质谱裂解机理认识

合集下载

质谱 esi 裂解原理

质谱 esi 裂解原理

质谱esi 裂解原理质谱(Mass Spectrometry,MS)技术是一种用于分析化合物的重要方法,可以提供关于化合物的相对分子质量和结构信息。

其中,电喷雾离子化(Electrospray Ionization,ESI)是质谱中常用的一种离子化方式。

本文将逐步介绍质谱ESI裂解原理。

第一部分:质谱基本原理与质谱仪构成1.1 质谱基本原理质谱利用电离过程将待测样品分子转化为带电离子,然后基于质量和电荷的差异对其进行分离和检测。

质谱原理包括样品离子化、离子加速、离子分离和离子检测四个基本环节。

1.2 质谱仪构成质谱仪主要由离子源、质量分析器和检测器三部分组成。

其中离子源负责将待测样品离子化,质量分析器用于分离不同质量的离子,检测器用于检测并记录离子的信号。

第二部分:ESI离子源原理2.1 ESI基本原理ESI是一种软离子化技术,适用于大部分有机化合物、生物大分子以及高沸点物质等。

在ESI过程中,待测样品通过毛细管等载流体进入电荷分离区,在高电压下形成带电液滴,随后由于溶剂的蒸发和蒸发效应,形成带电的高电荷多原子离子。

2.2 ESI离子源工作原理ESI离子源主要由电荷分离区、中和区和离子传输区组成。

其中,电荷分离区的高电压使得待测样品形成带电滴,并进一步产生带电离子。

中和区则用于中和离子中的多余电荷,以避免离子之间的相互作用和碎裂。

第三部分:质谱ESI裂解原理3.1 质谱ESI裂解简介质谱ESI裂解是在质谱仪中使用ESI离子源,利用碰撞诱导解离(Collision Induced Dissociation,CID)等技术将离子进一步裂解,从而获得更多结构信息。

3.2 ESI裂解过程ESI裂解主要通过在离子的轨道上提供一定的能量,使其与气体靶标发生碰撞,促使离子断裂并形成离子片段。

这些离子片段的质荷比与原始离子有所不同,从而可以得到该化合物的结构信息。

3.3 ESI裂解机理ESI离子在碰撞过程中会发生多种离子反应,如碰撞激发、电子转移、质子转移等,导致离子的断裂和重新组合。

有机质谱中的裂解反应讲解

有机质谱中的裂解反应讲解
精品资料
41
精品资料
3.芳烃 1)芳烃类化合物稳定,分子离子峰强。 2)有烷基取代的,易发生(fāshēng) Cα-C β 键的裂解,生成的苄 基离子往
往是基峰。91+14 n--苄基苯系列。 3)也有 α 断裂,有多甲基取代时,较显著。 4)四元环重排; 有 γ-H,麦氏重排; RDA 裂解。 5)特征峰:39、51、65、77、、78、91、92、93
具有环己烯结构类型的化合物可发生(fāshēng)此类裂解,一般 成一个共轭二烯正离子和一个烯烃中性碎片:
碎片离子及裂解机制的应用
(1)可以对一个具体的有机化合物的质谱进行解释
(2)可以鉴定化合物。
精品资料
精品资料
5.3.3有机化合物的一般(yībān)裂解规律
1. 偶电子规律(guīlǜ) 偶电子离子裂解,一般只能生成偶电子离子。
通常,分支处的长碳链将最易以游离(yóulí)基形式首先脱出。
脱去游离基的顺序是:
•C 4H 9•C 2H 5•C3H
支链烷烃的分子离子峰明显下降,支化程度高的烷烃检测 不到分子离子峰。
精品资料
环烷烃:1)由于环的存在,分子离子峰的强度相对增加。 2)常在环的支链处断开,给出 CnH2n-1 峰, 也常伴随氢原子的失去(shīqù),因此该 CnH2n-2
M C1 6
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180190200 210220230
精品资料
支链烷烃:1)分枝烷烃的分子离子峰强度较直链烷烃降 低。
2)各峰簇顶点(dǐngdiǎn)不再形成一平滑曲线, 因在分枝处易
峰较强。 (41、55、56、69…)

有机质谱中的裂解反应

有机质谱中的裂解反应
34(H2S+)的峰。
2.硫醚
1)硫醚的分子离子峰较相应的硫醇强。
2) α 断裂、碳-硫 σ 键裂解生成 CnH2n+1S+ 系列含硫的 碎片离子。
8 胺类化合物
8.1 脂肪胺 1)分子离子峰很弱;往往不出现。
2)主要裂解方式为 α 断裂和经过四元环过渡态的氢重排。
3)出现 30、44、58、72…系列 30+14 n 的含氮特征碎片离子峰。
20 30 40 50 60 70 80 90 100 110 120 130 m/z
10.3 羧酸类
脂肪酸:1)分子离子峰很弱。 2) α 裂解
出现 (M-17) (OH),(M-45) (COOH),
m/z 45 的峰及烃类系列碎片峰。 3) γ-氢重排 羧酸特征离子峰 m/z 60 (60+14 n ) 4)含氧的碎片峰 (45、59、73…)
芳酸:1)分子离子峰较强。 2)邻位取代羧酸会有 M-18(-H2O)峰。
10.4 酯类化合物
与带有甲基分枝的烷烃相区别的重要标志。
在CnH 2n+1的系列峰中,一般m/z 43、57峰的相 对强度较大。分子离子峰的强度则随其相对分子 质量的增加而下降,但仍清晰可见。
43 57 29 15 71 85
99
113
142 m/z
正癸烷
100 % O F BASE PEAK 90 80
m/z=43 C3 C4 m/z=57
10. 2 酮
1)酮类化合物分子离子峰较强。
2)α 裂解(优先失去大基团)
烷系列:29+14 n
3) γ-氢重排 酮的特征峰 m/z 58 或 58+14 n
85
H3C H2 C H 2C

有机质谱裂解机理中的特征裂解方式

有机质谱裂解机理中的特征裂解方式

质谱裂解机理中的特征裂解方式有机质谱中的裂解是极其复杂的,但是通过对其质谱裂解方式和机理的探讨研究,我们可以发现有一些特征结构裂解方式在有机质谱的裂解中是普遍存在的,是世界上的大量质谱学家通过对大量的有机质谱裂解方式进行观察、研究后的概括性总结。

所以其具有很重要的参考价值和应用价值,所以在有机质谱解析过程中,必须予以遵循,如此方能得到合理的质谱裂解方式和解析结果。

通过概括总结我们发现有机质谱中大部分化合物具有以下几种特征裂解方式:α裂解、苄基裂解、烯丙基裂解、麦氏重排裂解、DRA 裂解(逆狄尔斯阿尔德反应),几种特征裂解方式的强弱顺序如下:苄基裂解>α裂解、i 裂解>麦氏重排裂解、DRA 裂解>烯丙基裂解当然这种顺序不是一成不变的,随着化合物的结构发生改变,这些特征裂解方式的顺序有可能会发生改变,有机化合物质谱裂解大致可以分为两类α裂解(均裂)、β裂解,我们上面所讲的苄基裂解、烯丙基裂解、麦氏重排裂解、DRA 裂解都属于β裂解。

下面我们对几种特征裂解方式做以说明。

1、特征裂解方式一、α裂解α裂解是指凡具有C-X 单键基团和C=X 双键基团(其中X=C 、O 、S 、Cl 等)的有机分子,与该基团原子相连接的单键、称之为α键,在电子轰击条件下,该键很容易断裂因而称之为α断裂。

断键时成键的两个原子各自收回一个电子,这是由游离基中心引发的反应,原动力来自游离基的电子强烈配对倾向,所以α断裂属于均裂。

其裂解的机理及通式如下: I 饱和中心R 2C YR +H 2CCH2+ II 不饱和杂原子R RCY +几类化合物的α裂解 (1)H 3CCH 2OH 3H 2COH +(2)H 3CH 2C H 2CCH 3H 2COH 2CCH 3+CH 3(3)CH 3OO+H 2C CH 3(4)H NOCH 3O αH NO+OCH 3引发α断裂的倾向是由游离基中心给电子的能力决定的,一般来讲N>S 、O 、π、烷基>Cl 、Br>H ,同时α断裂遵循最大烷基游离基丢失的原则。

有机质谱中的裂解反应

有机质谱中的裂解反应

α
α
CH2 = O
R2 + R1
醇:
+ OH
+ + OH
α
胺:
R1 H N + R2
R1
H N = CH2 + R2 +
α
H CH2 = N +
R2 + R1
② 异裂—正电荷引发裂解—i 裂解
正电荷引发的i断裂反应:是由正电荷引发的碎裂过程,它涉及两个 电子的转移,动力来自于电荷的诱导。
R1
酮:
R2
C
O
+
i
R1
+
+ R2
C
O
氯代物:
+ Cl
i
+ (CH3)2CH + CH2 = C l
酯:
+ O O i + +
O C O
i断裂与α 断裂小结
1、杂原子为单键时,i断裂和α 断裂所引起的断键位置是不同的。杂 原子为重键时,i断裂并不导致重建的断裂。 2、产物的电荷稳定通常比游离基稳定更重要,因此不同的物质断键
R
C O
a
R
C
a
R'
R . + 'R C
O+
2. 烃类化合物的裂解规律 烃类化合物的裂解优先失去大的基团生成稳定的正碳离子
+ CH2 > H2C CH + + + + + CH2 > CR3 >CHR2>CH2R >CH3
m/z = 91, tropylium
H2C CH
+ CH2

有机质谱中的裂解反应

有机质谱中的裂解反应

4. 羰基化合物的裂解
自由基引发的均裂及正电荷诱导的异裂。 自由基引发的均裂及正电荷诱导的异裂。
5. 逆 Diels-Alder 反应( retro- Diels-Alder ) 反应(
6. 氢的重排反应
1) Mclafferty 重排 )
2)自由基引发或正电荷诱导,经过四、五、六元环过渡氢的重排 )自由基引发或正电荷诱导,经过四、
正癸烷
100 % O F BASE PEAK 90 80
m/z=43 C3 C4 m/z=57
n-Hexadecane
70 60 50 40 m/z=29 C2 30 20 10 m/z=85 C6 99 169 183 197 C7 113 127 141 155 C8 C C C1 1 C1 2 C1 3 C1 4 10 9 C5 m/z=71
异裂
半异裂: 半异裂: X
Y
X+ . Y
X+
+
.Y
简单开裂从裂解机制可分为以下主要三种: 简单开裂从裂解机制可分为以下主要三种: (1) α-裂解 ) 裂解 由自由基引发的、由自由基重新组成新键而在α 由自由基引发的、由自由基重新组成新键而在α位导致碎裂的过程称为α 裂解 位导致碎裂的过程称为α-裂解。 碎裂的过程称为 裂解。
各类有机化合物的质谱
1. 烷烃
直链烷烃: )显示弱的分子离子峰。 直链烷烃:1)显示弱的分子离子峰。 2)由一系列峰簇组成,峰簇之间差14个单位。 )由一系列峰簇组成,峰簇之间差 个单位 个单位。 (29、43、57、71、85、99…) 、 、 、 、 、 ) 3)各峰簇的顶端形成一平滑曲线,最高点在C3或C4。 )各峰簇的顶端形成一平滑曲线,最高点在 4)比 M+. 峰质量数低的下一个峰簇顶点是 M-29。 ) - 。 而有甲基分枝的烷烃将有 M-15,这是直链烷烃 - , 与带有甲基分枝的烷烃相区别的重要标志。 与带有甲基分枝的烷烃相区别的重要标志。

质谱裂解机理中的特征裂解方式

质谱裂解机理中的特征裂解方式

质谱裂解机理中的特征裂解方式有机质谱中的裂解是极其复杂的,但是通过对其质谱裂解方式和机理的探讨研究,我们可以发现有一些特征结构裂解方式在有机质谱的裂解中是普遍存在的,是世界上的大量质谱学家通过对大量的有机质谱裂解方式进行观察、研究后的概括性总结。

所以其具有很重要的参考价值和应用价值,所以在有机质谱解析过程中,必须予以遵循,如此方能得到合理的质谱裂解方式和解析结果。

通过概括总结我们发现有机质谱中大部分化合物具有以下几种特征裂解方式:α裂解、苄基裂解、烯丙基裂解、麦氏重排裂解、DRA 裂解(逆狄尔斯阿尔德反应),几种特征裂解方式的强弱顺序如下:苄基裂解>α裂解、i 裂解>麦氏重排裂解、DRA 裂解>烯丙基裂解当然这种顺序不是一成不变的,随着化合物的结构发生改变,这些特征裂解方式的顺序有可能会发生改变,有机化合物质谱裂解大致可以分为两类α裂解(均裂)、β裂解,我们上面所讲的苄基裂解、烯丙基裂解、麦氏重排裂解、DRA 裂解都属于β裂解。

下面我们对几种特征裂解方式做以说明。

1、特征裂解方式一、α裂解α裂解是指凡具有C-X 单键基团和C=X 双键基团(其中X=C 、O 、S 、Cl 等)的有机分子,与该基团原子相连接的单键、称之为α键,在电子轰击条件下,该键很容易断裂因而称之为α断裂。

断键时成键的两个原子各自收回一个电子,这是由游离基中心引发的反应,原动力来自游离基的电子强烈配对倾向,所以α断裂属于均裂。

其裂解的机理及通式如下: I 饱和中心R 2C YR +H 2CCH2+ II 不饱和杂原子R RCY +几类化合物的α裂解 (1)H 3CCH 2OH 3H 2COH + (2)H 3CH 2C H 2CCH 3H 2COH 2CCH 3+3(3)CH 3OαO+H 2C CH 3(4)H NOCH 3O αH NO+OCH 3引发α断裂的倾向是由游离基中心给电子的能力决定的,一般来讲N>S 、O 、π、烷基>Cl 、Br>H ,同时α断裂遵循最大烷基游离基丢失的原则。

质谱分析-3-2

质谱分析-3-2
(因为σ电子的电离能高于π电子或N、O、S等杂原子的n电子)
σ断裂,简单的键断裂
57 (100%)
CH3 H3C C CH3 H2 C H2 C H2 C CH3
71 (1.6%)
85 (0.2%)
43 57 (100%) (26.0%)
71 (1.6%)
对于饱和烃,取代度 愈高的碳,其σ键愈 容易被电离。 (取代度愈高的C+离 子愈稳定,因此这种 反应具有很大优势)
R
α X β Y
R
X Y
+ A
H
A, X,Y,Z一般为碳、氮,氧、硫任何一种组合。

AH
Z
要求:不饱和π 键; γ氢
(1)麦氏重排
H Y Y
H
α
+
YH
H Y
YH
i
+
(1)麦氏重排 m/z 58
α
R=CH3,40% R=C6H5,5%
R H O R OH
i
+
R=CH3,5% R=C6H5,100%
亚稳离子的表观质量m*与m1、m2的关系是:
m*=(m2)2/m1
式中m1为母离子的质量,m2为子离子的质量。 2. 特点: (1)亚稳离子峰峰形宽而矮小,因为在自由场区分 解的离子不能聚焦于一点; (2) 通常m/z为非整数。
3. 亚稳离子提供的结构信息
m*可提供前体离子和子离子之间的关系 例1 二异丙胺质谱在m/z22.8处有亚稳离子峰,此外有两个 强峰m/z86和m/z44,一个弱峰m/z101。m/z44离子是m/z86 离子的重排开裂产生的,因为亚稳离子峰为此种开裂历程 提供了证据。 m*=22.8 ≈442/86 = 22.5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质朴裂解机理的认识
摘要:综观一张质谱图,除了分子离子峰外,还可观察到极丰富的碎片离子,为进一步确定化合物的结构,提供非常重要的信息。

因此,要详细分析碎片离子的形成过程,离子与离子之间的相互关系(亲缘关系)及各种离子的丰度。

一、自由基和电荷中心引发的反应
1. 离子碎裂反应的活性中心
分子失去一个电子形成的离子M+∙是一个奇电子离子。

它的碎裂反应可能丢失一个偶电子的中性分子或奇电子的中性自由基:
M+∙ OE+∙ +N
EE+ +N∙
奇电子离子有二个活泼的反应中心,即电荷中心和自由基中心;偶电子离子只有电荷中心。

奇电子和偶电子离子均优先失去偶电子中性碎片,从而使产物离子的自旋态保持不变。

然而,分子离子也可能失去一个自由基而生成偶电子离子。

一般情况下,碎裂反应只在活性反应中心的邻近发生。

对于由活性中心引发的碎裂反应,活性中心在离子中位置的确定是非常重要的。

2. 特定位置的电离能
就电离的容易程度而言,杂原子上孤对电子 > [共轭 电子 > 电子] > σ电子。

3.自由基引发的反应(又叫 σ-断裂反应)
σ-断裂反应是由游离基中心引发的反应,一个不成对的电子与相连的原子形成一个新键,并伴随着σ原子上另一个键断裂。

因此,这种断裂通常称为“σ-断裂反应”。

在σ碎裂过程中,一个新键形成产生的能量补偿了一个键断裂时所需要的能量。

因此, σ断裂很容易发生。

实际上,它广泛存在于许多类有机物的质谱碎裂过程中。

自由基引发反应的难易程度与原子的给电子能力大小有关。

一般说来,N > S, O, , R∙ > Cl >
Br > I。

最大烷基失去规则:σ-断裂过程中,总是失去较大基团占优势,这是普遍的倾向。

4、电荷引发的反应(i-断裂反应)
i-断裂反应是由正电荷(阳离子)中心引发的,有一对电子转移,一个单键断裂并导致正电荷位置迁移的过程。

OE+∙和EE+ 都能发生i-断裂。

注意,双箭头表示一对电子的转移。

电荷引发反应的容易程度与原子的吸电子(对)能力有关。

一般来说,卤素 > O、S >> N,C。

(1)逆Diels-Alder反应(Retro-Diels-Alder)
逆Diels-Alder 反应,简写成RDA反应。

最典型的代表性模型化合物是环己烯或取代环己烯,其环中的双键 电子产生初始电荷和游离基,通过两次 〈碎裂,形成一个1,3-丁二烯OE+∙离子,并且失去一个中性分子C2H4(环己烯),电荷中心保留在原来位置;如果经过一次 〈碎裂后,再进行一个i 碎裂,将产生一个OE+∙离子,丢失中性1,3-丁二烯分子,电荷中心迁移。

无论哪种过程,都相当于逆Diels-Alder 反应:
从能量学考虑,可以推断电荷保留和电荷迁移产物离子的相对丰度。

当R = H时,丁二烯离子(m/z 54)离子占优势;而当R = C6H5时,生成苯乙烯离子(m/z 104)较为有利。

(2)置换反应(rd,displacement reaction)
由自由基引发,但重排的不是氢原子,而是一个基团。

rd 反应的特点是离子中一个键断裂的同时另一个新键生成。

从能量学观点考虑,rd反应需要的能量较低。

但要发生rd 反应,离子中各原子必须在空间上处于合适位置。

含氯或溴的正构直链烷烃常有很强的rd 反应趋势。

例如,碳数为6~ 12 的正构1-氯代烷可通过rd反应产生m/z 91 离子,为质谱图中的基峰或次强峰。

当碳链再增长时,rd反应的竞争优势显著减弱。

例如,1-氯代n-C14H29Cl 质谱图中,m/z 91离子的丰度降为29.6%。

特别是当有支链时,由于支链的空间位阻,使rd反应完全丧失竞争的优势。

(3)消除反应(re,elimination reaction)
re 反应有两个键断裂并有两个新键生成。

由自由基引发或电荷中心引发,re反应可视为官能团的重排反应,失去的是稳定的中性分子,新生成的离子比其前体离子更稳定。

甲氧基和三甲基硅基的重排是常见的re反应。

二、重排反应
在质谱中往往出现一些特定重排反应,产生的离子峰度高。

这些重排特征离子对推导分子结构很有启示作用。

1.McLafferty 重排
它是由游离基中心引发,涉及到 H转移重排,有两种类型。

麦氏重排的经典模型化合物是一个脂肪酮,如(1)式所示,其过程是 ϒ-H 带着一个电子重排到羰基氧上,与氧上一个未成对电子形成一个新键,然后由游离基引发,进行〈碎裂,导致羰基®键断裂,失去一个稳定的烯烃分子,形成一个奇电子离子。

总结果是两个键断裂及两个新键形成。

此过程形成的是奇电子离子,电荷保留在原位置上。

另一个过程是 ϒ-H重排后,进行i-断裂,形成一个电荷位置转移的奇电子离子及失去一个稳定的分子。

对于同一个化合物而言,是电荷保留的产物强度更大,还是电荷转移的产物强度更大?应该由反应前化合物结构及产物离子结构稳定性决定,有时可能观察到两个丰度不同的产物,有时只观察到其中的一个产物。

分子中存在 键(双键、苯等),又能形成六元环过渡态的化合物都能发生麦氏重排。

这类化合物包括几乎所有含有不饱和官能团化合物,如醛(酮)、酸、酯、烯烃、烷基苯等。

2.其他氢重排
氢重排在有机质谱中非常普遍,不仅有上述六元环过渡态,也有四元环过渡态及七元环过渡态、八元环过渡态等。

在奇电子离子中发生氢重排可以通过游离基引发,偶电子离子则是通过正电荷中心引发;氢重排之后的后续反应可以是 〈碎裂,也可以是i 碎裂。

(1)电荷诱导的重排
(2)两个氢的重排反应–“ McLafferty + 1”重排
结语:通过认识理解质谱裂解机理,对于质谱中出现的离子有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子更好的认识与理解。

综合分析这些离子,可以获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息。

参考文献
[1]吴莉.电感耦合等离子体—质谱/发射光谱法测定生物样品、中药及水样中的微痕量元素[D]. 四川大学,2007
[2]何艺桦.基于CCD的小型光谱分析仪器与化学发光新技术[D]. 四川大学,2007
[3]张胜帮,张学俊,郭玉生. ICP-AES法测定中药中钙[J]光谱学与光谱分析,2004,(10).
[4]庄美华,朱辉忠,蔡伟星,葛振祥. 应用ICP-MS分析汽油中微量的砷、汞、铅[J]分析测试技术与仪器,2005,(04).
[5]陶冠红,藤川阳子. 激光熔蚀-电感耦合等离子体质谱法测定底泥沉积物中的总汞[J]光谱学与光谱分析,2004,(09).。

相关文档
最新文档