第12讲函数三要素

第12讲函数三要素
第12讲函数三要素

高考复习函数知识点总结

高考复习 函数知识点总结 一.函数概念的理解以及函数的三要素 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则(函数关系式)也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ; 满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ; 满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做 [,)a b ,(,]a b ; 满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b < . (3)求函数的定义域时,一般遵循以下原则: ① 分式的分母不为0; ② 偶次根式下被开方数大于0; ③ 0y x = ,则有0x ≠ ; ④ 对数函数的真数大于0,底数大于0切不等于1 注意:①解析式为整式的函数定义域为R ; ②若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则

其定义域一般是各基本初等函数的定义域的交集; ③对于求复合函数定义域问题,一般步骤是:若已知() f x的定义域 为[,] a g x b ≤≤解出. f g x的定义域应由不等式() a b,其复合函数[()] (4)求函数的值域或最值 常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量 的取值范围确定函数的值域或最值. ③判别式法:若函数() =可以化成一个系数含有y的关于x的二次方程 y f x 2 ++=,则在()0 a y x b y x c y ()()()0 a y≠时,由于,x y为实数,故必须有 2()4()()0 ?=-?≥,从而确定函数的值域或最值. b y a y c y ④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代 数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的 值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. (5)函数解析式 ①换元法;(用于求复合函数的解析式) ②配凑法;(用于求复合函数的解析式)

函数三要素教案

(一)教学目标 1.知识与技能 (1)了解函数三要素的含义,掌握根据函数的三要素判定两个函数是否为同一个函数的方法. (2)会求简单函数的定义域和函数值. 2.过程与方法 通过示例分析,让学生掌握求函数定义域的基本题型及方法,进一步加深对函数概念的理解.通过求出函数的函数值,加深对应法则的认识. 3.情感、态度与价值观 通过动手实践研究数学问题,提高分析问题,解决问题能力;体会成功地解答数学问题的学习乐趣,培养钻研精神. (二)教学重点与难点 重点:掌握函数定义域的题型及求法. 难点:理解函数由定义域与对应法则确定函数这一基本原则.

二、授课内容: 【知识要点】 ⑴定义域———自变量x 的取值范围 函数三要素 ⑵值 域———函数值的集合 ⑶对应法则——自变量x 到对应函数值y 的对应规则 注意:①核心是对应法则;②值域是由定义域与对应法则所确定了的,故确定一个函数只需确定其定义域、对应法则则即可;③如何判断“两个”函数为同一函数;④函数()12-= x x f 的对应法则f :x (平方再 减1整体再开平方)y 。而在此基础上的函数()1+=x f y ,其自变量为式中的x 而不是1+x ,其对应法则x (加1再取f 运算)y ,即x (加1整体平方再整体减1再整体开方)y ,故此时()1)1(12-+=+x x f 。 【典型例题】 1.函数定义域求法 ⑴已知函数的解析式求定义域时需要注意: ①()x f 是整式,则定义域为R ; ②()x f 是分式,则令分母不为0的值为定义域; ③()x f 是偶次根式,则函数定义域为使被开方式为非负数的自变量集合; ④若()x f 由几个部分式子构成,则定义域是使几个部分式子都有意义的值的集合; ⑤函数[]2 )(x f y =的定义域()x f 0≠; ⑥对数函数()x f y a log =(0>a ,且1≠a )的定义域要求()x f >0; ⑵求函数()[]x g f 的定义域,()x g 相当于()x f 中的x 。 ⑶当函数由实际问题给出时,还应考虑实际意义。 例1:求下列函数的定义域 ①()0 2 )1(4--= x x x f ; ②()1 21 12 2+-+ ++=x x x x x f ; ③()x x f 11111++ = 042 ≥-x 22≤≤-x 解析:①由 ? ∴函数定义域为[)(]2,11,2?- 01≠-x 1≠x 012 ≥++x x (Ⅰ) ② 12 ++x x 的判别式0

第4讲 生活中的变量关系及函数的概念

生活中的变量关系及函数的概念 【学习目标】 (1)了解函数是描述变量之间的依赖关系的重要数学模型。 (2)理解函数的概念,会用集合与对应的语言刻画函数,了解构成函数的要素,在学会运用区间表示数集的基础上,会求一些简单函数的定义域和值域,初步掌握换元法的简单运用. 【要点梳理】 要点一:函数关系与依赖关系的联系 (1)具有依赖关系的两个变量,不一定具有函数关系; (2)当且仅当对于其中一个变量的每一个值,另一个变量都有唯一确定的值时,才称这两个变量之间有函数关系; (3)运用图形语言说明变量x,y间的关系: 结合依赖关系及函数(初中)的定义可知,图2-1中变量x,y间具有依赖关系,但不具有函数关系;而图2-2中变量x,y间具有函数关系和依赖关系. 要点二:函数的定义 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数. 记作:y=f(x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域. 要点诠释: (1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。 要点三:构成函数的三要素:定义域、对应关系和值域 (1)构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数); (2)两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关. 要点四:区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示. 区间表示: x a x b a b <<= {x|a≤x≤b}=[a,b]; {|}(,); (] x a x b a b ≤<=; {|}, {|}, x a x b a b <≤=;[) (][) ≤=∞≤=+∞. x x b b x a x a {|}-,; {|},

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

函数的三要素 3

2.3 映 射 课时目标 1.了解映射的概念.2.了解一一映射满足的条件.3.了解函数与映射的区别与联系. 1.映射的概念 如果两个非空集合A 与B 间存在着对应关系f ,而且对于A 中的每一个元素x ,B 中总有__________元素y 与它对应,则称f 是集合A 到集合B 的________.A 中的元素称为________,B 中的对应元素y 称为x 的像. 2.一一映射 在实际中,我们经常使用一种特殊的映射,通常叫作一一映射,它满足:(1)A 中每一个元素在B 中都有______的像与之对应;(2)A 中的不同元素的____也不同;(3)B 中的每一个元素都有______;有时,我们把集合A ,B 之间的一一映射也叫作________. 3.映射与函数 由映射的定义可以看出,映射是______概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合A ,B 必须是__________. 一、选择题 1.设f :A →B 是从集合A 到集合B 的映射,则下面说法正确的是( ) A .A 中的每一个元素在 B 中必有像 B .B 中每一个元素在A 中必有原像 C .A 中的一个元素在B 中可以有多个像 D .A 中不同元素的像必不同 2.已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列不能表示从P 到Q 的映射的是( ) A .f :x →y =12x B .f :x →y =13 x C .f :x →y =23 x D .f :x →y =x 3.下列集合A 到集合B 的对应中,构成映射的是( ) 4.下列集合A ,B 及对应关系不能构成函数的是( ) A .A = B =R ,f (x )=|x | B .A =B =R ,f (x )=1x C .A ={1,2,3},B ={4,5,6,7},f (x )=x +3 D .A ={x |x >0},B ={1},f (x )=x 0 5.给出下列两个集合之间的对应关系,回答问题: ①A ={你们班的同学},B ={体重},f :每个同学对应自己的体重; ②M ={1,2,3,4},N ={2,4,6,8},f :n =2m ,n ∈N ,m ∈M ; ③M =R ,N ={x |x ≥0},f :y =x 4; ④A ={中国,日本,美国,英国},B ={北京,东京,华盛顿,伦敦},f :对于集合A 中的每一个国家,在集合B 中都有一个首都与它对应. 上述四个对应中是映射的有____,是函数的有____,是一一映射的有________.( ) A .3个 2个 1个 B .3个 3个 2个 C .4个 2个 2个 D .2个 2个 1个 6.集合A ={1,2,3},B ={3,4},从A 到B 的映射f 满足f (3)=3,则这样的映射共有( ) A .3个 B .4个 C .5个 D .6个

函数概念及三要素

函数概念及三要素 1.函数的概念: 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ). 记作: y=f(x),x ∈A . 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域(range ). 2.分段函数:在定义域内不同的区间上有不同的 。注:分段函数是 个函数,而不是多个函数。 3.复合函数:若(),(),(,)y f u u g x x m n ==∈,那么[]()y f g x =称为复合函数,u 称为中间变量,它的取值范围是()g x 的值域。 方法一:函数定义域的求法 关注:分母、根号、指对数底数对数真数、tan 、零次方的底数 例题:)35lg(lg x x y -+= 的定义域为_______ 方法二:求函数解析式的常用方法 1、配凑法 2、待定系数法 3、换元法 4、解方程组法 例1、已知2(1)23f x x x -=--,则()f x = 。

例2、已知2 (31)965f x x x +=-+,则()f x = 。 例3、已知()f x 是一次函数,且(1)(1)23f x f x x +--=+,则()f x = 。 例4、已知()2()32f x f x x +-=-,则()f x = 。 例5、已知()f x 是奇函数,()g x 是偶函数,并且()()1f x g x x +=+,则()g x = 。 方法三:分段函数 分段函数在其定义域的不同子集上,因对应关系不同,而分别用几个不同的式子来表示,这种函数就称之为分段函数.分段函数虽然有几个部分组成,但它表示的是一个函数.近几年高考考察的频率较高. 1.函数 22, 0,()log , 0.x x f x x x ?=?>?≤则1()4f =____;方程1()2f x -=的解是____. 2. 已知函数11,02()ln ,2 x f x x x x ?+<≤?=??>?,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取 值范围是( ) (A ) (1,)+∞ (B )3[,)2+∞ (C )32[,)e +∞ (D )[ln 2,)+∞

必修一函数知识点整理和例题讲解(含答案)

高中数学必修一知识点和题型练习 一 集合与函数 1 集合的含义及表示* ???? ?? ????? ∈??? ????? ??? 确定性集合中元素的特征 互异性无序性 集合与元素的关系 : 列举法 集合的表示 描述法常见的数集 N N Z Q R 2,,A B B A A B A B A A A A B A B A B οο φ≠ ??=????? ?????≠??1定义:A=B 2若且则子集: , 集合相等: 集合间的基本关系真子集: 若且 则 空集φ的特殊性: 空集是任何集合的子集,任何非空集合的真子集 *结论 含有n 个元素的集合,其子集的个数为2n ,真子集的个数为21n - 3集合的基本运算{}{}{}|||U A B x x A x B A B x x A x B C A x x U x A ??=∈∈? ?=∈∈??=∈?? 并集:或 交集:且 补集:且 在集合运算中常借助于数轴和文氏图(*注意端点值的取舍) *结论 (1)A A A ?= A A A ?=, A A φ?= A φφ?= (2)A B B A B ?=?若则 A B A A B ?=?若则 练习题 1. 若集合P ={x |2≤x <4},Q ={x |x ≥3},则P ∩Q 等于( ) A .{x |3≤x <4} B .{x |3

函数概念及其三要素

函数概念及其相关概念(2课时) 考点一:由函数的概念判断是否构成函数 函数概念:设A 、B 是非空的数集,如果按照某种确定的关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。 例1. 下列从集合A 到集合B 的对应关系中,能确定y 是x 的函数的是( ) ① A={x x ∈Z},B={y y ∈Z},对应法则f :x →y= 3 x ; ② A={x x>0,x ∈R}, B={y y ∈R},对应法则f :x →2 y =3x; ③ A=R,B=R, 对应法则f :x →y=2 x ; 变式1. 下列图像中,是函数图像的是( ) ① ② ③ ④ 变式2. 下列式子能确定y 是x 的函数的有( ) ①2 2 x y +=2 ②111x y -+ -= ③y=21x x -+- A 、0个 B 、1个 C 、2个 D 、3个 变式3. 已知函数y=f (x ),则对于直线x=a (a 为常数),以下说法正确的是( ) A. y=f (x )图像与直线x=a 必有一个交点 B. y=f (x )图像与直线x=a 没有交点 C. y=f (x )图像与直线x=a 最少有一个交点 D. y=f (x )图像与直线x=a 最多有一个交点 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例2. 下列哪个函数与y=x 相同( ) A. y=x B. 2 y x = C. () 2 y x = D.y=t 变式1.下列函数中哪个与函数3 2y x =-相同( ) A. 2y x x =- B. 2y x x =-- C. 3 2y x x =-- D. 2 2y x x -= 变式2. 下列各组函数表示相等函数的是( ) O O O O X X X X y y y y

函数的三要素学生版

一、函数与映射的基本概念判断 1. 设:f M N →是集合M 到N 的映射,下列说法正确的是 A 、M 中每一个元素在N 中必有象 B 、N 中每一个元素在M 中必有原象 C 、N 中每一个元素在M 中的原象是唯一的 D 、N 是M 中所在元素的象的集合 2. 设集合{1,0,1},{1,2,3,4,5}M N =-=,映射:f M N →满足条件“对任意的x M ∈, ()x f x +是奇数” ,这样的映射f 有____个 3. 设2:x x f →是集合A 到集合B 的映射,若B={1,2},则B A 一定是_____ 4. 若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“值同函数”,那么解析式为2y x =,值域为{4,1}的“值同函数”共有______个 5. 以下各组函数表示同一函数是________________ (1)f (x )=2x ,g (x )=33x ; (2)f (x )=x x ||,g (x )=? ??<-≥;01,01x x (3)f (x )=x 1+x ,g (x )=x x +2; (4)f (x )=x 2-2x -1,g (t )=t 2-2t -1。 二、函数的定义域 1.求下列函数的定义域 (1)2161x x y -+= ;(2 )34x y x +=- 2.(1) 已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。 (2)若函数()x f 23-的定义域为[]2,1-,求函数()x f 的定义域 (3)已知)1(+x f 的定义域为)32[,-,求 2f x y -的定义域。 3. 求函数()f x = 4. 若函数()f x = 3 442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )

函数的概念练习题

函数的概念练习题 一、填空题 1、函数的 、 、 统称函数的三要素 2、下列几组函数相等的是 。 ①11 12+=--=x y x x y 与②1112+?-=-=x x y x y 与 ③x x y x y +?-=-=1112与④x y x y ==与2⑤x y x y ==与2)( 3、若函数,1)(2+-=x x x f 则=)1(f ,=--+)1()1(n f n f 。 4、函数)(x f y =与a x =的交点个数为 。 5、函数2233x x x x y -+-= 的定义域为 ,函数24x y -=的定义域 为 。 6、函数)3,1[,12)(2-∈+-=x x x x f ,则函数=+)2(x f 。 7、函数)(x f 的定义域为)3,2[-,则)()()(x f x f x g -+=的定义域为 。 8、函数1)(22+=x x x f ,则=)2 1()2(f f 。 二、解答题 9、下列对应那些能称为函数?并说明理由。 (1)R x x x ∈→,1,(2),y x →这里R y R x x y ∈∈±=+,, (3),y x →这里R y R x x y ∈∈= +,,(4),.12R x x x ∈+→ 10、求下列函数的定义域 (1)3 21)(-=x x f (2)22)(x x x f -=

(3)2232)(2 ++--=x x x x f 11、求下列函数的值域。 (1)]3,0[,32)(2∈--=x x x x f (2)),0[,113)(+∞∈+-=x x x x f (3)123 2)(22+-+-=x x x x x f ( 4)x x y 21-+= 12、

函数的定义及三要素

函数的定义及三要素 考点一、函数概念的理解 [例1] 下列对应是否为A 到B 的函数: (1)A =R ,B ={x |x >0},f :x →y =|x |; (2)A =Z ,B =Z ,f :x →y =x 2; (3)A =Z ,B =Z ,f :x →y =x ; (4)A =[-1,1],B ={0},f :x →y =0. [例2】下列各图中,可表示函数)(x f y 的图象的只可能是( ) 变式1:在下列从集合A 到集合B 的对应关系中不可以确定y 是x 的函数的是( ①A ={x |x ∈Z },B ={y |y ∈Z },对应法则f :x →y =x 3; ②A ={x |x >0,x ∈R },B ={y |y ∈R },对应法则f :x →y 2=3x ; ③A ={x |x ∈R },B ={y |y ∈R },对应法则f :x →y :x 2+y 2=25; ④A =R ,B =R ,对应法则f :x →y =x 2; ⑤A ={(x ,y )|x ∈R ,y ∈R },B =R ,对应法则f :(x ,y )→S =x +y ; ⑥A ={x |-1≤x ≤1,x ∈R },B ={0},对应法则f :x →y =0. A .①⑤⑥ B .②④⑤⑥ C .②③④ D .①②③⑤ 变式2、如图中,哪些是以x 为自变量的函数的图象,为什么?

考点二、相等函数的判断 [例2] 下列各对函数中,是相等函数的序号是________. ①f(x)=x+1与g(x)=x+x0 ②f(x)=x+2与g(x)=|2x+1| ③f(n)=2n+1(n∈Z)与g(n)=2n-1(n∈Z) ④f(x)=3x+2与g(t)=3t +2 变式:下列各组式子是否表示相等函数?为什么? (1)f(x)=|x|,φ(t)=t2; (2)y=x2,y=(x)2; (3)y=x+1·x-1,y=x2-1; (4)y=1+x·1-x,y=1-x2. 考点三、求函数的定义域 [例3] 求下列函数的定义域: (1)y=2x+3; (2)f(x)= 1 x+1; (3) y=x-1+1-x; (4)y= x+1 x2-1.

函数的三要素

第一章函数 第一讲函数的概念 【知识归纳】 (1) 映射 映射的定义:设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中 的任意一个元素x,在集合B中都有惟一确定的元素y与之对应,那么这样的对应(包括集合A,B 以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B.其中与A中的元素a对应的B 中的元素b叫做a的象,a叫做b的原象. 一对一,多对一是映射但一对多显然不是映射 辨析: ①任意性:映射中的两个集合A,B可以是数集、点集或由图形组成的集合等; ②有序性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射; ③存在性:映射中集合A的每一个元素在集合B中都有它的象; ④唯一性:映射中集合A的任一元素在集合B中的象是唯一的; ⑤封闭性:映射中集合A的任一元素的象都必须是B中的元素,不要求B中的每一个元素都 有原象,即A中元素的象集是B的子集. 映射三要素:集合A、B以及对应法则f,缺一不可; (2) 映射观点下的函数概念 如果A,B都是非空的数集,那么A到B的映射f:A→B就叫做A到B的函数,记作y=f(x),其中x∈A,y∈B.原象的集合A叫做函数y=f(x)的定义域,象的集合C(C B)叫做函数y=f(x)的值域.函数符号y=f(x)表示“y是x的函数”,有时简记作函数f(x). (3)函数概念: 设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f (x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数记作:y = f (x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f (x) | x∈A}叫做函数的值域. 显然,值域是集合B的子集. (4)函数的表示方法 1.解析式:把常量和表示自变量的字母用一系列运算符号连接起来,得到的式子叫做解析式. 2.列表法:列出表格来表示两个变量之间的对应关系. 3.图象法:用图象表示两个变量之间的对应关系.

函数概念及其表示知识点总结例题分类讲解

龙文教育教师1对1个性化教案 学生姓名教师 姓名 授课 日期 授课 时段 课题 教学 目标 教 学 步 骤 及 教 学 内 容 教导处签字: 日期:年月日

作业布置 学习过程评价学生对于本次课的评价 特别满意□满意□一般□差□教师评定 1、学生上次作业评价 好□较好□一般□差□ 2、学生本次上课情况评价 好□较好□一般□差□ 家长 意见 家长签名: 心灵鸡汤★学习靠自己,进步靠努力。每天比别人多付出一点点,将来比别人收获多许多。 ★好成绩来源于持之以恒的努力,好前程来源于永不懈怠的刻苦。 ★想做好大事情,必先得将小事情做漂亮。想有好成绩的人,就必须上好每一堂课,做好每一次作业。

函数及其表示 【要点回顾】 函数的概念 1.函数的概念 定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的任意x ,在集合B 中都有唯一的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为 . 2.函数的定义域与值域 在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(称为函数)(x f y =的值域. 函数的三要素:定义域、值域和对应法则 3.区间的概念 4.判断对应是否为函数 5.定义域的求法 6.函数值域的求法 7.复合函数(抽象函数)定义域的求法 函数的表示法 1.函数的三种表示法 图象法、列表法、解析法 2.分段函数 在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。 3.映射的概念 设B A 、是两个非空的集合,如果按某一个确定的对应关系f ,对于集合A 中的任意一个元素,在集合B 中都有唯一确定的元素与之对应,那么就称对应B A f →:为从集合A 到集合B 的一个映射,通常记为B A f →: ,f 表示对应法则.

人教A版高一数学函数的概念知识点总结与例题讲解

函数的概念知识点总结 本节主要知识点 (1)函数的概念. (2)函数的三要素与函数相等. (3)区间的概念及其表示. 知识点一 函数的概念 初中学习的函数的传统定义 一般地,如果在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数. 函数的近代定义 设A , B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()x f 和它对应,那么就称f :B A →为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈. 其中,x 叫作自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫作函数值,函数值的集合{}A x x f y y ∈=),(叫做函数的值域.显然,值域是集合B 的子集. 对函数的近代定义的理解 (1)只有两个非空的数集之间才可能建立函数关系.定义域或值域为空集的函数是不存在的. 如x x y --= 11就不是函数. (2)注意函数定义中的“三性”:任意性、存在性和唯一性. 任意性:集合A 中的任意一个元素x 都要考虑到. 存在性:集合A 中的任意一个元素x ,在集合B 中都存在对应元素y . 唯一性:在集合B 中,与每一个元素x 对应的元素y 是唯一的.

(3)集合B 不一定是函数的值域,值域是集合B 的子集. 在集合B 中,可以存在元素在集合A 中没有与之对应者. 例1. 讨论二次函数的定义域和值域. 解:二次函数的一般式为()02≠++=a c bx ax y ,为整式函数,所以其定义域为R ,其值域的确定分为两种情况: ①当0>a 时,函数的值域为?????? -≥a b ac y y 442; ②当0

函数的三要素典型例题

函数定义域的求法及常见题型 一、函数定义域求法 (一)常规函数 函数解析式确定且已知,求函数定义域。其解法是根据解析式有意义所需条件,列出关于自变量的不等式或不等式组,解此不等式(或组),即得函数定义域。 例1.求函数y = 的定义域。 (二)抽象函数 1.有关概念 定义域:函数y=f(x)的自变量x 的取值范围,可以理解为函数y=f(x)图象向x 轴投影的区间;凡是函数的定义域,永远是指自变量x 的取值范围; 2.四种类型 题型一:已知抽象函数y=f(x)的定义域为[m,n],如何求复合抽象函数y=f(g(x))的定义域? 例题2.已知函数y=f(x)的定义域[0,3],求函数y=f(3+2x)的定义域 强化训练: 1.已知函数y=f(x)的定义域[-1,5],求函数y=f(3x-5)的定义域; 2.已知函数y=f(x)的定义域[1/2,2],求函数y=f(log 2x)的定义域; 3.已知(x)f 的定义域为[-2,2],求2(x 1)f -的定义域。 题型二:已知复合抽象函数y=f(g(x))定义域[m,n],如何求抽象函数y=f(x)的的定义域? 例题4.已知函数y=f(2x-1)的定义域[0,3],求函数y=f(x)的定义域. 强化训练: 1.已知函数y=f(x 2-2x+2)的定义域[0,3],求函数y=f(x)的定义域. 2.已知函数y=f[lg(x+1)]的定义域[0,9],求函数y=f(x)的定义域.

题型三:已知复合抽象函数y=f(g(x))定义域[m,n],如何求复合抽象函数y=f(h(x))定义域的定义域? 例题5.已知函数y=f(2x-1)的定义域[0,3],求函数y=f(3+x)的定义域. 强化训练: 1.已知函数y=f(x+1)的定义域[-2,3],求函数y=f(2x-1)的定义域. 2.已知函数y=f(2x)的定义域[-1,1],求函数y=f(log 2x)的定义域. 3. 已知f(x+1)的定义域为[-1/2,2],求f(x 2)定义域。 题型四:已知f(x)的定义域,求与f(x)相关四则运算型函数的定义域。 例6.已知f(x)的定义域为[-3,5],求φ(x )=f(-x)+f(2x+5)定义域。 强化训练: 1.已知f(x)的定义域为(0,5],求g(x)=f(x+a)f(x-a)定义域,其中-1﹤a ≦0。 二、与函数定义域相关的变形题型 (一)逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例7.已知函数的定义域为R ,求实数m 的取值范围。 例8.已知函数27 (x)43 kx f kx kx += ++的定义域是R ,求实数k 的取值范围。 (二)参数型 对于含参数的函数,求定义域时,必须对分母分类讨论。 例9.已知(x)f 的定义域为[0,1],求函数(x)(x )(x a)F f a f =++-的定义域。

第06讲 函数的概念与运算(学生版) 备战2021年新高考数学微专题讲义

第 6 讲:函数的概念与运算 一、课程标准 1.通过实例,体会函数是描述变量之间的依赖关系的重要数学模型,学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域. 2.会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数. 3.通过具体实例,了解简单的分段函数,并能简单应用. 二、基础知识回顾 1.函数的有关概念 (1)函数的定义域、值域: 在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域. (2)函数的三要素:定义域、值域和对应关系. (3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据. 2.函数的三种表示法 3.分段函数 若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数. 三、自主热身、归纳总结 1、集合A={x|1≤x≤2},B={x|1≤x≤4},有以下4个对应法则: A. f:x→y=x2 B. f:x→y=3x-5 C. f:x→y=x+4 D. f:x→y=4-x2 其中能构成从A到B的函数的是( )

2、下列各组函数中,表示同一函数的是( ) A .f (x )=e ln x ,g (x )=x B .f (x )=x 2-4 x +2,g (x )=x -2 C .f (x )=sin 2x 2cos x ,g (x )=sin x D .f (x )=|x |,g (x )=x 2 3、已知2(21)4f x x -=,则下列结论正确的是( ) A .f (3)9= B .(3)4f -= C .2()f x x = D .2()(1)f x x =+ 4、已知函数f (x )=?????x +1x -2,x >2, x 2+2,x ≤2,则f (f (1))=( ) A .-1 2 B .2 C .4 D .11 5、已知f (x )=????? ????13x ,x ≤0,log 3x ,x >0, 则f ????f ????19=________. 6、(2019南京三模)若函数f (x )=???2x , x ≤0 f (x -2),x >0,则f (lo g 23)= ▲ . 7、已知f(x)是一次函数,且满足3f(x +1)-2f(x -1)=2x +17,则f(1)=____. 8、函数y =f (x )的图象如图所示,那么,f (x )的定义域是________;值域是________;其中只有唯一的x 值与之对应的y 值的范围是________. 四、例题选讲 考点一、函数的概念 例1 (1)已知A ={1,2,3,k},B ={4,7,a4,a2+3a},a ∈N*,k ∈N*,x ∈A ,y ∈B ,f :x→y =3x +1是从定义域A 到值域B 的一个函数,求a ,k 的值; (2)下列各选项给出的两个函数中,表示相同函数的有( ) A .()f x x =与()g x = B .()|1|f t t =-与()|1|g x x =-

高中数学函数专题之函数三要素

函数的三要素 【函数定义域求法】 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 分式中的分母不为零; 偶次方根下的数(或式)大于或等于零; 指数式的底数大于零且不等于1; 0的0次幂没有意义; 对数式的底数大于0且不等于1,真数大于0。 正切函数x y tan = ??? ??∈+≠∈Z ππk k x R x ,2,且 余切函数x y cot = ()Z π∈≠∈k k x R x ,,且 例1 求函数8|3x |15x 2x y 2-+--=的定义域。 例2 求函数x x y cos lg 252+-=的定义域。 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 ? 类型一:已知)x (f 的定义域,求)]x (g [f 的定义域。 其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例1 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 ? 类型二:已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求g(x)的值域,即所求f(x)的定义域。 例1 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。 三、实际问题型 这里函数的定义域除考虑解析式有意义外,还要注意问题的实际意义对自变量的限制 例1 用长为L 的铁丝弯成下部为矩形上部为半圆的框架,如图,若矩形底边长为2x ,求此框架围成的面积y 与x 的函数关系式,并求定义域。 四、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数范围问题通常是转化为恒成立问题来解决。

求函数解析式的几种方法教案

北京梦飞翔教育个性化辅导教案 学生:教师:时间:年月日_____段课时: 教学内容函数解析式的求法 教学重点求函数的解析式 教学难点求函数的解析式 教学计划本次课内容对应教学计划中第次课 1 会求几种常见形式函数的解析式 2 教学目标 3 4 一、教学过程: 【知识梳理】 1.函数的定义2.函数相等 3.分段函数 4.映射的概念 【热身练习】 x y x y 1.如果x, y 在映射f 下的象是, ,则5, 2 在f 下的原象是() 2 2 A.10, 4 B .3, 7 C .6, 4 D .37 , 2 2 2.给出下列对应: ① A R, B 0, , f :x x ; ② A B N ,f: x x 3 ;

③ A x N x 2 , B y Z y 0 , f : 2 2 2 x y x x ; ④ A 0, , B R , f : x y x . 其中是从集合 A 到集合 B 的函数有 .(写出所有正确答案的序号) 3.设映射 f : 2 2 x x x 是集合 A 到 B 的映射,其中 A B R .若实数 k B ,且 k 在 A 中不存在 原象,则 k 的取值范围是 . 4.下列四组函数中,表示同一函数的是( ) A . f x x , 2 g x x B . f x x , g x 3 x 3 C . f x 1, x 2 g x D . f x x 1 x 1 , g x x 1 x 5.下列各图中,可以表示函数 y f x 的只可能是( ) y y y y x O O x O x O x (A ) (B ) (C ) (D ) 6.若函数 f x 2x 3,其定义域 A x N 1 x 5 ,则 f x 的值域是 . 7.设函数 f x 1 2 x 2 x ,则 1 1 1 f 1 f 2 f f 3 f f 4 f . 2 3 4 二、复合函数

相关文档
最新文档