二重积分的分部积分公式

合集下载

分部积分方法及例题

分部积分方法及例题

u dv
dv
= x sin x − ∫ sin x dx = x sin x + cos x + C
uv
v du
简化
(2)I2 = ∫ x2 sin x d x= −∫ x2 d cos x
dv
dv
= − x2 cos x + ∫ cosx dx2
vdu
简化
= − x2 cos x+ 2∫ x cosx dx
综合题
例9 ∫ e x dx 令t = x 2 ∫ te t d t
= 2(t e t − e t ) + C = 2e x ( x − 1) + C
例10
I
=

lncosx cos2 x
d
x=

ln
cos x d udv
tan
x
= tan x ⋅ ln cos x + ∫ tan2 x dx
= tan x ⋅ ln cos x + ∫ (sec2 x − 1) dx
问: 选 u = e x 行吗? 行.
∫ ∫ I = e x d(sin x ) = e x sin x − sin x d e x u ∫ = e x sin x − sin x ⋅ e x d x (第二次分部积分)
∫ = e x sin x + e x dcos x u
两次所选u的 函数类型不
∫ (2) xn ln x d x
设 u = ln x (例3(1))
∫ (3) xn arcsinxd x 设 u = arcsin x
(例3(2))
dv = xnd x
3° 选 u 的优先原则: “对反代三指” 法

二重积分及三重积分的计算

二重积分及三重积分的计算

第一部分 定积分的计算一、定积分的计算例1 用定积分定义求极限.)0(21lim 1>++++∞→a nn a a a a n . 解 原式=⎰∑=⋅⎪⎭⎫ ⎝⎛=∞→1011lim aani n x n n i dx =a a x a +=++11111.例2 求极限 ⎰+∞→1021lim xx n n dx . 解法1 由10≤≤x ,知nn x x x ≤+≤210,于是⎰+≤1210x x n ⎰≤1n x dx dx .而⎰10nx ()∞→→+=+=+n n n x dx n 0111101,由夹逼准则得⎰+∞→1021lim xx n n dx =0.解法2 利用广义积分中值定理()()x g x f ba⎰()()⎰=bax g f dx ξdx (其中()x g 在区间[]b a ,上不变号),().101111212≤≤+=+⎰⎰n n nn dx x dx xx ξξ由于11102≤+≤nξ,即211nξ+有界,()∞→→+=⎰n n dx x n01110,故⎰+∞→1021lim x x nn dx =0. 注 (1)当被积函数为()22,x a x R +或()22,a x x R -型可作相应变换.如对积分()⎰++3122112xxdx,可设t x tan =;对积分()02202>-⎰a dx x ax x a,由于()2222a x a x a x --=-,可设t a a x s i n =-.对积分dx e x ⎰--2ln 021,可设.sin t e x =-(2)()0,cos sin cos sin 2≠++=⎰d c dt td t c tb t a I π的积分一般方法如下:将被积函数的分子拆项,[分子]=A[分母]+B[分母]',可求出22d c bdac A ++=,22dc adbc B +-=. 则积分 ()220cos sin ln 2cos sin cos sin πππtd t c B A dt td t c t d t c B A I ++=+'++=⎰.ln2dc B A +=π例3 求定积分()dx x x x ⎰-1211arcsin分析 以上积分的被积函数中都含有根式,这是求原函数的障碍.可作适当变换,去掉根式. 解法1 ()dxx x x ⎰-1211arcsin 2t x xt ==12121211212arcsin arcsin arcsin 21arcsin 2tt d t dt tt ==-⎰⎰.1632π= 解法2 ()dx x x x⎰-1211arcsin .163cos sin cos sin 2sin 2242242πππππ==⋅=⎰u du u u uu u u x 小结 (定积分的换元法)定积分与不定积分的换元原则是类似的,但在作定积分换元()t x ϕ=时还应注意:(1)()t x ϕ=应为区间[]βα,上的单值且有连续导数的函数; (2)换限要伴随换元同时进行;(3)求出新的被尽函数的原函数后,无需再回代成原来变量,只要把相应的积分限代入计算即可.例4 计算下列定积分(1)⎰+=2031cos sin sin πx x xdx I , dx xx x I ⎰+=2032cos sin cos π; (2).1cos 226dx e xx ⎰--+ππ解 (1)⎰+=2031cos sin sin πxx xdxI)(sin cos cos 2023du uu uu x -+-=⎰ππ=.sin cos cos 223⎰=+πI dx xx x故dx xx xx I I ⎰++==203321cos sin cos sin 21π=()41cos cos sin sin 212022-=+-⎰ππdx x x x x . (2)=I .1cos 226dx e xx ⎰--+ππ()dxe xdu e uu x x u ⎰⎰--+=-+-=2262261cos 1cos ππππ⎥⎦⎤⎢⎣⎡+++=⎰⎰--2222661cos 1cos 21ππππdx e x dx e x e I x xx.3252214365cos cos 21206226πππππ=⨯⨯⨯===⎰⎰-xdxxdx这里用到了偶函数在对称取间上的积分公式以及公式:dx xdx n n⎰⎰=2020cos sin ππ()()()()()()⎪⎪⎩⎪⎪⎨⎧=⋅⨯-⨯--=⨯-⨯--=偶数奇数n n n n n n n n n n ,22421331,1322431π小结 (1)常利用线性变换把原积分化为可抵消或可合并的易于积分的形式。

二重积分的分部积分公式

二重积分的分部积分公式

二重积分的分部积分公式二重积分是微积分中的重要内容,用于计算平面内一些区域上的二元函数的积分。

分部积分是一种常用的积分技巧,其本质是将一个复杂的积分问题分解为几个较简单的求积分问题。

本文将介绍二重积分的分部积分公式及其应用。

1.二重积分的定义及性质在平面直角坐标系中,设函数f(x,y)在一个有界闭区域D上有定义,我们可以将D分成无穷多个小面积ΔS的小块,其中每一个小块的面积趋近于0。

则二重积分的定义为:∬_(D)▒f(x,y)dxdy=lim┬(ΔS→0)⁡〖∑_(i=1)^(n)▒∑_(j=1)^(m)▒f(x_i^*,y_j^*)ΔS〗其中,(x_i^*,y_j^*)是小块ΔS的内部任意一点,ΔS是小块的面积,n,m分别是D在x和y方向上的划分数。

二重积分具有以下性质:(1)线性性质:如果f(x,y)和g(x,y)都在D上有定义且可积,则对于任意实数a和b,有:∬_(D)▒(af(x,y)+bg(x,y))dxdy=a∬_(D)▒f(x,y)dxdy+b∬_(D)▒g(x,y)dxdy(2)可加性:如果D可以分成两个没有公共部分的区域D_1和D_2,则有:∬_(D)▒f(x,y)dxdy=∬_(D_1)▒f(x,y)dxdy+∬_(D_2)▒f(x,y)dxdy∬_(D)▒(∂u/∂x+∂v/∂y)dxdy=∫(□)〖v(□,y)dy-u(□,y)∣_a^b 〗其中,∂u/∂x和∂v/∂y是函数u(x,y)和v(x,y)的偏导数,(□,y)表示固定y的值,a和b是D在y轴上的两个边界值。

需要注意的是,二重积分的分部积分公式中的边界值是指在y轴上的取值,而不是在D区域上的边界。

3.二重积分的应用举例(1)计算二重积分∬_(D)▒xydxdy,其中D是区域y=x^2,x=y^2所围成的区域。

解:根据分部积分公式,令u=x,v=1/2y^2,则∂u/∂x=1,∂v/∂y=y,代入公式可得:∬_(D)▒xydxdy=∫(□)〖1/2y^2(□,y)dy-x(□,y)∣_0^1 〗先计算边界值,在D区域上y的取值范围是[0,1],所以x的取值范围是[0,1]。

高数积分总结

高数积分总结

高数积分总结一、不定积分1、不定积分的概念也性质定义1:如果在区间I 上,可导函数F (x )的导函数为f(x),即对任一I x ∈,都有F`(x)=f(x)或dF(x)=f(x)dx,那么函数F(x)就称为f(x)(或f(x)dx)在区间I 上的原函数。

定义2:在区间I 上,函数f (x )的带有任意常数项的原函数称为f (x )(或者f(x)dx )在区间I 上的不定积分,记作⎰dx x f )(。

性质1:设函数f(x)及g(x)的原函数存在,则⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([。

性质2:设函数f(x)的原函数存在,k 为非零常数,则⎰⎰=dx x f k dx x kf )()(。

2、换元积分法 (1)第一类换元法:定理1:设f(u)具有原函数,)(x ϕμ=可导,则有换元公式)(])([)(')]([x d f dx x x f ϕμμμϕϕ=⎰⎰=。

例:求⎰xdx 2cos 2解 ⎰⎰⎰⎰=•=•=μμd dx x x dx x xdx cos )'2(2cos 22cos 2cos 2 将x 2=μ代入,既得⎰+=C x xdx 2sin 2cos 2(2)第二类换元法:定理2:设)(t x ψ=是单调的、可导的函数,并且.0)('≠t ψ又设)(')]([t t f ψψ具有原函数,则有换元公式,])(')]([[)()(1x t dt t t f dx x f -=⎰⎰=ψψψ其中)(1x -ψ是)(t x ψ=的反函数。

例:求⎰>+)0(22a ax dx解 ∵t t 22sec tan 1=+,设⎪⎭⎫ ⎝⎛<<-=22tan ππαt t x ,那么 tdt a dx t a t a t a a a x 2222222sec ,sec tan 1tan ==+=+=+,于是⎰⎰⎰==+tdt dt t a ta a x dxsec sec sec 222 ∴C t t ax dx ++=+⎰tan sec ln 22∵aa x t 22sec +=,且0tan sec >+t t ∴1222222)ln(ln C a x x C a ax a x a x dx+++=+⎪⎪⎭⎫⎝⎛++=+⎰,a C C ln 1-=3、分部积分法定义:设函数)(x μμ=及)(x υυ=具有连续导数。

第八节二重积分

第八节二重积分
第八节 二重积分 一,二重积分的概念与性质 二,二重积分在直角坐标系中计算 三,二重积分在极坐标系中的计算 四,二重积分的几何应用
返回
第八节 二重积分 导言: 导言:本节我们将一元函数定积分的概念 和思想扩展到二元函数的二重积分上, 和思想扩展到二元函数的二重积分上,由于二 重积分是一元函数定积分在二元函数中的进一 步推广.因此,二重积分概念, 步推广.因此,二重积分概念,性质与定积分 类似, 类似,二重积分的计算方法也是将其转化为定 积分.学习中要注意与定积分的对比, 积分.学习中要注意与定积分的对比,把握两 者之间的共性与区别. 者之间的共性与区别.
D D D
(2) ∫∫ kf (x, y)dσ = k ∫∫ f (x, y)dσ
D
D +D2 1 D 1
(k为常数 ).
D
D2
(3) ∫∫ f (x, y)dσ = ∫∫ f (x, y)dσ + ∫∫ f (x, y)dσ. (4) 若在D上处处有f (x,y)≤g(x,y),则有
∫∫ f (x, y)dσ ≤ ∫∫ g(x, y)dσ.
y1( x)
z = f (x, y)
y1
y2 y
故曲顶柱体的体积, 故曲顶柱体的体积 也就是二重积分为
∫∫ f (x, y)dxdy = ∫
D
b b y2 ( x) S(x)dx = a[ y ( x) f (x, y)dy]dx. a 1
∫ ∫
上式将二重积分化成先对y 积分, 后对x 积分的 二 上式将二重积分化成先对 积分 后对 次积分或称为累次积分. 次积分或称为累次积分 需要指出, 需要指出 计算 ∫
z = f (x, y)
f (ξi ,ηi )σi . 以此作为小曲

高等数学课件D92二重积分的计算

高等数学课件D92二重积分的计算

电磁学中电荷分布问题
电荷分布概述
在电磁学中,电荷分布是研究电场和 磁场的基础。了解电荷分布对于预测 电场强度、电势差以及电磁波的传播 等具有重要意义。
二重积分在电荷分布 中的应用
二重积分在电磁学中广泛应用于计算 电荷分布。通过将电荷区域离散化为 微小单元,对每个单元的电荷密度进 行积分,并利用二重积分对整个区域 进行积分,可以得到总电荷量和电荷 分布。
在每个子区域内分别进行积分计算,然后将结果相加得到最 终的二重积分值。这种策略可以降低计算难度,提高计算效 率。
03 典型例题分析与求解
平面区域上函数积分问题
确定积分区域
根据题目要求,确定需要积分的平面区域,通常是由 不等式组或曲线围成。
选择积分次序
根据积分区域的形状和复杂性,选择合适的积分次序, 即先对哪个变量进行积分。
图像处理算法与二重积分
在实际应用中,图像处理算法(如直方图均衡化、滤波算法)经常需要利用像素值统计来实现图像增强和特 征提取。二重积分作为计算像素值统计的重要工具,在这些算法中发挥着关键作用。
其他领域应用举例
地理学中的地形分析
在地理学中,地形分析是研究地 表形态和地貌特征的重要手段。 二重积分可以用于计算地表高程、 坡度、坡向等地形参数,进而实 现地形分类、地貌特征提取等应 用。
梯形法
将积分区域划分为若干个小梯形, 以梯形的面积近似代替被积函数 的面积,通过求和所有梯形的面 积得到二重积分的近似值。
辛普森法
在梯形法的基础上,通过采用更 精确的插值多项式来逼近被积函 数,从而提高二重积分计算的精 度。
误差估计及收敛性判断
误差估计
对于不同的数值方法,可以通过理论分析和实际计算来估计其误差的大小,以便更好地控制计算精度 。

二重积分

二重积分

(2)在还原积分区域时,首先根据积分上下限用不等式表示出积分区域,然后 再画出积分区域的草图。 例 2、设函数 f ( x, y ) 连续,交换二次积分次序得
dy
0
1
0
2 y 2
f ( x, y)dx A
A 2 dx 0
0
1
x 2
f ( x, y )dy .
B 2 dx 1 x f ( x, y)dy .
2

2
或含有较多的 x
D
2
y 2 时,可以考虑用极坐标计算。
直角坐标与极坐标的转换公式为
f ( x, y)dxdy f ( cos , sin ) d d 。
D
例 3、设 D
x, y x
2
y 2 x ,求 xdxdy .
D

二重积分
二重积分的计算思路,是将它化为累次积分,也就是两次定积分,可用的坐标有直角 坐标与极坐标。二重积分的内容包括概念、不等式的性质以及二重积分的计算。 一、二重积分的计算 1、直角坐标系 1)步骤:画出积分区域草图;选择积分次序;确定积分上下限,做定积分计算 2)确定积分次序时遵循两原则:尽可能地避免分类讨论;尽可能地使第一步的积分简单 3)定限方法(以先对 y 积分的情况为例) : a、画一条与 y 轴平行的直线,观察这条直线与积分区域边界的两交点,下交点为下限,上 交点为上限,即

2 ( x )
1 ( x)
f ( x, y)dy ;
b、使得直线与积分区域交点 x 的范围便是积分变量 x 的上下限,即 2、极坐标 1)计算公式:
dx
a
b
2 ( x )

2019年-9-2 二重积分的计算法-PPT精选文档

2019年-9-2 二重积分的计算法-PPT精选文档
解 e y 2 d 无 法 用 y 初 等 函 数 表 示
积 分 时 必 须 考 虑 次 序
x2ey2dxdy 1dyyx2ey2dx
D
00
e1 y2 y3dy e 1 y2 y2dy2 1(1 2).
0
3
0
6
6e
8
例10. 关于分块函数在D上的积分. 求| yx|d
a
a2 y2
故本题无法用直角 坐标计算.
14
二、利用极坐标计算二重积分 y
1
1 x
要分部积分,不易计算
若先 x 后 y 则须分片
12
22
Idy yexydx dy yexydx
11 2y
11
易见尽管须分片积分,但
由于被积函数的特点,积 分相对而言也较方便。
D
7
例 9 求 x2e y2dxdy,其中 D 是以(0,0),(1,1),
D
(0,1)为顶点的三角形.
D1
D2
9
11
1x
0dx x (yx)d y0d0 x (xy)dy y
1(1y2x)y1d x 1(xy 1y2)xdx 1
02
x
0
20
y=x
D1
D
D2
1(1x1x2)d x11x2dx 1
02 2
02
3
0
1x
注:分块函数的积分要分块(区域)来积. 另外,带绝对值的函数是分块函数。
y2x y 2xx2
问 : 从 积 分 域 的 形 状 看 , 此 域 上 的 积 分 应 选 什 么 样 的 积 分 顺 序 ?
6
例8 计算 y xd e y x ,D :x d 1 ,y x 2 ,y 2 ,x 1 y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档