在数学教学中要进行发散思维的训练
小学数学教学中提高思维能力的措施

小学数学教学中提高思维能力的措施小学数学教学中,提高学生思维能力是非常重要的,可以通过以下几种措施来帮助学生提高思维能力。
1. 激发学生对数学的兴趣:教师可以通过设计有趣的数学问题、游戏和挑战,激发学生对数学的兴趣,让学生主动参与数学学习。
2. 培养学生的观察力和想象力:在教学中,可以通过图形、模型、实物等多种形式让学生观察,并引导学生进行想象、推理、类比等思维活动,培养学生的观察力和想象力。
3. 引导学生发散思维:教师可以提供一道数学问题,鼓励学生提出多种解法和思路,展开讨论,培养学生的发散思维能力。
教师也可以设计一些拓展题目,让学生在解决问题的过程中思考更多的可能性。
4. 培养学生的逻辑思维:在教学中,可以使用逻辑推理、排除法等方法,引导学生进行思考、分析和判断,培养学生的逻辑思维能力。
教师可以设计一些逻辑谜题,让学生推理出正确的答案。
5. 引导学生解决实际问题:在数学教学中,可以引导学生将所学的知识应用到实际问题中,培养学生的问题解决能力。
通过解决实际问题,学生可以锻炼自己的思维和分析能力。
6. 提供多样化的学习方式:针对不同的学生,可以通过多样化的学习方式来激发学生的思维能力。
教师可以采用小组合作学习、讨论辩论等方式,让学生在合作中相互启发,激发思维的火花。
7. 鼓励学生提出问题:在教学中,鼓励学生提出问题,培养学生的探究精神和思考能力。
教师可以引导学生提出问题,并给予适当的引导,帮助学生解决问题。
8. 提供适当的挑战:教师可以针对学生不同的能力水平,提供适当的挑战,激发学生的思维能力。
通过挑战,学生可以锻炼自己的解决问题的能力,并不断提高自己的思维水平。
通过以上措施,可以帮助学生在小学阶段提高数学思维能力。
教师也应关注学生的个体差异,根据学生的差异特点,采取相应的教学方法,帮助学生更好地发展自己的思维能力。
谈数学教学中学生发散性思维能力的培养

学生的好奇心及激发其求 知欲。当学生运 用发散性思
维方式从不 同方面探求解答 问题 的不 同的正确方法 , 即
使在学生思路不正确或思维卡壳时 ,教师也不应嘲笑 、 挖苦 , 挫伤学生 自尊心 , 而应 耐心地 引导学生 找到正确 的思路 。 总之 , 当学 生的好奇心 、 求知欲得到鼓励或赞扬 时, 其探索精神和行动 向着 积极 的方 向发展 , 之则会 反 抑制学 生思维的灵活性 , 使其丧失 自信心 , 培养发 散性
多种设想或答案的思维方式 , 是创造性思维中一种极 为 重要的思维形式 , 也是测定创造力的重要标志之一 。中 学 阶段 , 培养学生 的创造力主要是通过 培养发散性思维
能力来 实现的。既然发散性思维能 力的培养 和训 练对 学生的成长极为重要 , 那么教师在教学 实践 中应如何培 养学生的发散性思维能力呢?
性思维将产生积极作用 , 因此可练就学生开拓创新 的 并 创造精神 。在进行这样 的训练过程 中, 教师应该 注意的
是, 当学生思维积极性 已充分调动起来并 找到了正确 的 思维方 向后 , 教师不必过多启发 , 要适 时点拨 , 引导学生
维能力 和辐合性思 维能力都会在热烈 的课 堂讨论 中得 到发展和提高。
发散性思维是 指面对 问题沿着多方 向思考 , 产生 出
件、 背景 , 而迅速地对每一个方案分别 进行论证或 顺利 试验 , 而选择 出最佳 的解决问题 的方案 。这一过程 的 从 前段 主要运用 的是发散性思维 , 而后段运用的则 , 或者思考不充
好奇心 、 求知欲 、 自信 心与创造力 的发展密切相关 、
互相制约 。发散性思维 的培养和发展 同样 离不开保 护
辐合性 思维二者之间的关系是相辅相 成 ,二者缺一 不 可 , 种思维能力都必须注 意培养 和训 练 , 这两 并且应 时
浅谈数学教学中发散思维能力的培养

性, 激发学生 的求知欲望 , 拓宽解题思路 , 培养发散性思维 能力有重要 的意义 。同时 , 通过多种解法的 比较 、 鉴别 、 讨 论, 使学生明确 哪种解法是本质的最好的, 挖掘 出解题思想
能力 的培 养 , 得 尤 为 重要 。 显
—
例 2 1 ab c AA C的三边且满足 a+ 2c a :. , , 是 若 B 2b+ 2 b -
b —c =O. c a
求证 : B AA C是 等边三角形。
这是一道常见的数学问题 。 应用配方法和非负数的性
质 可证 。
若把例子 中的条件 a+ 2c a — c c- 2b+ 2 b b—a 0的两边 同乘 - -
20 0 9年 第 8期
素 质 教 育。
浅谈 数 学教 学 中发 散 思维 能 力 的培 养
杨 圣球
创造性思维是创 造力形成 的支柱 , 而发散思维又是创 造性思维 的重要组成部分 。美 国心理学家吉尔福特认为 : “ 创造力发展的主要标志是发散思维 的发展水平 。” 因此 , 在教学 中加强发散思维能力的训练 , 是培养创造性思维的 重要环节 。数学教学是数学思维活动的教学 , 尤其是创造 性思维 的教学。因此 , 在数学教学 中加强对学生发散思维
4 .若 A、 B LC是 AA C 的 三 个 内 角 ,且 满 足 、 B s 2+i B s Z—iA iB s CiB s A i = , 求 证 : i A s + i C s s — i s — i s C 0 n n n n n n n n n AA C是 等 边 三 角 形 。 B
于提 高解 题 速 度 。
数学教学中学生发散思维能力的培养

弃它 。 实 判 断 题 隐含 着 基 本 的数 学 思 想 和 数学 规 律 确 结 论 其 正
的得 到 , 运 用 所 掌 握 的 知 识 进 行 推理 或 运 算 等 , 不仅 能拓 展 要 这
那 么 , 何 培 养 学 生 的 发散 思维 能 力 呢 ? 合 新 课 改 北 师 大 如 结 版 教 材 的 教 学 , 总 结 了 以下 一 些 渠 道和 方 法 : 我
僵 化 。 时 , 多 老 师 只 是 口 口声 声 要求 学生 做 题 目要 举 一 反三 平 很
常 。 学 教 学 以 集 中 思 维 为 主要 思维 方 式 , 数 学 学 习 中 集 中 思 数 在
甚 至 责 怪 他 们 , 没 有 一 些 相 关 的 措施 , 是 不 行 的 。 学 习 的过 却 这
题:
() 1 一7的 平方 根 是 4 9; ( ) 9的平 方是 ± 24 7;
B
c ( 1 图 )
aA BC 中 , AB 和 ACB C
() 4 3 一 9的 平 方根 是± ; 7
( )( 7 2 有 平 方 根 : 4 ± )没
的 平 分 线 交 于 。 点 , 。 点 过
教学 。
、
题 多 问 , 于 善
A
举 一 反 三
同一道题 , 样 的条件 , 同 从 不 同 的 角 度 出 发 ,可 以提 出不 同 的 问题 。例 如 , 一 道 有 这 样 的 题 目: 如 图 1 ,在
例 如 ,在 学 完 平 方 根 的 概念 以 后 ,我 设计 了如 下 几 道 判 断
散 思 维 能 力 的 目的 。
思 维 往 往 在 教 学 中 容 易被 忽 视 。 实 上 , 散 性 思维 可 以 帮助 学 事 发
数学教学中发散思维的培养

数学教学中发散思维的培养【摘要】:要能改变已习惯了的思维定向,从而多方位多角度,即从新的思维角度去思考问题,以求得问题的解决,这样也就是思维的求异性。
【关键词】:积极思考探知思维积极开展现代社会需要全面型人才,要求学生能够全方位地思考问题,因而要从小注重对学生发散思维的训练。
思维的积极性、求异性、广阔性、联想性等是发散思维的特性,要求教师在数学教学中要有意识地抓住这些特殊性进行训练与培养,既可提高学生的发散思维能力,又是提高小学数学教学质量的重要一环。
一、激发求知欲,训练思维的积极性在教学中,教师要激起学生强烈的学习兴趣和对知识的渴求,使他们能带着一种高涨的情绪从事学习和思考。
例如在五年级《分数乘法应用题》一课中,我出事了“甲乙两班共有学生109人,甲班男生占6/11,乙班女生占4/9,两班的男生共有多少人?”两班各有多少人不知道,按照常规的解法是无法解决的,如果帮助学生分析矛盾的特殊性,即甲班人数一定是11的倍数,乙班的人数一定是9的倍数就能用排列的方法得出109=55+54。
这样54×(1-4/9)+55×6/11=60(人)。
这样的训练能有效地激发了学生寻求新方法的积极情绪。
我们在数学教学中还经常利用“障碍性引入”、“冲突性引入”、“问题性引入”、“趣味性引入”等,以激发学生对新知识、新方法的探知思维活动,这将有利于激发学生的学习动机和求知欲。
在学生不断的解决知与不知的矛盾过程中,还要善于引导他们一环接一环地发现问题、思考问题、解决问题。
例如,在学习“角”的认识时,学生列举了生活中见过的角,当提到墙角时出现了不同的看法。
到底如何认识呢?我让学生带着这个“谜”学完了角的概念后,再来讨论认识墙角的“角”可以从几方向来看,从而是学生的学习情绪在获得新知中始终处于兴奋状态,这样有利与思维活动的积极开展与深入探求。
二、转换角度思考,训练思维的求异性发展思维活动的展开,其重要的一点是要能改变已习惯了的思维定向,从而多方位多角度,即从新的思维角度去思考问题,以求得问题的解决,这样也就是思维的求异性。
浅议数学课堂教学中如何培养学生的发散思维能力

浅议数学课堂教学中如何培养学生的发散思维能力◆艾志勇(重庆市彭水苗族土家族自治县桑柘镇中心校)【摘要】作为一名优秀的教师,在教学工作中一定要擅长设立问题的情境,从而引导学生,使学生产生针对同一问题会产生不同解决方法的意识,这样就会达到培养增强学生发散思维的能力。
对于学生在思考过程期间所出现的新方法、新思路,一定要给予表扬及肯定,使学生感受到自己创新思维的价值。
当学生在思考新方法、新思路中遇到问题的时候,教师一定要有充分的耐心诱导、点拨学生,帮助学生获得最终的成功。
通过这种方式,使他们逐渐形成新思路、新方法、新思维的求新意识。
就如何在数学课堂教学中培养学生的发散思维能力做探讨。
【关键词】数学课堂教学发散思维能力策略数学这门学科需要培养学生的创新能力和创造性的思维,才可以开发出学生的发散思维,使学生逐渐形成独立思考以及创新能力。
一般传统的数学教学都是以集中思维作为主要思维方式,书本上的内容基本都呈现一种模式,学生更是已经习惯按照教师所传授的书本上的内容去思考问题,解决问题也都是按照教师所教的普通常规的方式去解决,这些内容对于需要掌握的基础知识和技能是很有必要的,但是对于提升学生数学学科兴趣的提升和发展,特别是具有创造性发散思维的发展,显然差得很多。
发散思维反映了创造性思维“新思路、新方法、新思维多种解决问题”的特点,所以成为了创造性思维的一种形式。
小学数学教学中,既要培养学生的逻辑思维能力,更要培养学生的发散思维。
一、发散思维在数学课堂教学中的重要性美国心理学家吉尔福特认为,发散思维是从给定的信息中心产生信息,其重点是从同一来源中产生各种各样的为数众多的输出,可能会发出转换作用。
发散思维对问题从不同的角度进行探索,从不同的层面进行分析、比较,从而开阔学生的视野,使其思维活跃,产生独特的新思想。
青少年的孩子年龄教小,在上课期间注意力很难长时间集中,但思维却是十分的活跃。
若想有效培养学生发散思维,需要激发学生的学习兴趣与积极性,联合生活中的实际现象,引导学生从不同的角度分析问题,促进学生的思维发展,让学生主动地去思考、解题、总结,只有这样,才会使学生思维越来越灵活。
在初中数学教学中注重培养学生发散思维的训练

在初中数学教学中注重培养学生发散思维的训练创造是一个民族进步的灵魂,是国家兴旺发达的不竭动力。
培养学生的创新意识是实施素质教育的重要内涵,更是中小学生教育改革的方向。
我们中小学数学教师应如何根据学生的年龄特征和教材的具体特点,保护学生的探索精神,激发学生的创造性思维,培养学生的创新能力呢?数学是思维的体操,是培养学生的创新意识的重要课程,在中小学数学教学中培养学生的创新意识,对于我们教育工作者来说,为使我们培养的学生善于学习,善于创新,以符合“三个面向”的要求,适应现代化建设的需要,当前特别注意培养学生的创造性思维,“创造”这个概念的含义,中外众说纷纭,解释不一。
我以为按照结构论的观点概括为“创造就是形成新的结构”的提法,较为简练、确切、全面。
由此推论,把创造性思维解释为“形成新结构的思维过程就是创造性思维”是较为恰当的。
根据思维探索答案的方向,可把思维分为聚合思维和发散思维两类。
创造性思维的形成和发展,是这两类思维协调统一,综合运用,辩证发展的过程,下面对发散思维在教学中的训练简单地谈一下个人粗浅体会。
发散思维是对同一对象材料,从不同的角度,不同的结构形式,不同的关联出发,分析出不同的结论的思维方法。
如对三角形分类,按角来分,可分为钝角三角形,直角三角形和锐角三角形,锐角三角形又可进一步分为等角三角形、不等角三角形、按边来分,可分为不等边三角形、等腰三角形和等边三角形,等腰三角形就其顶角来分,又可分为等腰锐角三角形,等腰直角三角形和等腰钝角三角形,……因为发散思维的方向是多角度、多层次、多结构的,所以它对探究问题和解决问题可能提供多种多样的思路和方法,因而易于找到开拓前进的途径,易于找到最佳方案,具有可贵的创造价值。
培养学生的发散思维,教学中要注意如下几点。
一、要充分利用“变式”教学,使学生克服静止孤立思考问题的习惯,克服思维定势的消极影响所谓“变式”就是对所用材料的内容和形式,从不同的角度,用不同的方法进行教学。
如何在小学数学教学中对学生进行发散思维训练

如何在小学数学教学中对学生进行发散思维训练在小学数学教学中进行发散性思维训练,可使学生掌握数学知识的内在联系,理解和深化所学知识,有效地发展学生的创造才能。
下面我就数学教学中如何对学生进行发散性思维训练谈的几点粗浅认识。
一、沟通知识的内在联系,培养学生思维广度小学数学知识的交替性特别强,教学时注意发展性思维有助于认识新旧知识之间的联系,促进知识形成网络,加深对新知识的理解。
例如,教学“圆的面积”这一节用实验的方法讲解圆面积公式。
我引导学生,能否像推导三角形,梯形面积公式那样把圆转化成已知圆形,从而推导出圆面积公式?学生在实验中,有的拼成近似的长方形,有的拼成近似的平等行四边形,我因势诱导:①拼成的近似图形的底与圆的周长,高与圆的半径有什么关系?②怎样根据这些近似图形推导出圆面积的计算公式?这时学生的思维十公活跃,各自抢着讲出自己的推导过程。
通过发散思维沟通各种几何图形的内在联系,加深对圆面积公式的理解。
二、通过发散性思维,使学生搞清简单应用题和复合应用题之间的联系以往由于教师按课本例题一例一例地讲,学生按课后配套作业一例一例地练,当遇到复合应用题时,间接条件和直接条件交错在一起,学生感到无从下手。
为了改变这种状况,我在教学时根据解答复合应用题的关键,先找出中间问题,在教学简单应用题时,注意开发散性思维训练。
训练的方式有:①解答连续两问的简单应用题,使学生认识第一问的答案,就是求第二问的条件,只有求出第一问的得数,才能求出第二问的结果,从而认识“中间未知量”的重要。
如“商店里有彩色电视机20台,黑白电视机是彩色电视机的2/5,黑白电视机有多少台?电视机一菜有多少台?”②变换简单应用题的一个条件,突出“中间未知量”。
如“新华书店运来科技书420本,运来文艺书是科技书的1/6,运来文艺书多少本?”学生计算后要求将“运来文艺书是科技书的1/6”换成“文艺书比科技书少1/6”,“文艺书比科技书多1/6,“科技书比文艺书少1/6”,“科技书比文艺书多1/6”,问题还是求“运来文艺书多少本“。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在数学教学中要进行发散思维的训练
培养学生的发散思维,是数学教师在教学中的一项重要任务。
思维的积极性、求异性、广阔性、联想性等是发散思维的特性,在数学教学中有意识地抓住这些特性进行训练与培养,既可提高学生的发散思维能力,又是提高小学数学教学质量的重要一环。
一、激发求知欲,训练思维的积极性
思维的惰性是影响发散思维的障碍,而思维的积极性是思维惰性的克星。
所以,培养思维的积极性是培养发散思维的极其重要的基础在教学中,教师要十分注意激起学生强烈的学习兴趣和对知识的渴求,使他们能带着一种高涨的情绪从事学习和思考。
例如:在一年级《乘法初步认识》一课中,教师可先出示几道连加算式让学生改写为乘法算式。
由于有乘法意义的依托,虽然是一年级小学生,仍能较顺畅地完成了上述练习。
而后,教师又出示3+3+3+3+2,让学生思考、讨论能否改写成一道含有乘法的算式呢?经过学生的讨论与教师及时予以点拨,学生列出了3+3+3+3+2=3×5-1=3×4+2=2×7……虽然课堂费时多,但这样的训练却有效地激发了学生寻求新方法的积极情绪。
我们在数学教学中还经常利用“障碍性引入”、“冲突性引
入”、“问题性引入”、”趣味性引入”等,以激发学生对新知识、新方法的探知思维活动,这将有利于激发学生的学习动机和求知欲。
在学生不断地解决知与不知的矛盾过程中,还要善于引导他们一环接一环地发现问题、思考问题、解决问题。
例如,在学习“角”的认识时,学生列举了生活中见过的角,当提到墙角时出现了不同的看法。
到底如何认识呢?我让学生带着这个“谜”学完了角的概念后,再来讨论认识墙角的“角”可从几个方向来看,从而使学生的学习情绪在获得新知中始终处于兴奋状态,这样有利于思维活动的积极开展与深入探寻。
二、转换角度思考,训练思维的求异性
发散思维活动的展开,其重要的一点是要能改变已习惯了的思维定向,而从多方位多角度――即从新的思维角度去思考问题,以求得问题的解决,这也就是思维的求异性。
从认知心理学的角度来看,小学生在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方向,也就是说学生个体(乃至于群体)的思维定势往往影响了对新问题的解决,以至于产生错觉。
所以要培养与发展小学生的抽象思维能力,必须十分注意培养思维求异性,使学生在训练中逐渐形成具有多角度、多方位的思维方法与能力。
例如,四则运算之间是有其内在联系的。
减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。
当加数相同时,加法转换成乘法,所有的乘法都可以转换成加法。
加减、乘除、加乘之间都有内在的联系。
如189-7可以连续减多少个7?应要求学生变换角度思考,从减与除的关系去考虑。
这道题可以看作189里包含几个7,问题就迎刃而解了。
这样的训练,既防止了片面、孤立、静止看问题,使所学知识有所升华,从中进一步理解与掌握了数学知识之间的内在联系,又进行了求异性思维训练。
在教学中,我们还经常发现一部分学生只习惯于顺向思维,而不习惯于逆向思维。
在应用题教学中,在引导学生分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。
更重要的是,教师要十分注意在题目的设置上进行正逆向的变式训练。
如:进行语言叙述的变式训练,即让学生依据一句话改变叙述形式为几句话。
逆向思维的变式训练则更为重要。
教学的实践告诉我们,从低年级开始就重视正逆向思维的对比训练,将有利于学生不囿于已有的思维定势。
三、一题多解、变式引伸,训练思维的广阔性
思维的广阔性是发散思维的又一特征。
思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云。
反复进行一题多解、一题多变的训练,是帮助学生克服思维狭窄性的有效办法。
可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培
养了思维能力。
教师在教学过程中,不能只重视计算结果,要针对教学的重难点,精心设计有层次、有坡度,要求明确、题型多变的练习题。
要让学生通过训练不断探索解题的捷径,使思维的广阔性得到不断发展。
要通过多次的渐进式的拓展训练,使学生进入广阔思维的佳境。
四、转化思想,训练思维的联想性
联想思维是一种表现想象力的思维,是发散思维的显著标志。
联想思维的过程是由此及彼,由表及里。
通过广阔思维的训练,学生的思维可达到一定广度,而通过联想思维的训练,学生的思维可达到一定深度。
例如有些题目,从叙述的事情上看,不是工程问题,但题目特点确与工程问题相同,因此可用工程问题的解题思路去分析、解答。
让学生进行多种解题思路的讨论时,有的解法需要学生用数学转化思想,才能使解题思路简捷,既达到一题多解的效果,又训练了思路转化的思想。
“转化思想”作为一种重要的数学思想,在小学数学中有着广泛的应用。
在应用题解题中,用转化方法,迁移深化,由此及彼,有利于学生联想思维的训练。
在数学教学中多进行发散性思维的训练,不仅要让学生多掌握解题方法,更重要的是要培养学生灵活多变的解题思维,从而既提高教学质量,又达到培养能力、发展智力的目的。