实验离散时间傅里叶变换和离散傅里叶变换
实验2 离散时间傅里叶变换

电 子 科 技 大 学实 验 报 告学生:项阳 学 号: 2010231060011 指导教师:邓建一、实验项目名称:离散时间傅里叶变换二、实验目的:熟悉序列的傅立叶变换、傅立叶变换的性质、连续信号经理想采样后进行重建,加深对时域采样定理的理解。
三、实验容:1. 求下列序列的离散时间傅里叶变换(a) ()(0.5)()n x n u n = (b) (){1,2,3,4,5}x n =2. 设/3()(0.9),010,j n x n e n π=≤≤画出()j X e ω并观察其周期性。
3. 设()(0.9),1010,n x n n =--≤≤画出()j X e ω并观察其共轭对称性。
4. 验证离散时间傅里叶变换的线性、时移、频移、反转(翻褶)性质。
5. 已知连续时间信号为t a e t x 1000)(-=,求:(a) )(t x a 的傅里叶变换)(Ωj X a ;(b) 采样频率为5000Hz ,绘出1()j X e ω,用理想插函数sinc()x 重建)(t x a ,并对结果进行讨论;(c) 采样频率为1000Hz ,绘出2()j X e ω,用理想插函数sinc()x 重建)(t x a ,并对结果进行讨论。
四、实验原理:1. 离散时间傅里叶变换(DTFT)的定义:2.周期性:()j X e ϖ是周期为2π的函数(2)()()j j X e X e ϖϖπ+= 3.对称性:对于实值序列()x n ,()j X e ϖ是共轭对称函数。
*()()Re[()]Re[()]Im[()]Im[()]()()()()j j j j j j j j j j X e X e X e X e X e X e X e X e X e X e ϖϖϖϖϖϖϖϖϖϖ-----===-=∠=-∠4.线性:对于任何12,,(),()x n x n αβ,有1212[()()][()][()]F x n x n F x n F x n αβαβ+=+5.时移[()][()]()j k j j k F x n k F x n e X e e ωωω---==6.频移00()[()]()j n j F x n e X e ωωω-=7.反转(翻褶)[()]()j F x n X e ω--=[()]()()(),()j j jn z e n n F x n X e X z x n e x n ωωω∞-==-∞∞=-∞===<∞∑∑收敛条件为:五、实验器材(设备、元器件):PC机、Windows XP、MatLab 7.1六、实验步骤:本实验要求学生运用MATLAB编程产生一些基本的离散时间信号,并通过MATLAB的几种绘图指令画出这些图形,以加深对相关教学容的理解,同时也通过这些简单的函数练习了MATLAB的使用。
离散时间信号的傅里叶变换和离散傅里叶变换

离散时间信号的傅里叶变换和离散傅里叶变换摘要本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。
同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。
1. 离散时间傅里叶变换1.1离散时间傅里叶变换及其逆变换离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展n j e ω-开,为离散时间信号和线性时不变系统提供了一种频域表示,其中是实频率ω变量。
时间序列x[n]的离散时间傅里叶变换定义如下:)(ωj e X (1.1)∑∞-∞=-=nnj j e n x e X ωω][)(通常是实变量的复数函数同时也是周期为的周期函数,并且)(ωj e X ωπ2的幅度函数和实部是的偶函数,而其相位函数和虚部是的奇函数。
)(ωj e X ωω这是由于:(1.2))()()(tan )()()()(sin )()()(cos )()(222ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X =+===由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从中算出:)(ωj e X 1(1.3)ωπωππωd e eX n x n j j )(21][⎰-=故可以称该式为离散时间傅里叶逆变换(IDTFT ),则式(1.1)和(1.3)构成了序列x[n]的离散时间傅里叶变换对。
上述定义给出了计算DTFT 的方法,对于大多数时间序列其DTFT 可以用收敛的几何级数形式表示,例如序列x[n]=,此时其傅里叶变换可以写成简单n α的封闭形式。
(完整版)数字信号处理实验三

3.41;3.42 由教材可知: ,即序列的偶部分的傅立叶变换是序列的傅立叶变换的实部。
5、实验步骤
1、进行本实验,首先必须熟悉matlab的运用,所以第一步是学会使用matlab。
2、学习相关基础知识,根据《数字信号处理》课程的学习理解实验内容和目的。
plot(w/pi,angle(h1));grid
xlabel('\omega/\pi');ylabel('以弧度为单位的相位');
title('原序列的相位谱')
subplot(2,2,4)
plot(w/pi,angle(h2));grid
xlabel('\omega/\pi');ylabel('以弧度为单位的相位');
grid;
title('相位谱arg[H(e^{j\omega})]');
xlabel('\omega/\pi');
ylabel('以弧度为单位的相位');
3.4
clf;
w=-4*pi:8*pi/511:4*pi;
num1=[1 3 5 7 9 11 13 15 17];
h=freqz(num,1,w);
Q3.32 通过加入合适的注释语句和程序语句,修改程序P3.8,对程序生成的图形中的两个轴加标记。时移量是多少?
Q3.33 运行修改后的程序并验证离散傅里叶变换的圆周时移性质。
Q3.36 运行程序P3.9并验证离散傅里叶变换的圆周卷积性质。
Q3.38 运行程序P3.10并验证线性卷积可通过圆周卷积得到。
离散傅里叶变换和离散时间傅里叶变换区别

离散傅里叶变换和离散时间傅里叶变换区别
离散傅里叶变换和离散时间傅里叶变换区别
离散傅里叶变换(Discrete Fourier Transform,DFT)和离散时间傅里叶变换(Discrete Time Fourier Transform,DTFT)是数字信号处理中常用的两种变换方法。
虽然它们都是傅里叶变换的离散形式,但是它们的应用场景和计算方式有所不同。
一、应用场景
离散傅里叶变换主要用于将时域信号转换为频域信号,常用于信号处理、图像处理、音频处理等领域。
而离散时间傅里叶变换则主要用于分析离散时间信号的频域特性,常用于数字滤波器设计、信号采样等领域。
二、计算方式
离散傅里叶变换的计算方式是将时域信号分解为一系列正弦和余弦函数的线性组合,然后通过计算每个正弦和余弦函数的振幅和相位来得到频域信号。
而离散时间傅里叶变换则是将离散时间信号看作是周期信号的一个周期,然后通过计算周期信号的傅里叶级数来得到频域信号。
三、计算复杂度
离散傅里叶变换的计算复杂度为O(N^2),其中N为信号长度。
而离散时间傅里叶变换的计算复杂度为O(N),其中N为信号长度。
因此,在计算复杂度上,离散时间傅里叶变换更加高效。
四、采样率
离散傅里叶变换的采样率是连续信号采样率的整数倍,而离散时间傅里叶变换的采样率则是任意的。
因此,在采样率上,离散时间傅里叶变换更加灵活。
综上所述,离散傅里叶变换和离散时间傅里叶变换虽然都是傅里叶变换的离散形式,但是它们的应用场景、计算方式、计算复杂度和采样率等方面都有所不同。
在实际应用中,需要根据具体的需求选择合适的变换方法。
傅里叶变换和离散傅里叶变换的关系

傅里叶变换和离散傅里叶变换的关系
傅里叶变换和离散傅里叶变换都是将一个信号从时域转换到频域的方法。
它们之间的关系是离散傅里叶变换是傅里叶变换在数字信号处理中的离散化表示。
傅里叶变换是用于连续时间信号的频域分析方法,而离散傅里叶变换是用于离散时间信号的频域分析方法。
离散傅里叶变换将一个离散时间信号转换成一个离散频域信号,这个离散频域信号是由一系列复数表示的。
傅里叶变换是在连续时间域中计算的,需要对信号进行采样和离散化才能在计算机中使用。
离散傅里叶变换是在离散时间域中计算的,因此它更适用于数字信号处理。
在实践中,可以使用离散傅里叶变换来分析时间序列数据,比如声音、图像和其他信号。
由于离散傅里叶变换的计算速度很快,因此它非常适合在计算机上实现。
总之,离散傅里叶变换是傅里叶变换的数字化表示,用于对时间序列数据进行频域分析。
它们在数字信号处理中都有广泛的应用。
实验2离散时间傅里叶变换

电 子 科 技 大 学实 验 报 告学生:项阳 学 号: 2010231060011 指导教师:邓建一、实验项目名称:离散时间傅里叶变换二、实验目的:熟悉序列的傅立叶变换、傅立叶变换的性质、连续信号经理想采样后进行重建,加深对时域采样定理的理解。
三、实验容:1. 求下列序列的离散时间傅里叶变换(a) ()(0.5)()n x n u n =(b) (){1,2,3,4,5}x n =2. 设/3()(0.9),010,j n x n e n π=≤≤画出()j X e ω并观察其周期性。
3. 设()(0.9),1010,n x n n =--≤≤画出()j X e ω并观察其共轭对称性。
4. 验证离散时间傅里叶变换的线性、时移、频移、反转(翻褶)性质。
5. 已知连续时间信号为t a e t x 1000)(-=,求:(a) )(t x a 的傅里叶变换)(Ωj X a ;(b) 采样频率为5000Hz ,绘出1()j X e ω,用理想插函数sinc()x 重建)(t x a ,并对结果进行讨论;(c) 采样频率为1000Hz ,绘出2()j X e ω,用理想插函数sinc()x 重建)(t x a ,并对结果进行讨论。
四、实验原理:1. 离散时间傅里叶变换(DTFT)的定义:2.周期性:()j X e ϖ是周期为2π的函数(2)()()j j X e X e ϖϖπ+=3.对称性:对于实值序列()x n ,()j X e ϖ是共轭对称函数。
*()()Re[()]Re[()]Im[()]Im[()]()()()()j j j j j j j j j j X e X e X e X e X e X e X e X e X e X e ϖϖϖϖϖϖϖϖϖϖ-----===-=∠=-∠4.线性:对于任何12,,(),()x n x n αβ,有1212[()()][()][()]F x n x n F x n F x n αβαβ+=+5.时移[()][()]()j k j j k F x n k F x n e X e e ωωω---==6.频移00()[()]()j n j F x n e X e ωωω-=7.反转(翻褶)[()]()j F x n X e ω--=五、实验器材(设备、元器件):PC 机、Windows XP 、MatLab 7.1六、实验步骤:本实验要求学生运用MATLAB 编程产生一些基本的离散时间信号,并通过MATLAB 的几种绘图指令画出这些图形,以加深对相关教学容的理解,同时也通过这些简单的函数练习了MATLAB 的使用。
离散时间信号与系统的傅立叶分析 (实验报告)

电子信息工程系实验报告课程名称:数字信号处理实验项目名称:离散时间信号与系统的傅立叶分析 实验时间:班级:通信091 姓名:刘跃维 学号:实 验 目 的:用傅立叶变换对离散时间信号和系统进行频域分析实 验 环 境:计算机 MATLAB 软件原理说明:对信号进行频域分析就是对信号进行傅立叶变换。
对系统进行频域分析即对它的单位脉冲响应进行傅立叶变换,得到系统的传输函数;也可以由差分方程经过傅立叶变换直接求它的传输函数;传输函数代表的就是系统的频率响应特性。
但传输函数是w 的连续函数,计算机只能计算出有限个离散频率点的传输函数值,因此得到传输函数以后,应该在π2~0之间取许多点,计算这些点的传输函数的值,并取它们的包络,该包络才是需要的频率特性。
当然,点数取得多一些,该包络才能接近真正的频率特性。
注意:非周期信号的频率特性是w 的连续函数,而周期信号的频率特性是离散谱,它们的计算公式不一样,响应的波形也不一样。
实验内容和步骤1.已知系统用下面差分方程描述:)1()()(-+=n ay n x n y试在95.0=a 和5.0=a 两种情况下用傅立叶变换分析系统的频率特性。
要求写出系统的传输函数,并打印w e H jw ~)(曲线。
MATLAB 代码如下:B=1;A=[1,-0.95];subplot(2,3,3);zplane(B,A);xlabel('实部Re');ylabel('虚部Im');title('y(n)=x(n)+0.95y(n-1)传输函数零、极点分布');grid on[H,w]=freqz(B,A,'whole');subplot(2,3,1);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');axis([0,2,0,2.5]);subplot(2,3,2);plot(w/pi,angle(H),'linewidth',2);grid on;axis([-0.1,2.1,-1.5,1.5]);xlabel('\omega/\pi');ylabel('\phi(\omega)');title('相频响应特性');B=1;A=[1,0.5];subplot(2,3,6);zplane(B,A);xlabel('实部Re');ylabel('虚部Im');title('y(n)=x(n)-0.5y(n-1)传输函数零、极点分布');grid on[H,w]=freqz(B,A,'whole');subplot(2,3,4);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');axis([0,2,0,2.5]);subplot(2,3,5);plot(w/pi,angle(H),'linewidth',2);grid on;axis([-0.1,2.1,-1.5,1.5]);xlabel('\omega/\pi');ylabel('\phi(\omega)');title('相频响应特性');运行结果如下图所示:2.已知两系统分别用下面差分方程描述:)1()()(1-+=n x n x n y)1()()(2--=n x n x n y 试分别写出它们的传输函数,并分别打印w e H jw ~)(曲线。
五种傅里叶变换

五种傅里叶变换傅里叶变换是一种将信号从时域转换到频域的数学工具,它在信号处理、图像处理、通信等领域都有广泛的应用。
傅里叶变换可以分为五种:离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、连续时间傅里叶变换(CTFT)、离散时间傅里叶变换(DTFT)和希尔伯特-黄变换(HHT)。
一、离散傅里叶变换(DFT)离散傅里叶变换是指将一个有限长的离散序列,通过一定的算法转化成一个同样长度的复数序列。
它是一种计算量较大的方法,但在某些情况下精度更高。
DFT 的公式如下:$$F(k)=\sum_{n=0}^{N-1}f(n)e^{-i2\pi kn/N}$$其中 $f(n)$ 是原始信号,$F(k)$ 是频域表示。
二、快速傅里叶变换(FFT)快速傅里叶变换是一种计算 DFT 的高效算法,它可以减少计算量从而加快计算速度。
FFT 的实现方法有多种,其中最常用的是蝴蝶运算法。
FFT 的公式与 DFT 相同,但计算方法不同。
三、连续时间傅里叶变换(CTFT)连续时间傅里叶变换是指将一个连续的时间信号,通过一定的算法转化成一个连续的频域函数。
CTFT 的公式如下:$$F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt$$其中 $f(t)$ 是原始信号,$F(\omega)$ 是频域表示。
四、离散时间傅里叶变换(DTFT)离散时间傅里叶变换是指将一个无限长的离散序列,通过一定的算法转化成一个同样长度的周期性复数序列。
DTFT 的公式如下:$$F(e^{j\omega})=\sum_{n=-\infty}^{\infty}f(n)e^{-j\omegan}$$其中 $f(n)$ 是原始信号,$F(e^{j\omega})$ 是频域表示。
五、希尔伯特-黄变换(HHT)希尔伯特-黄变换是一种基于经验模态分解(EMD)和 Hilbert 变换的非线性时频分析方法。
它可以对非平稳信号进行时频分析,并提取出信号中的本征模态函数(IMF)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二离散时间傅里叶变换和离散傅里叶变换
一.实验目的
1.深刻理解离散时间信号傅里叶变换的定义,与连续傅里叶变换之间的关系;
2.深刻理解序列频谱的性质(连续的、周期的等);
3.能用MATLAB编程实现序列的DTFT,并能显示频谱幅频、相频曲线;
4.深刻理解DFT的定义、DFT谱的物理意义、DFT与DTFT之间的关系;
5.能用MATLAB编程实现有限长序列的DFT;
6.熟悉循环卷积的过程,能用MA TLAB编程实现循环卷积运算。
二.实验原理
1.离散时间信号的频谱和图示化
2.离散傅里叶变换的定义和图示化
三.实验结果
w=[0:2:500]*pi*2/500;
h=(1+0.9*exp(-j*w))./(1-0.9*exp(-j*w));
magh=abs(h);
plot(w/pi,magh);grid;xlabel('f');ylabel('|H(w)|');
n=[0:127];
m=[0:127];
x=exp(j*2*pi/128*m.*n);
[xk]=dft(x,128);
stem(n,xk);xlabel('n');ylabel('xk');
n=[0:127];
m=[0:127];
x=cos(2*pi/128*m.*n);
[xk]=dft(x,128);
stem(n,xk);xlabel('n');ylabel('xk');
n=[0:127];
m=[0:127]; [xk]=dft(x,128);
stem(n,xk);xlabel('n');ylabel('xk');
n=[0:127];m=[0,127];
x=sin(n);
[xk]=dft(x,128);
stem(n,xk);xlabel('n');ylabel('xk');
n=[0:127];m=[0:127];
x=cos(n);
[xk]=dft(x,128);
stem(n,xk);xlabel('n');ylabel('xk');
n=[0:127];m=[0:127];
x=n;
[xk]=dft(x,128);
stem(n,xk);xlabel('n');ylabel('xk');
n=[0:9];
x1=[1,1,1,1,1,0,0,0,0,0];
x2=[1,1,1,1,1,-1,-1,-1,-1,-1];
[y]=circonvt(x1,x2,10);
stem(n,y);xlabel('n');ylabel('y');。