弹簧设计计算

合集下载

弹簧设计的计算公式

弹簧设计的计算公式

弹簧设计的计算公式
常见的弹簧设计绝大部分是压缩螺旋弹簧或拉伸螺旋弹簧。

这两种弹簧设计,涉及下面的项目。

在这里将关于a),b),c)进行解说。

a)在使用范围内,弹簧负载和形变量:弹簧常数
b)安装弹簧的空间:长度x外形
c)弹簧的固定方法:弹簧的两端形状和固定方法
d)其他:弹簧刚度(永久变形),疲劳度
(1)弹簧常数和弹簧形状尺寸的关系式
弹簧的形变量和负载(力)的关系。

P =k x δ
P:弹簧负载
k:弹簧常数
δ:弹簧挠度(形变量)
(k:弹簧常数)用弹簧材料特性和弹簧形状可以用下述公式表达。

这个公式压缩螺旋弹簧和拉伸螺旋弹簧都适用。

k =P/δ=G x d4/8 x n x D3 ・・・(A)
G:横向弹性系数(杨氏模量)
d:线径
n:有效匝数
D:平均线圈直径
通过使公式(A)变形,暂时设定D(平均线圈直径),d(线径),
k(弹簧常数)来计算有效匝数:n,或者根据已知的P,D,d,n ,来计算形变量:δ。

(2)弹簧的长度、外形的设计
弹簧长度是根据(允许形变量)与弹簧载荷之间的关系来选择和设计的。

(允许形变量)是会使弹簧变形或损坏的最大变形量(参考图1)。

弹簧设计计算

弹簧设计计算

D(mm)
K1
Fc(N)
100
0.686
62724.63
100
0.686
15846.15
100
0.686
9093.29
分别为959219N和15846N)均大于工作载荷F(13186.81N),所 。
F/Fc 0.210 0.832 荷F下的变形量)
4*E 824000
1-μ² 0.91
碟簧片数 5
0.384
.2-2查得)
Fσ(许用载荷)/N 48000 13100 8610
f=0.75·h0 f(变形量)/mm
1.65 2.1 2.63
σⅡ或σⅢ/Mpa
1420 1050 1240
t代替
5/32
0.15625
H0/t 1.366666667
H0/t-1 0.366666667
C2验算
(H0/t-1)²
h0(碟簧压平时
H0
变形量)/mm (自由高度)/mm
A100
100
51
6
2.2
8.2
B100
100
51
3.5
2.8
6.3
C100
100
51
2.7
3.5
6.2
由C=D/d=100/51=1.96 从表7.2-5查得系数 K1=0.686
D(外径)/mm d(内径)/mm
C
100
51
1.96
⑴ 采用A系列外径D=100mm 碟形复合组合弹簧(A100-1GB/T1972-1992)
Fc(N)
h0/t
A100
2.2
6
13186.81

弹簧的设计计算

弹簧的设计计算

名称与代号压缩螺旋弹簧弹簧直径d/mm由强度计算公式确定弹簧中径D2/mm D2=Cd弹簧内径D1/mm D1=D2-d弹簧外径D/mm D=D2+d弹簧指数C C=D2/d 一般4≤C≤6螺旋升角g/° 对压缩弹簧,推荐g=5°~9°有效圈数n由变形条件计算确定 一般n>2总圈数n1压缩n1=n+(2~2.5);拉伸n1=nn1=n+(1.5~2)( YⅠ型热卷);n1的尾数为1/4、1/2、3/4或整圈,推荐1/2圈自由高度或长度H0/mm两端圈磨平n1=n+1.5时,H0=np+dn1=n+2时,H0=np+1.5dn1=n+2.5时,H0=np+2d两端圈不磨平n1=n+2时,H0=np+3dn1=n+2.5时,H0=np+3.5d工作高度或长度Hn/mm Hn=H0-ln节距p/mm间距d/mm d=p-d压缩弹簧高径比b b=H0/D2展开长度L/mm L=pD2n1/cosg 弹簧弹力计算公式:压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最弹簧常数:以k表示,当弹簧被压缩时,每增加 1mm距离的负荷(kgf/mm);弹簧常数公式(单位:kgf/mm):K=(G×d4)/(8×Dm3×Nc) G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300;磷青铜线G=4500 ;黄铜线G=3500 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 Nc=有效圈数=N-2 弹簧常数计算范例:线径=2.0mm , 外径=22mm , 总圈数=5.5圈 ,钢丝材质=琴钢丝 K=(G×d4)/(8×Dm3×Nc)=(8000×24)/(8×203×3.5)=0.571kgf/mm拉力弹簧拉力弹簧的 k值与压力弹簧的计算公式相同。

拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。

弹簧的k值计算公式(二)

弹簧的k值计算公式(二)

弹簧的k值计算公式(二)弹簧的k值计算公式弹簧的k值(弹性系数)是衡量弹簧强度和刚度的重要参数。

在弹簧的设计和应用过程中,计算k值是必不可少的步骤。

本文将列举几种常见的弹簧k值计算公式,并用例子进行说明。

1. 无扭转弹簧的k值计算公式线圈弹簧(拉伸弹簧)的k值计算公式:k = (G * d⁴) / (8 * D³ * n)其中:k:弹簧的k值(N/m)G:弹簧材料的剪切模量(N/m²)d:弹簧线径(m)D:弹簧直径(m)n:弹簧总匝数(个)例如,假设有一个线径为(5mm)、直径为(40mm)的线圈弹簧,弹簧材料的剪切模量为80 × 10^9 N/m²,总匝数为10个。

那么可以通过上述公式计算出该弹簧的k值:k = (80 × 10^9 * ()^4) / (8 * ()^3 * 10)≈ 15784 N/m因此,该线圈弹簧的k值约为15784 N/m。

扭转弹簧(扭簧)的k值计算公式:k = (G * d⁴) / (32 * D³ * n)其中的符号意义与线圈弹簧的公式相同。

2. 有扭转弹簧的k值计算公式杆弹簧(压簧)的k值计算公式:k = (E * d⁴) / (8 * D³ * n)其中:k:弹簧的k值(N/m)E:弹簧材料的弹性模量(N/m²)d:弹簧线径(m)D:弹簧直径(m)n:弹簧总匝数(个)例如,假设有一个线径为(5mm)、直径为(40mm)的杆弹簧,弹簧材料的弹性模量为200 × 10^9 N/m²,总匝数为20个。

那么可以通过上述公式计算出该弹簧的k值:k = (200 × 10^9 * ()^4) / (8 * ()^3 * 20)≈ 312500 N/m因此,该杆弹簧的k值约为312500 N/m。

总结弹簧的k值计算公式是根据弹簧的材料、几何尺寸和总匝数等参数进行推导的。

各种弹簧计算范文

各种弹簧计算范文

各种弹簧计算范文弹簧是一种常见的机械零件,具有储存和释放机械能的能力。

在工程设计和力学分析中,弹簧的计算是一个重要的问题。

本文将介绍各种弹簧计算的方法和技巧。

1.弹簧刚度计算:弹簧的刚度是指弹簧单位变形所产生的反作用力。

刚度可以用力学公式计算,公式为:k=F/x其中,k为弹簧刚度,单位为牛顿/米(N/m);F为施加在弹簧上的力,单位为牛顿(N);x为弹簧的变形量,单位为米(m)。

2.弹簧的长度计算:弹簧的长度可以通过材料弹性模量和簧片的几何尺寸计算。

通常采用钢材制作的弹簧,长度计算公式如下:L=(8*n*t*R)/(π*d³*E)+d其中,L为弹簧的总长度,单位为米(m);n为簧片的数量;t为簧片的厚度,单位为米(m);R为簧片弧度,单位为米(m);d为簧片的宽度,单位为米(m);E为材料的弹性模量,单位为帕斯卡(Pa)。

3.弹簧的应变能计算:弹簧的应变能是指弹簧储存的机械能。

弹簧的应变能可以通过弹簧刚度和变形量计算,公式为:U=(1/2)*k*x²其中,U为应变能,单位为焦耳(J);k为弹簧刚度,单位为牛顿/米(N/m);x为弹簧的变形量,单位为米(m)。

4.弹簧的最大变形量计算:弹簧的最大变形量是指弹簧在受到最大外力作用时的变形量。

最大变形量可以通过弹簧刚度和作用力的比较计算,公式为:x_max = F_max / k其中,x_max为弹簧的最大变形量,单位为米(m);F_max为施加在弹簧上的最大力,单位为牛顿(N);k为弹簧刚度,单位为牛顿/米(N/m)。

5.弹簧的材料选取:弹簧的材料选取需要考虑加载条件、工作环境和弹簧的工作寿命等因素。

一般情况下,选取材料时需要考虑弹簧的刚度、强度和耐磨性等性能指标,常用材料有高碳钢、合金钢和不锈钢等。

在选取材料时,还需要根据具体需求进行试验和验证。

综上所述,弹簧的计算涉及弹簧刚度、长度、应变能、最大变形量和材料选取等方面。

计算弹簧需要考虑材料的弹性模量、弹簧的几何尺寸和施加在弹簧上的外力。

弹簧计算公式(压簧、拉簧、扭簧弹力)

弹簧计算公式(压簧、拉簧、扭簧弹力)

压簧、拉簧、扭簧弹力计算公式压力弹簧压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷;·弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm);·弹簧常数公式(单位:kgf/mm):G=线材的钢性模数:琴钢丝G=8000,不锈钢丝G=7300,磷青铜线G=4500 ,黄铜线G=3500d=线径Do=OD=外径Di=ID=内径Dm=MD=中径=Do-dN=总圈数Nc=有效圈数=N-2弹簧常数计算范例:线径=2.0mm , 外径=22mm , 总圈数=5.5圈 ,钢丝材质=琴钢丝拉力弹簧的 k值与压力弹簧的计算公式相同·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。

拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。

所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。

·初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度)·弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷 (kgf/mm).·弹簧常数公式(单位:kgf/mm):E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200 ,黄铜线E=11200d=线径Do=OD=外径Di=ID=内径Dm=MD=中径=Do-dN=总圈数R=负荷作用的力臂p=3.1416。

弹簧设计计算过程

弹簧设计计算过程

弹簧设计计算已知条件:最小工作压力:F1=15N最大工作压力:F2=210N工作行程:h=15.5mm弹簧外径:D=17mm弹簧直径:d=3mm计算步骤:1),弹簧中径: D2=D-d=17-3=14mm2),弹簧指数C : 214 4.73D C d === 3),弹簧工作圈数n :21321()7700015.5322.1(22)8()8(21015)G d n F F C λλ-⨯⨯===-⨯-取 (查表得 剪切弹性模数G=77000)4),修正变形量λ1和λ2(1)最小工作载荷F1 :2112315.5770003F =F 21014.1822 4.7N λλ-⨯⨯-=-=⨯⨯⨯⨯3()Gd 8n c (2)弹簧刚度j : 212101512.58/15.5F F j N mm h --=== (3)变形量λ1和λ21114.1 1.1212.58F mm j λ=== 2221016.6912.58F mm j λ=== 5),弹簧圈间隙δ:216.690.10.13 1.0622d mm n λδ=+=+⨯=(取1mm ) 6)弹簧节距P :P=δ+d=1+3=4mm 7)弹簧自由高度H 0:01(0.5)221(240.5)392.5H n n d mm δ=+-=⨯+-⨯= (总圈数 n 1=n+2=24)8)实际极限载荷F lim :lim 12.58221276.76F jn N δ==⨯⨯=弹簧的最大压缩量也就是最大工作负荷下的变形量F:F=Pn/P' 式中:Pn--最大工作负荷,N. Pn=πd^3/(3KD) [ τ ]式中:d--弹簧钢丝直径,mm. D--弹簧中径,mm. K--曲度系数,K=(4c-1)/(4c-4)+ 0.615/c c=D/d[ τ ]--弹簧的许用应力,MPa.P'--弹簧刚度,N/mm. P'=(Pn-P1)/h. 式中:P1--最小工作负荷,N。

弹簧的计算公式

弹簧的计算公式

c
最大许用压 力Ps(Kg.f) 2154.368051
弹簧常数K
(Kg/mm) 24
圈内径D1,弹簧圈中径D2,
差愈大,材料利用率低;反
18~40 4~6
用着:扭矩T=FRcosα ,弯 径)。由于弹簧螺旋角α的 因此,在弹簧丝中起主要作 F。这种简化对于计算的准
,只是扭矩T和切向力Q均 于圆形弹簧丝
丝曲率的影响,可得到扭
条件下钢丝直径
k
19531.25
N/M
7.68
;对于压缩弹簧总圈数n1 ,通常弹簧的有效圈数最 弹簧,刚度愈大,弹簧也 引起较大的切应力。此外, 。
进行稳定性的验算。(见 列情况取为:
稳时的临界载荷Fcr。一般
Fmax之值,以保证弹簧的 杆或导套,以免弹簧受载时图a ຫໍສະໝຸດ 图b 图c7~16 4~8
弹簧总圈数与其工作圈数间的关系为:
弹簧节距t一般按下式取:
(对压缩弹簧);
t=d (对拉伸弹簧); 式中:λmax --- 弹簧的最大变形量; Δ --- 最大变形时相邻两弹簧丝间的最小距离,一般不小于0.1d。
弹簧钢丝间距: δ=t-d ; 弹簧的自由长度: H=n·δ+(n0-0.5)d(两端并紧磨平); H=n·δ+(n0+1)d(两端并紧,但不磨平)。 弹簧螺旋升角:
式中K为曲度系数。它考虑了弹簧丝曲率和切向力对扭应力的影响。一定条件下钢丝直径
3、弹簧的刚度 圆柱弹簧受载后的轴向变形量
式中n为弹簧的有效圈数;G为弹簧的切变模量。 这样弹簧的圈数及刚度分别为
对于拉伸弹簧,n1>20时,一般圆整为整圈数,n1<20时,可圆整为1/2圈;对于压缩弹簧总圈数n1 的尾数宜取1/4、1/2或整圈数,常用1/2圈。为了保证弹簧具有稳定的性能,通常弹簧的有效圈数最 少为2圈。C值大小对弹簧刚度影响很大。若其它条件相同时,C值愈小的弹簧,刚度愈大,弹簧也 就愈硬;反之则愈软。不过,C值愈小的弹簧卷制愈困难,且在工作时会引起较大的切应力。此外, k值还和G、d、n有关,在调整弹簧刚度时,应综合考虑这些因素的影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱螺旋压缩弹簧设计计算
项目 最小工作载荷P1 最大工作载荷Pn 工作行程h 弹簧中径D 弹簧直径d 原 弹簧类别 始 条 端部结构 件 旋绕比C 曲度系数K 弹簧材料 材料极限切应力 材料切变模量 初算弹簧刚度P' 工作极限载荷Pj 单位 N N mm mm mm 公式及数据 2000 7570 170 80 14 III类 端部并紧、磨平,两端支承圈各1圈 C= 5.714285714 K= 1.266715909 60Si2Mn MPa τj= 740 MPa G= 79000 N/mm P'= 32.76470588 N Pj= 7868.763643 P1= Pn= h= D= d= fj= 10.62006597 P'd= 740.9335938 n= 22.613772 取 n= n1= 30 P‘= 26.46191406 Fj= t= H0= D2= D1= α= L= H1= Hn= Hj= h= 下限 上限 b= 297 24.61 710.08 取H0= 94 66 5.592578199 7576 634.42 423.93 412.64 210.49 0.25 0.96 81、根据弹簧套筒内径以及旋绕比C 5~8初步确定 弹簧直径与中径; d 3 j 2、由极限载荷公式 Pj 8DK 可知,极限载荷 只由中径、直径以及材料有关,与施加的外力无关 。故一旦中径、直径以及材料确定后,弹簧的极限 载荷就是一定值; 3、根据 弹簧的工作范围为20%~80%初步确定最小工作载荷 以及最大工作载荷;最小工作载荷应大于推动侧护 板所需要的力; 4、根据以上 最终验算结果,对以上各值进行调整
工作极限载荷下的 mm 单圈变形量fj 单圈弹性刚度P'd N/mm 有效圈数n 圈 总圈数n1 圈 N/mm 参 数 弹簧刚度P’ 计 算 工作极限载荷下的 变形量Fj mm 节距t mm 自由度高H0 mm 弹簧外径D2 mm 弹簧内径D1 mm 螺旋角α (°) 展开长度L mm 最小载荷时高度H1 mm 最大载荷时高度Hn mm 极限载荷时高度Hj mm mm 验 算 实际工作行程h 工作范围 高径比b
相关文档
最新文档