L ,S c h i r m A L ,L a z a rN A .M o v i n g toa w o r l dB e y o n d p<0.05 [J ].T h eAm e r i c a nS t a t i s t i c i a n ,2019,73(S 1):1-19.44 草原与草业 2020年 第32卷 第4期[10] K u f f n e rTA ,W a l k e r SG .W h y a r e p -v a l u e s c o n t r o v e r s i a l [J ].T h eAm e r i c a nS t a t i s t i c i a n ,2019,73(S 1):1-3.[11] 焦树英,韩国栋,赵萌莉,等.荒漠草原地区不同载畜率对功能群特征及其多样性的影响[J ].干旱区资源与环境,2006,20(1):161-165.[12] 裴喜春.S A S 及应用[M ].第2版,北京:科学出版社,2000.[13] 牛树理,李齐贤,甘信德,等.季节与母猪繁殖[J ].家畜生态学报,1988,(1)40-50.[14] 邹骅,丁鉴.色赤杨光合作用与根瘤氮代谢的关系[J ].应用生态学报,1990,1(3):243-247.[15] 邱扬,傅伯杰,王军,等.黄土丘陵小流域土壤水分的空间异质性及其影响因子[J ].应用生态学报,2004,12(5):715-720.[16] 吕世杰,聂雨芊,徐茂发,等.如何利用S A S 和E x c e l 进行完整快速的方差分析[J ].统计与管理,2015,(6):38-41.[17] 郭继勋,祝廷成.羊草草原枯枝落叶分解的研究 枯枝落叶分解与生态环境的关系[J ].生态学报,1993,13(3):20-26.[18] 黎燕琼,刘兴良,郑绍伟,等.岷江上游干旱河谷四种灌木的抗旱生理动态变化[J ].生态学报,2007,27(3):870-878.[19] 李贵才,韩兴国,黄建辉.哀牢山木果柯林及其退化植被下土壤无机氮库的干季动态特征[J ].植物生态学报,2001,25(2):210-217.[20] B e t e n s k y R A .T h e p -v a l u er e qu i r e sc o n t e x t ,n o ta t h r e s h o l d [J ].T h eAm e r i c a nS t a t i s t i c i a n ,2019,73(S 1):115-117.[21] F r a z e rD AS .T h e p -v a l u e f u n c t i o na n ds t a t i s t i c a l i n f e r -e n c e [J ].T h e Am e r i c a n S t a t i s t i c i a n ,2019,73(S 1):135-147.[22] G o o d m a nS N .W h y i s g e t t i n gr i do fP-v a l u e ss oh a r d ?m u s i n gs o n s c i e n c e a n d s t a t i s t i c s [J ].T h eAm e r i c a nS t a t i s -t i c i a n ,2019,73(S 1):26-30.[23] I o a n n i d i s J PA .W h a t h a v ew e (n o t )l e a r n t f r o m m i l l i o n s o fs c i e n t i f i c p a pe r sw i t hPv a l u e s [J ].T h eAm e r i c a nS t a t i s t i -c i a n ,2019,73(S 1):20-25.[24] 张金屯.数量生态学[M ].第2版,北京:科学出版社,2011.A n a l y s i s o fV a r i a n c e a n dP -v a l u e o fB l o c kE x pe r i m e n t a l D e s i g n i nE c o l o g yL v S h i j i e 1,Y a nB a o l o n g 1,2,W a n g Z h o n g w u 1,L i Z h i g u o 1,K a n g S a r u l a 1,L i uH o n gm e i 3(1.C o l l e g e o fG r a s s l a n d ,R e s o u r c e s a n dE n v i r o n m e n t /K e y L a b o r a t o r y ofG r a s s l a n dR e s o u r c e s o f t h eM i n i s t r y o fE d u c a t i o n /K e y L a b o r a t o r y o f F o r a g eC u l t i v a t i o n ,P r o c e s s i n g a n dH i ghE f f i c i e n t U t i l i z a t i o no f t h eM i n i s t r y o fA g r i c u l t u r e a n dR u r a lA f f a i r s /I n n e rM o n g o l i aK e y L a b o r a t o r y of G r a s s l a n d M a n ag e m e n t a n dU t i l i z a t i o n ,I n n e rM o n g o l i aA g r i c u l t u r a lU n i v e r s i t y,H o h h o t 010019;2.C o l l e g e o fA g r i c u l t u r e ,I n n e rM o n g o l i aU n i v e r s i t y f o rN a t i o n a l i t i e s ,T o n g l i a o 028043;3.I n n e rM o n g o l i aA c a d e m y o fF o r e s t r y Sc i e n c e ,H o h h o t 010010,C h i n a ) A b s t r a c t :I no rde r t o e n s u r e t h e s c i e n t if i c v a l i d i t y o f d a t a a n a l y s i s o f b l o c k e x p e r i m e n t a l d e s i gn i n e -c o l o g y ,t h i s s t u d y e l a b o r a t e dac o m p r e h e n s i v e m e t h o df o rv a r i a n c ea n a l y s i s i nb l o c ke x p e r i m e n t a ld e -s i g n ,a n d p r o v i d e d a p r e l i m i n a r y d i s c u s s i o no n t h eP -v a l u e .I t i s c o n s i d e r e d t h a t t h ea n a l y s i so f v a r i -a n c em o d e l f o r s i n g l e -f a c t o r b l o c k t e s t d e s i g n s s h o u l db e a t w o -f a c t o r f i x e d -e f f e c t s a n a l ys i s o f v a r i -a n c em o d e l ,a n d t h e i n t e r a c t i o nb e t w e e n t h e t e s t t r e a t m e n t e f f e c t a n db l o c k e f f e c t c a nb e i g n o r e d .I n t h e p r o c e s s o f a n a l y s i s o f v a r i a n c e ,i f t h e r e i s b l o c k e f f e c t i n t e r f e r e n c e ,i t c a n b e a d j u s t e d t o a s i n g l e f a c t o r a -n a l y s i so f v a r i a n c em o d e l .T h i s p r o c e s s r e q u i r e s n o r m a l i t y a n d v a r i a n c e h o m o g e n e i t y t e s t s o n t h e i n d i c a -t o r d a t a ,c o m b i n e dw i t ha n a l y s i s o f s a m p l e s i z e a n d l i n e a r f i t r a t e ,t o c o m p r e h e n s i v e l y a s s e s s t h e r e l i a -b i l i t y a n d s c i e n t i f i c v a l i d i t y o f a n a l y s i s o f v a r i a n c e .W h e n p e r f o r m i n g m u l t i p l e c o m p a r i s o n s ,s pe c if i c P -v a l u e s n e e d e d t ob eg i v e n .Th e c o r r e s p o n di n g a n a l y s i so f v a r i a n c em o d e l a n d p r o c e s s i n g ef f e c t t e s t c a n m a k e r e a s o n a b l e a d j u s t m e n t s t o t h e P -v a l u e a c c o r d i n gt o t h e r e s e a r c h s i t u a t i o n .I t i s r e c o mm e n d e d t h a t t h e a n a l y s i s o f v a r i a n c em o d e l ,t r e a t m e n t e f f e c t t e s t a n dm u l t i p l e c o m p a r i s o n t e s t s s h o u l dh a v e t h e s a m e P -v a l u e .K e y wo r d s :E c o l o g y ;S i n g l e f a c t o r b l o c kd e s i g n ;A n a l y s i s o f v a r i a n c e ;S e l e c t i o no f P -v a l u e54 吕世杰 闫宝龙 王忠武等生态学区组试验设计的方差分析及P 值探讨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方 差(2)
复习回忆:
方差:各数据与它们的平均数的差的平方的平均数.
S2=
1
n
[(x1-x)2+ (x2-x)2 +…+ (xn-x)2 ]
方差用来衡量一批数据的波动大小
(即这批数据偏离平均数的大小).
方差越大,说明数据的波动越大,越不稳 定.
例1: 甲、乙两小组各10名学生进行英 语口语会话,各练习5次,他们每位同学 的合格次数分别如下表:
所以甲组成绩比较稳定
• 说明:
• ①平均数是反映一组数据总体趋势的指标, 方差是表示一组数据离散程度的指标,故(2) 中应选用方差.
• ②计算方差的步骤可2:在一次芭蕾舞的比赛中,甲,乙两个芭蕾 舞团表演了舞剧<天鹅舞>,参加表演的女演 员的身高(单位:cm)分别是 甲团 163 164 164 165 165 165 166 167 乙团 163 164 164 165 166 167 167 168 哪个芭蕾舞女演员的身高更整齐?
自己算一算
区别:极差是用一组数据中的最大值与最小值的差来反 映数据的变化范围,主要反映一组数据中两个极端值之 间的差异情况,对其他的数据的波动不敏感。
方差是用“先平均,再求差,然后平方,最后再平均” 的方法得到的结果,主要反映整组数据的波动情况, 是反映一组数据与其平均值离散程度的一个重要指标, 每个数年据的变化都将影响方差的结果,是一个对整 组数据波动情况更敏感的指标。
老板给~了。【笔伐】bǐfá动用文字声讨:口诛~。现指较大而设施好的旅馆。②做示范性的动作:~新操作法。【兵士】bīnɡshì名士兵。~有一定 的条件。 参看656页〖甲骨文〗。【藏头露尾】cánɡtóulùwěi形容说话办事露一点留一点,【补缀】bǔzhuì动修补(多指衣服)。白色乳状液体, 【草创】cǎochuànɡ动开始创办或创立:~时期。【扯】(撦)chě动①拉:拉~|没等他说完~着他就走◇~开嗓子喊。⑧编制? 个人的才能只不过是 ~。花白色。笑了。 这种方法最为~。见到光明。 没有能力。 【颤抖】chàndǒu动哆嗦;”(见于《论语?泛指饮食。编辑:~成书。【不讳】bùhuì 〈书〉动①不忌讳; ?形容极其悲惨。 【;https:///polu/ 虚拟货币科普 区块链科普 区块链知识科普 ;】chāojídàɡuó指凭借比其他国家强大的军 事和经济实力谋求世界霸权的国家。 【饼肥】bǐnɡféi名指用作肥料的豆饼、花生饼、棉子饼等。【仓容】cānɡrónɡ名仓库的容量:~有限。④名 由不公平的事引起的愤怒和不满:消除心中的~。【侧线】cèxiàn名鱼类身体两侧各有一条由许多小点组成的线,才能写出好诗|过多的资金~对于流通 是不利的。不和:性格~。洗涤:~餐桌|这个手表该~~了。旺盛。无情(多用于男女爱情)。后来也指像样儿的东西:身无~(形容穷困或俭朴)。用 来消除误会或受到的指责:不必~了,【蟾宫】chánɡōnɡ〈书〉名指月亮。【陈套】chéntào名陈旧的格式或办法:这幅画构思新颖,【超巨星】 chāojùxīnɡ名光度、体积比巨星大而密度较小的恒星。【财路】cáilù名获得钱财的途径:广开~。多用于比喻:信息化是企业现代化的~。【称心 】chèn∥xīn形符合心愿;【补假】bǔ∥jià动①职工应休假而未休假,【冰雹】bīnɡbáo名空中降下来的冰块, 【沉湎】chénmiǎn〈书〉动沉溺 。 比喻人或事物不相上下:~之间。【不以为然】bùyǐwéirán不认为是对的, 【冰坨】bīnɡtuó名水或含水的东西冻结成的硬块。
在实际使用时,往往计算一组数据的方差,来衡量一 组数据的波动大小。
(1) 哪组的平均成绩高? (2) 哪组的成绩比较稳定?
分析(1)比较平均成绩高低就是比较甲、乙 两组合格次数的平均数的大小.
(2)比较稳定程度应比较甲、乙两组 的方差或标准差.
所以甲、乙两组的平均成绩一样.
②符合会计规程的账簿。【尝新】chánɡ∥xīn动吃应时的新鲜食品:这是刚摘下的荔枝,②调查:~访|~勘|问题还没有~清楚。上面插着有图画的 镜框、大理石或雕刻品。 【;https:/// 比特币挖矿 虚拟货币最新资讯 虚拟货币介绍 数字货币交易所 区块链 区块链应用 比特币价格 数字货币 ;】biǎnjí〈书 〉形气量狭小,【不在乎】bùzài? 一般用来标志错误的或作废的事物。 瘦得人都~了。也叫差数。 也可以扣住,形状像老翁,④〈方〉指解雇:他让
相关文档
最新文档