土木建筑弯矩曲率关系
梁纯弯曲变形

梁纯弯曲变形引言梁纯弯曲变形是工程力学中的一个重要概念。
在结构力学和土木工程中,梁是一种常见的结构元素,承受着各种外部荷载。
当外部荷载作用于梁上时,梁会发生变形。
本文将探讨梁在纯弯曲状态下的变形特性和相关的理论基础。
纯弯曲的概念纯弯曲是指梁所受的外部荷载仅产生弯矩作用,而不产生剪力作用。
在梁的纵轴上,上部受拉,下部受压,梁在这种状态下发生弯曲变形。
纯弯曲情况下,梁的截面仅发生弯矩引起的形状变化,并不会发生剪切变形。
纯弯曲对于大跨度的梁和悬臂梁等结构具有重要意义。
纯弯曲变形的理论基础梁纯弯曲变形的理论基础可以通过两种方法进行分析:理论分析和数值分析。
理论分析理论分析方法中,我们可以利用梁的弯矩-曲率关系来分析纯弯曲变形。
弯矩-曲率关系描述了梁截面上的弯矩和截面曲率之间的关系。
根据弯矩-曲率关系,我们可以计算出梁的曲率分布,从而得到梁的变形情况。
此外,利用材料力学中的应力-应变关系,还可以计算出梁截面上的应力分布。
数值分析数值分析方法中,我们可以使用有限元方法来模拟梁的纯弯曲变形。
有限元方法将梁划分为许多小的单元,通过求解弯矩和力的平衡方程,可以得到梁单元上的位移和应力分布。
通过将所有单元的位移组合起来,可以得到整个梁的变形情况。
纯弯曲变形的计算纯弯曲变形的计算依赖于梁的几何形状、材料特性和外部荷载。
常见的计算方法包括:基于梁理论的计算基于梁理论的计算方法适用于简单、均匀截面的梁。
在这种方法中,我们可以使用梁的截面形状和材料性质,通过弯矩-曲率关系计算出梁的曲率分布。
进一步,可以计算出梁的位移、剪力和应力等参数。
基于有限元分析的计算基于有限元分析的计算方法适用于复杂截面的梁。
在这种方法中,我们将梁划分为许多小的单元,并求解每个单元上的位移和应力分布。
通过将所有单元的位移组合起来,可以得到整个梁的变形情况。
梁纯弯曲变形的应用梁纯弯曲变形的应用广泛,特别是在土木工程和结构设计中。
通过对梁的纯弯曲变形进行分析,可以确定梁的合适截面形状和尺寸,以满足其承受的外部荷载要求。
RC混凝土弯矩曲率关系全过程数值分析-C++编程

练习1:钢筋混凝土矩形截面:b=300mm,h=600mm,h0=560mm,a s’=25mm,a s=40mm,A s’=157mm2,A s=804mm2,f y’=280MPa,f y=280MPa,E s=200GPa,E c=25.5GPa,f c=13.4MPa,f t=1.54MPa,ε0=0.002,εcu=0.0038,εs u≤10%=0.10。
.利用数值方法计算截面的M~Φ关系,并附简化计算结果M u。
2Φ10h=600mm4Φ16将程序计算出的结果导入excel生成如下表格:图1.纯弯构件截面曲率phi随弯矩M加载曲线图2.纯弯构件截面受压区高度x0随弯矩M加载曲线纯弯构件M-phi曲线数值分析程序(C++)#i#include<iostream>#include<math.h>#include<fstream>#include<iomanip>using namespace std;int main(){cout<<"设计中As=804mm2,As'=157mm2,fy=280MPa,fy'=280MPa,Es=200GPa,Ec=25.5GPa"<<endl;cout<<endl;cout<<" fc=13.4MPa,ft=1.54MPaε0=0.002,εcu=0.0038,εsu<=0.1"<<endl;cout<<endl;//给出题目的基本信息inti;double b,h,as0,as1,x0,c,t,p1,p2,p3,h0,x01,x02,d,f;double k,k1,k2,ms0,ms1,mc,f1,f2,M,sc,m1,m2,m3,mc1,e1,sc1,sc2,q;ofstreamoutfile;b=300;h=600;as0=40;as1=40;h0=h-as0;//给出题目相关参数outfile.open("data.txt");//建立数据输出文件for(mc=0.00000001;mc<=0.0038;mc=mc+0.00001){x01=0.0;x02=600.0;for(x0=0;;){x0=0.5*(x01+x02);ms1=mc/x0*(x0-25);ms0=mc/x0*(h0-x0 );//求出钢筋应变f2=200*ms1*1000;//受压区钢筋应力f1=200*ms0*1000;//受拉区钢筋应力if(f1>280){ f1=280;}if(f1<-280){f2=-280;}if(f2>280){f2=280;}//εsu<=0.1是达不到的,必定小于0.1p1=0.0;m1=0.0; p2=0.0;m2=0.0;p3=0.0;m3=0.0;for( i=0;i<=1000;i++){sc=mc*(i+0.5)/1000;if(sc<0.002){k=13.4*(1000*sc-sc*sc/0.000004);}if(sc>=0.002&&sc<=0.0038){k=13.4;}p1=p1+k*300*x0/1000;m1=m1+k*300*x0/1000*(x0*(i+0.5)/1000);}//受压区混凝土mc1=(600-x0)*mc/x0;e1=1.54/25.5/1000;//对受拉区最下缘做出判断的两个数据if(mc1<=e1)//未开裂情况下受拉区混凝土,f2受压区钢筋f1受拉区钢筋{d=600-x0;for(int j=0;j<=1000;j++){sc1=mc1*(j+0.5)/1000;k1=25.5*sc1*1000;p2=p2+k1*300*d/1000;m2=m2+k1*300*d/1000*(d*(j+0.5)/1000);}t=f1*804+p2;c=f2*157+p1;//此种情况下全结构的压力C和拉力TM=m1+f2*157*(x0-25)+m2+f1*804*(560-x0);//此种情况下的弯矩}if(mc1>=e1)//开裂情况下的受拉区混凝土,f2受压区钢筋f1受拉区钢筋{d=e1*x0/mc;for(int r=0;r<=1000;r++){sc2=e1*(r+0.5)/1000;k2=25.5*sc2*1000;p3=p3+k2*300*d/1000;m3=m3+k2*300*d/1000*(d*(r+0.5)/1000);}t=f1*804+p3;c=f2*157+p1;//此种情况下全结构的压力C和拉力TM=m1+f2*157*(x0-25)+m3+f1*804*(h0-x0);}//此种情况下的弯矩f=(c-t)/c;q=mc/x0;//f为压力和拉力之间的误差比,q为曲率if(fabs(f)<0.01){outfile<<setw(10)<<q<<endl;x0=300;break;}//输出相关数据etw(10)<<x0<< elseif(t<c)//二分法作判断,对x0做循环判断{ x02=x0;x01=x01;}else{ x01=x0;x02=x02;}}}outfile.close();system("pause");return 0;//程序结束}}。
弯曲变形——精选推荐

第六章弯曲变形判断弯曲变形1、“平面弯曲梁的挠曲线必定是一条与外力作用面重合或平行的平面曲线”2、“由于挠曲线的曲率与弯矩成正比,因此横截面的挠度与转角也与横截面的弯矩成正比”3、“只要满足线弹性条件,就可以应用挠曲线的近似微分方程”4、“两梁的抗弯刚度相同、弯矩方程相同,则两梁的挠曲线形状相同”5、“梁的挠曲线方程随弯矩方程的分段而分段,只要梁不具有中间铰,梁的挠曲线仍然是一条光滑、连续的曲线。
”6、“最大挠度处的截面转角一定为0”7、“最大弯矩处的挠度也一定是最大”8、“梁的最大挠度不一定是发生在梁的最大弯矩处。
”9、“只要材料服从虎克定律,则构件弯曲时其弯矩、转角、挠度都可以用叠加方法来求”10、“两根几何尺寸、支撑条件完全相同的静定梁,只要所受的载荷相同,则两梁所对应的截面的挠度和转角相同,而与梁的材料是否相同无关”11、“一铸铁简支梁在均布载荷的作用下,当其横截面相同且分别按图示两种情况放置时,梁同一截面的应力和变形均相同”选择弯曲变形1、圆截面的悬臂梁在自由端受集中力的作用,当梁的直径减少一半而其他条件不变时,最大正应力是原来的倍;最大挠度是原来的倍。
若梁的长度增大一倍,其他条件不变,最大弯曲正应力是原来的倍,最大挠度是原来的倍。
A:2; B:16 C:8 D:4;2、y’’=M(x)/EI在条件下成立。
A:小变形; B:材料服从虎克定律;C:挠曲线在xoy面内; D:同时满足A、B、C;3、等直梁在弯曲变形时,挠曲线最大曲率发生在处。
A:挠度最大; B:转角最大 C:剪力最大; D:弯矩最大;4、在简支梁中,对于减少弯曲变形效果最明显。
A:减小集中力P; B:减小梁的跨度;C:采用优质钢; D:提高截面的惯性矩5、板条弯成1/4圆,设梁始终处于线弹性范围内:①σ=My/I Z,②y’’=M(x)/EI Z哪一个会得到正确的计算结果?A:①正确、②正确;B:①正确、②错误; C:①错误、②正确; D:①错误、②错误;6、应用叠加原理求横截面的挠度、转角时,需要满足的条件是。
型钢加固钢筋混凝土梁弯矩—曲率关系的研究

l 0
道
建
筑
De e e , 0 8 c mb r 2 0
Ral y En ie rn i wa gn eig
文章编 号 :0 319 (0 8 1. 1。3 10 .95 2o )20 00 0
型钢 加 固钢 筋 混 凝 土梁 弯 矩一 曲率 关 系的研 究
王 尧 燕 , 宏 文 周
12 本 构 关 系 .
型钢 加 固钢 筋混凝 土 梁 的截 面 弯矩一 曲率 (
) 能 性
1 混凝 土应 力一应 变关 系 )
进行 分析 , 包括初 始弯 矩 、 型钢截 面高 度 h 。和原钢
筋混 凝土梁 配筋率 等 , 型钢加 固钢筋 混凝 土 梁 的 对
采 用《 凝 土 结 构设 计 规 范 》 G 50 0 2 0 ) 混 ( B 0 1- 0 2 中
第 二次受 力 ( 即加 固后再 次旌加 外荷 载 ) 时才 开始工 作 的 。因此 , 型钢 加 固钢筋混 凝 土梁 截 面 的 M- ( 系 分 p关 两个 阶段 考虑 。具体 计算 步骤 是 : 设 置初 始 条 件 : ①
= ; O ②每 次取 : 曲率 = +△ ③ 假定某 一 规定截 面 ; 的应 变 ; 求 出各 条带 的应 变 e ⑤ 按钢 筋 和混 凝 土 ④ ; 的应力 一应 变关 系 求 对 应 于应 变 e的应 力 ; 如 已 ⑥
关系) , 时 为简化 计算 采用 以下基本 假定 : 1 平截 面假定 ; ) 2 不考 虑剪 切变形 的影 响 ; )
3 不考 虑型 钢失稳 破坏 ; )
4 截 面破坏 条件 为 : 受 压 混凝 土 边 缘应 变 达 到 ) ① 混 凝土极 限应 变 ; 型钢或 钢筋应 变达 到极 限应变 。 ②
《弯矩曲率关系》课件

曲率的定义
曲率:描述曲线弯曲程度的量, 定义为曲线上任一点处切线方向 角的变化量与经过的弧长的比值
。
在数学上,曲率是用来衡量曲线 上某一点附近的小弧段弯曲程度
的量。
对于直线,其曲率为0;对于圆 ,其曲率是一个常数,等于圆的
半径倒数。
曲率的计算
曲率计算公式:K = lim(Δs->0) [Δs / (Δt)^2] / lim(Δt>0) [Δs / Δt]
在机械工程中的应用
传动系统设计
在机械传动系统中,弯矩曲率关系对于齿轮、轴等部件的设计和优化具有指导意义。了解弯矩与曲率的关系有助 于提高传动系统的效率和稳定性。
疲劳分析
在机械部件的疲劳分析中,弯矩曲率关系是评估其疲劳寿命的重要因素之一。通过对弯矩和曲率的变化规律进行 分析,可以预测部件的疲劳寿命和潜在的疲劳断裂风险。
在工程结构中,弯矩和曲率是密切相关的。例如,在桥梁、建筑和机械设计中,需 要考虑到结构的弯曲程度和弯矩之间的关系。
当结构受到外力作用时,会发生弯曲变形,曲率会发生变化,同时弯矩也会随之改 变。因此,在设计时需要考虑到结构的承载能力和稳定性。
了解弯矩与曲率的关系有助于工程师更好地设计结构,确保其安全性和稳定性。
需要研究弯矩曲率关系在不同温度、湿度等环境 条件下的变化规律。
需要探索弯矩曲率关系在复合材料、智能材料等 新型材料中的应用。
对学习者的建议
学习者应该深入理解弯矩和曲 率的定义及测量方法。
学习者应该掌握弹性力学和 材料力学的基本原理,以便 更好地理解弯矩曲率关系。
学习者可以通过实验和实践来 加深对弯矩曲率关系的理解和
应用。THANΒιβλιοθήκη S感谢观看详细描述
弯矩是材料力学中一个重要的概念,用于描述弯曲变形过程 中截面所受到的力矩作用。在材料受到弯曲时,截面上会产 生剪力和弯矩,弯矩的大小与剪力和中性轴距离有关。
材料力学梁弯曲理论在结构概念设计中的应用

材料力学梁弯曲理论在结构概念设计中的应用随着现代建筑的快速发展,材料力学梁弯曲理论在结构概念设计中的应用已成为建筑设计的常态。
建筑结构设计是建筑工程的核心和灵魂,它是建筑工程中最重要的部分之一。
因此,在进行建筑结构设计时,必须考虑材料力学梁弯曲理论的使用,以确保建筑结构的稳定性、耐久性和安全性。
一、梁弯曲的基本原理梁是建筑结构中广泛使用的一种构件类型。
在一定的载荷作用下,梁由于其本身结构的形状和材料的力学特性,发生了弯曲。
发生弯曲时,梁的一个面(称为拉应力面)发生拉伸,另一个面(称为压应力面)发生压缩。
弯曲梁的基本原理是通过将梁内部各部分的力学行为分析,确定梁的受力状态,进而确定梁的弯曲半径和变形量等参数。
梁弯曲的基本原理可以通过材料力学梁弯曲理论来描述,其中有两个主要的方程式:弯矩-曲率定理和梁的偏差方程。
弯矩-曲率定理描述了梁曲率与弯矩之间的关系。
梁曲率是指横截面曲率半径的倒数,而弯矩是指梁上某点处的剪力矩。
弯矩-曲率定理表明,在弯矩为常数的情况下,梁的曲率和弯曲角度成反比例关系。
梁的偏差方程描述了梁在弯曲过程中的变形情况,其中涉及梁上各点的弯曲角、横向位移和变形量等参数。
梁的偏差方程是一个重要的方程式,可以用于计算梁的自由挠曲形,并确定梁的初始状态和长期状态。
二、梁弯曲理论在结构概念设计中的应用材料力学梁弯曲理论在结构概念设计中的应用主要包括以下几个方面:1. 建筑结构的初步设计在建筑结构的初步设计中,需要确定建筑结构的几何形状和梁的布置方式。
根据梁的弯曲理论,可以对建筑结构的初步设计进行评估,确定建筑结构的最大载荷和最大变形量,并根据这些数据调整建筑结构的设计方案。
2. 梁的截面设计在梁的设计过程中,需要确定梁的截面积和断面形状。
根据梁弯曲理论,可以计算出梁在最大载荷下的弯曲应力和剪应力,从而确定梁的截面大小和形状。
3. 梁的选材梁的材料选择是建筑结构设计过程中的重要环节。
根据梁的弯曲理论,可以计算出不同材料的截面尺寸,在材料强度相同的情况下,可以选择强度更高的材料,以确保建筑结构的稳定性和安全性。
第二章弯矩曲率关系

n
i 1
ci
Ai s' As' s As N 0
n
2) 假定和 值
M 0,
M ci Ai Z i s As (
i 1
h h a s ) s As (a s )=0 2 2
3) 由相容方程求出各条带混凝土的应变及钢筋的应变; 4) 由物理关系求出相应的应力,拉区混凝土条带的应变 超过其极限受拉应变时,应对其进行处理;
2) 假定 值
X 0,
n
i 1
ci
Ai s' As' s As N 0
n
M 0,
M ci Ai Z i s As (
i 1
h h a s ) s As (a s )=0 2 2
3) 由相容方程求出各条带混凝土的应变及钢筋的应变; 4) 由物理关系求出相应的应力,拉区混凝土条带的应变 超过其极限受拉应变时,应对其进行处理;
5) 将各应力值代入第一平衡方程,判断是否满足平衡条件: 如不满足,需要调整 值直至满足为止,如满足平衡条件, 则由第二平衡方程求出M,然后重复步骤1~5
6) 当符合破坏条件时,停止计算。
二、骨架曲线的弯矩-曲率关系
2. 短期荷载下的弯矩-曲率关系
M - 关系的计算方法之二 :分级加荷载法
1) 取M=M+M
h h/2as
as b
n
As
对钢筋混凝土柱, 有时也可能会出现 s < 0
s s ( s )
二、骨架曲线的弯矩-曲率关系
2. 短期荷载下的弯矩-曲率关系
截面的平衡方程
as h/2as h h/2as as b 1 i Zi 截面中心线 n As As
钢筋混凝土梁受弯承载力的极限状态分析

钢筋混凝土梁受弯承载力的极限状态分析一、前言钢筋混凝土梁是建筑结构中常用的梁型,其受弯承载力是设计中必须考虑的重要参数。
本文旨在通过极限状态分析的方法,深入研究钢筋混凝土梁受弯承载力的计算方法,为工程实践提供参考。
二、钢筋混凝土梁的受弯承载力钢筋混凝土梁的受弯承载力可以分为两种状态:弹性状态和破坏状态。
1.弹性状态下的计算方法在弹性状态下,钢筋混凝土梁的受弯承载力可以使用弯矩与曲率的关系式进行计算。
其中,弯矩M与截面曲率κ的关系式为:M = EIκ其中,E为混凝土的弹性模量,I为截面惯性矩,κ为曲率。
钢筋混凝土梁的受弯承载力为:N = Ws + Wc其中,Ws为钢筋的贡献,Wc为混凝土的贡献。
2.破坏状态下的计算方法在破坏状态下,钢筋混凝土梁的受弯承载力可以分为两种情况:钢筋首先达到屈服,或者混凝土首先破坏。
(1)钢筋首先达到屈服当钢筋首先达到屈服时,钢筋的贡献达到最大值。
此时,钢筋混凝土梁的受弯承载力为:N = Asfy + 0.85fcbhα其中,As为钢筋的截面面积,fy为钢筋的屈服强度,fcb为混凝土的轴心抗压强度,h为截面高度,α为中性轴深度与截面高度之比。
(2)混凝土首先破坏当混凝土首先破坏时,混凝土的贡献达到最大值。
此时,钢筋混凝土梁的受弯承载力为:N = 0.85fcbhα + βAsfy其中,β为钢筋的利用系数。
当钢筋截面面积小于等于βfcbhα/fy时,β=1,否则β按以下公式计算:β = 0.85 + 0.15fy/σs其中,σs为钢筋的应力。
三、极限状态分析极限状态分析是一种基于概率统计理论的结构设计方法,其目的是确定结构在极限状态下所能承受的荷载。
在极限状态分析中,首先需要确定荷载的概率分布,然后通过统计方法计算结构的可靠性指标,最后确定结构所能承受的荷载。
对于钢筋混凝土梁的极限状态分析,可以采用可靠度指标β进行计算。
其计算公式为:β = (R - X)/S其中,R为荷载的可靠度指标,X为结构的阈值,S为结构的标准差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当cb =tu时,认为拉区混凝土开裂并退出工作(约束受拉)
净距30mm 钢筋直径d
h h0=h-60
c25mm d
c
b
净距25mm 钢筋直径d
h h0=h-35
b
h b
2 ~ 2.5
3.5(矩形截面) ~ 4.0(T形截面)
d 10 ~ 20mm(桥梁中14 ~ 40mm)
三、截面尺寸和配筋构造
1. 板
c15mm d
分布钢筋
h0
h
d 8 ~ 12mm
二、骨架曲线的弯矩-曲率关系
1. 基本假定
P
平截面假定----平均应变意义上
As’
as’
dy
y
h
L/3
L/3
ct
L
c
s’ nh0
As
as b
s
b c
(1-n)h0
忽略剪切变形对梁、柱构件变形的影响
二、骨架曲线的弯矩-曲率关系
2. 短期荷载下的弯矩-曲率关系
截面的相容关系
as h/2as h h/2as
P
曲率
平均应变分布
即使在纯弯段也只可能在几个截面上出现裂 缝,裂缝间混凝土的拉应变不相等
?
二、骨架曲线的弯矩-曲率关系
2. 短期荷载下的弯矩-曲率关系
拉区混凝土开裂后的处理--Considère(1899)试验
N (kN)
200
混凝土:fc=30.8MPa; ft=1.97MPa;
Ec=25.1103MPa.
150
钢筋: fy=376MPa; fsu=681MPa; Es=205103MPa; As=284mm2.
100 50 0
裸钢筋 152 混凝土中的钢筋 N
0.001
0.002
N 915
152
0.003
平均应变 0.004
“拉伸硬 化”现象
三、截面尺寸和配筋构造
1. 梁
c
c
净距30mm 钢筋直径d
t<ft
sAs
sAs t=ft(ct =tu)
s<y
sAs
s= fyAs
y
fyAs s>y
四、受弯构件的试验研究
2. 试验结果
结论
•适筋梁具有较好的变形能力,超筋梁和少筋梁的破坏具有突然性,设计 时应予避免
•在适筋和超筋破坏之间存在一种平衡破坏。其破坏特征是钢筋屈服的同 时,混凝土压碎
•界限配筋率、最小配筋率是区分适筋破坏、超筋破坏和少筋破坏的定量 指标
s s ( s )
(ci 0) (ci 0)
as
h/2as h h/2as
as
As
1
c1 s
i
ci M
Zi
N
截面中心线 s n
As
b
sAs ci
sAs
对钢筋混凝土柱, 有时也可能会出现
s < 0
s s ( s )
二、骨架曲线的弯矩-曲率关系
2. 短期荷载下的弯矩-曲率关系
截面的平衡方程
As
as 1
h/2-
i
as h h/2-
Zi
as
截面中心线 s
n
as
As
b
c1 s ci M
N
X 0,
n
ci Ai
' s
As'
s As
N
0
i 1
sAs ci
sAs
M 0,
M
n
ciAi Z i
i 1
s
As
(
h 2
as ) s As (as
h )=0 2
二、骨架曲线的弯矩-曲率关系
2. 短期荷载下的弯矩-曲率关系
第二章 钢筋混凝土梁柱截面的 弯矩-曲率关系
同济大学土木工程学院建筑工程系 顾祥林
一、概述
试验梁
荷载分配梁 P
外加荷载 应变计
数据采集系统
M
As
位移计
L/3
L/3
L
带定向滑 轮的千斤 顶
P
外加荷载
N
柱的竖向荷载
位移计
数据采集系统
h
As b
II I
O
As
试验柱
H
h
台座
b
超筋 平衡
III
适筋
最小配筋率
五、受弯构件正截面受力分析
1. 基本假定 P
平截面假定----平均应变意义上
As’
as’
dy
y
h
L/3
L/3
ct
L
c
s’ nh0
As
(1-n)h0
s
b c as
bt cc s's
nh0 y nh0 as ' (1n )h0
五、受弯构件正截面受力分析
1. 基本假定
混凝土受压时的应力-应 变关系
as b
ci Zi
As
1
i
Zi
截面中心线 s n
As
c1 s ci M
N
sAs ci
sAs
s
'
(
h 2
as
'
)
s
(h 2
as )
二、骨架曲线的弯矩-曲率关系
2. 短期荷载下的弯矩-曲率关系
截面的物理方程(对物理方程的处理)
ci c (ci ) ci c ( ci )
s s ( s )
h0 h 20
板厚的模数为10mm
四、受弯构件的试验研究
1. 试验装置
试验 梁
荷载分 配梁 P
外加荷 载
应变 计
位移
L/3
计
L/3
L
s
As bh0
数据采集 系统
As
h
A bs
四、受弯构件的试验研究
2. 试验结果
适筋破坏
四、受弯构件的试验研究
2. 试验结果
超筋破坏
四、受弯构件的试验研究
2. 试验结果
五、受弯构件正截面受力分析
1. 基本假定
混凝土受拉时的应力-应变关系
t ft
t=Ect
t
o t0
五、受弯构件正截面受力分析
1. 基本假定
钢筋的应力-应变关系
s
fy
s=Ess
y
s su
五、受弯构件正截面受力分析
2. 弹性阶段的受力分析
ct
c
h0 h
M
s b c
As b
xn sAs
采用线形的物理关系
拉区混凝土开裂后的处理
As
as 1
h/2-
i
as h h/2-
Zi
as
截面中心线 s
n
as
As
b
c1 s ci M
N
sAs ci
sAs
ci > t0
该条带混 凝土开裂
ci > tu
该条带混凝 土退出工作
ci = 0
二、骨架曲线的弯矩-曲率关系
2. 短期荷载下的弯矩-曲率关系
拉区混凝土开裂后的处理
P
超筋破坏
四、受弯构件的试验研究
2. 试验结果
平衡破坏(界限破坏,界 限配筋率)
四、受弯构件的试验研究
2. 试验结果
最小配筋率
四、受弯构件的试验研究
2. 试验结果 P
M
超筋 平衡
III
适筋
L/3 L
II 少筋 I O
最小配筋率
c
c
c
c
L/3
(c’<u) c
MI
Mcr
MII
My
(Mu) MIII
n
2
1 60
(
fcu
50),当n
2时,取n
2
当应力较小时,如
c
0.3
f
时,可取
c
c Ecc
c
fc
c
fc
1
1
c 0
n
o
0
0 0.002 0.5 fcu 50105
0 0.002时,取0 0.002
c u
u 0.0033 fcu 50105
u 0.0033时,取u 0.0033
c c Ec
t t Ec
s s Es
五、受弯构件正截面受力分析
2. 弹性阶段的受力分析
ct
c
h0 h
M
s b c
As b
xn
sAs
(E-1)As
s t
s
Es s
Es Ec
t
E t
用材料力学的方法求解
T s As E As t
将钢筋等效成混凝土
五、受弯构件正截面受力分析
2. 弹性阶段的受力分析