2014美赛题目(翻译版)
2014年美赛C题翻译

This will take some skilled data extraction and modeling efforts to obtain the correct set of nodes (the Erdös coauthors) and their links (connections with one another as coauthors). 这需要熟练数据提取 并 在建模上下功夫, 以便得到正确的节点和边
Once built, analyze the properties of this network. 建完后分析网络性能(Again, do not include Erdös --- he is the most infnodes in the network. In this case, it’s co-authorship with him that builds the network, but he is not part of the network or the analysis.)
One of the techniques to determine influence of academic research is to build and measure properties of citation or co-author networks.
学术研究的技术来确定影响之一是构建和引文或合著网络的度量属性。
Google Scholar is also a good data tool to use for network influence or impact data collection and analysis.
谷歌学术搜索也是一个好的数据工具用于网络数据收集和分析影响或影响。
2014美国数学建模竞赛赛题翻译

问题A:右行左超规则在美国、中国和大多数除了英国、澳大利亚和一些前英国殖民地的国家,多车道高速公路常常有这样一种规则。
司机必须尽量在最右的车道行使,只有超车时,司机才可以向左移动一个车道来达成目的。
当司机超车完毕后必须回到原车道继续行使。
建立并分析一个数学模型,使得这个模型能够分析这个规则在交通高负荷和低负荷情况下的表现。
你可以从许多角度来思考这个问题,比如车流量和车辆安全之间的权衡,或者一个过快或过慢的车辆限速带来的影响等等。
这个规则可以使我们获得更好的交通流?如果不可以,请提出并分析一个替代方案使得交通流得到优化、安全得到保障、或者其他你认为重要的因素得到实现。
在靠左行使才是规则的国家,论证你的解决方案是否可以通过简单的变换或者通过增加一些新的要求来解决相同的问题。
最后,以上的规则的实行是建立在人们遵守它的基础上的,然而不是所有人都愿意去遵守。
那么现在我们使同一条道(可以只是一段,也可以是全段公路)上的交通车辆都在一个智能系统的严格控制下,这个变化对你之前的分析结果有多大的影响?问题B:体育画刊是一个为体育爱好者们设计的杂志。
这个杂志正在寻找上世纪女性或者男性的“历来最优秀的大学教练”。
建立一个数学模型,从男性或者女性体育教练中选择最好的大学教练(退役或者在役的都可以)。
这些体育教练可以是大学曲棍球、陆上曲棍球、足球、橄榄球、棒球、排球、篮球的教练。
你选择划分的时间会对你的分析有影响吗?也就是说,1913年的教练方式和2013年的会有什么不同吗?清楚的阐述你的评估方式。
讨论你的模型如何通用于两性教练和所有可能的运动项目上。
用你的模型为三项体育项目分别找到五个最佳教练。
再为体育画刊提供一篇1-2页的不涉及技术性问题解释的通俗易懂的文章来解释你们的结果,你们必须保证体育爱好者们能够理解。
2014年数学建模美赛题目

PROBLEM A: The Keep-Right-Except-To-Pass RuleIn countries where driving automobiles on the right is the rule (that is, US A, China and most other countries except for Great Britain, Australia, and some former British colonies), multi-lane(车道) freeways(快车道) often employ a rule that requires drivers to drive in the right-most lane unless they are passing another vehicle, in which case they mov e one lane to the left, pass, and return to their former travel lane.Build and analyze a mathematical model to analyze the performance of th is rule in light and heavy traffic. You may wish to examine tradeoffs(权衡) between traffic flow and safety, the role of under- or over-posted speed limits (that is, speed limits that are too low or too high), and/ or other factors that may not be explicitly(明确地) called out in this problem statement. Is this rule effective in promotin g better traffic flow? If not, suggest and analyze alternatives (to include p ossibly no rule of this kind at all) that might promote greater traffic flow, safety, and/or other factors that you deem(认为) important.In countries where driving automobiles on the left is the norm, argue whe ther or not your solution can be carried over with a simple change of orie ntation(方向), or would additional requirements be needed.Lastly, the rule as stated above relies upon human judgment for complian ce( 服从). If vehicle transportation on the same roadway was fully under the co ntrol of an intelligent system – either part of the road network or imbedde d(把……嵌入) in the design of all vehicles using the roadway – to what extent would this change the results of your earlier analysis?PROBLEM B: College Coaching LegendsSports Illustrated, a magazine for sports enthusiasts, is looking for the “be st all time college coach” male or female for the previous century. Build a mathematical model to choose the best college coach or coaches (past or present) from among either male or female coaches in such sports as colle ge hockey(冰球) or field hockey(曲棍球), football, baseball or softball(垒球), basketball, or soccer(英式足球). Does it make a difference which time line horizon that you use in yo ur analysis, i.e., does coaching in 1913 differ from coaching in 2013? Clearly articulate(善于表达的) your metrics(韵律学) for assessment. Discuss how your model can be applied in general acr oss both genders (性别) and all possible sports. Present your model’s top 5 coaches in each of 3 different sports.In addition to the MCM format and requirements, prepare a 1-2 page article(文章) for Sports Illustrated that explains your results and includes a non-technical explanation of your mathematical model that sports fans will un derstand。
2014美国赛题目翻译

PROBLEM A: The Keep-Right-Except-To-Pass RuleIn countries where driving automobiles on the right is the rule (that is, USA, China and most other countries except for Great Britain, Australia, and some former British colonies), multi-lane freeways often employ a rule that requires drivers to drive in the right-most lane unless they are passing another vehicle, in which case they move one lane to the left, pass, and return to their former travel lane.Build and analyze a mathematical model to analyze the performance of this rule in light and heavy traffic. You may wish to examine tradeoffs between traffic flow and safety, the role of under- or over-posted speed limits (that is, speed limits that are too low or too high), and/or other factors that may not be explicitly called out in this problem statement. Is this rule effective in promoting better traffic flow? If not, suggest and analyze alternatives (to include possibly no rule of this kind at all) that might promote greater traffic flow, safety, and/or other factors that you deem important.In countries where driving automobiles on the left is the norm, argue whether or not your solution can be carried over with a simple change of orientation, or would additional requirements be needed.Lastly, the rule as stated above relies upon human judgment for compliance. If vehicle transportation on the same roadway was fully under the control of an intelligent system – either part of the road network or imbedded in the design of all vehicles using the roadway – to what extent would this change the results of your earlier analysis?问题A 除超车保持右行规则在有些国家,驾驶机动车在右车道行驶(如美国,中国和除了英国,澳大利亚以及前英国殖民地国家的其它大多数国家),多车道的高速公路所使用的规则要求驾驶人员右车道行驶,除非他们要超车行驶,在此情况下他们先开到左侧车道,超车,然后在回到之前的行驶车道。
2014AMC12A试题及简答(繁体中文)

10. 以邊長為 1 的正三角形的三邊為底向外作三個全等的等腰三角形。若三個等腰三角形面 積之和等於此正三角形的面積,則等腰三角形的一腰長為多少?
3 3 2 2 3 (B) (C) (D) (E) 4 3 3 2 2 11. 大衛從家裡開車到機場搭飛機。第一個小時他開了 35 公里,他發現若仍以這樣的速率開 車,他將會晚一小時抵達機場。於是他在剩下的路程中,時速增加 15 公里,結果他反而 提早了 30 分鐘抵達機場。試問機場與他家的距離為多少公里?
且滿足 4 x 3 y 1000 ?
(A) 38 參考答案: 1. 6. 11. 16. 21. C D C D A
(B) 40 2. 7. 12. 17. 22.
(C) 42 B A D A B
(D) 44 3. 8. 13. 18. 23. B C B C B
(E) 46 4. 9. 14. 19. 24. A B C E C 5. 10. 15. 20. 25. C B B D B
BE DE CD 最小可能的值為何?
(A) 6 3 3
(B)
21. 對每一個實數 x, x 表不大於 x 的最大整數,並設 f x x 2014 x x 1 。已知滿足 1 x 2014 且 f x 1 所有的 x 所成集合是一些彼此不相交區間的聯集 , 試問這些區間長
為 1000,則 k 是多少?
(A) 901 (B) 911 (C) 919 (D) 991 (E) 999 17. 一個 4 4 h 的長方體盒子內裝著一個半徑為 2 的大球及 8 個半徑為 1 的小球。若每個小 球都與盒子的三面相切,且大球與每個小球相切,如圖所示,則 h 之值為何? (A) 2 2 7 (B) 3 2 5 (C) 4 2 7 (D) 4 5 (E) 4 7
2014美赛A题翻译

A 题:除了超车以外都要靠右行驶的规则(靠右行驶规则)在某些国家,开车时规定要靠右行驶(如美国,中国以及除英国,澳大利亚和前英国殖民地的大多数国家)多车道高速公路往往会制定一个规则,要求司机在驾驶时靠最右车道行驶,除非在超车的时候可以行驶到左一个车道超车,超车结束后回归到原行驶车道。
建立一个数学模型,分析靠右行驶规则在交通畅通时和在交通拥挤的
情况下的性能表现。
你可以在交通流和安全之间,在限速中扮演的角色之间(也就是说限速过低或者过高),和/或其他可能不会在这个问题中明确提出的因素之间权衡。
这是有效地改善交通流通性的规则吗?如果不是,提出并分析不同的方案选择(包括可能根本不存在的规则),这些方案可能改善交通流,安全性,和/或其他你认为重要的因素。
在靠左边驾驶汽车的国家中,讨论您的解决方案是否可以用一个简单的方向改变就可以转换,或者需要额外的要求。
最后,如上所述的规则依赖人类合规性判断。
如果相同道路的车辆运输是完全的控制在一个智能系统下,这个智能系统或者是道路网络的一部分或者是嵌入在道路中所有车辆的设计中-这在多大程度上改变你之前分析的结果?数学中国(w w w .m a d i o .n e t )。
【VIP专享】2010 -2014MCM Problems建模竞赛美赛题目中英文双语翻译版

2010 MCM ProblemsPROBLEM A: The Sweet SpotExplain the “sweet spot” on a baseball bat.Every hitter knows that there is a spot on the fat part of a baseball bat where maximum power is transferred to the ball when hit. Why isn’t this spot at the end of the bat? A simple explanation based on torque might seem to identify the end of the bat as the sweet spot, but this is known to be empirically incorrect. Develop a model that helps explain this empirical finding.Some players believe that “corking” a bat (hollowing out a cylinder in the head of the bat and filling it with cork or rubber, then replacing a wood cap) enhances the “sweet spot” effect. Augment your model to confirm or deny this effect. Does this explain why Major League Baseball prohibits “corking”?Does the material out of which the bat is constructed matter? That is, does this model predict different behavior for wood (usually ash) or metal (usually aluminum) bats? Is this why Major League Baseball prohibits metal bats?MCM 2010 A题:解释棒球棒上的“最佳击球点”每一个棒球手都知道在棒球棒比较粗的部分有一个击球点,这里可以把打击球的力量最大程度地转移到球上。
2014美赛题目翻译

问题A:保持向右行驶除非要超车的交通规则在一些国家,汽车行驶在右边是规则,比如,美国,中国和其他大多数国家,除了英国,澳大利亚和一些前英国殖民地。
多车道高速公路经常使用一个规则,就是要求司机在最右边的车道驾驶,除非它们要超车。
超车就是他们开到左边的一个车道,超越,并恢复到原来的行驶车道。
(1)建立和分析一个数学模型来分析这一规则在车流量少和车流量大的不同时刻的表现。
不妨检查权衡交通流量和其安全性。
这些保持原车道或者被超车的速度限制(即限制最大速度和最小速度),或者其他的因素,可以不用考虑到问题中。
(2)这个规则,能有效地促进了更多的车流量吗?如果不能,提出并分析备选方案(之中最好不要用到题目中这类规则),能够促进更多的交通流量,安全性,或者你认为重要的其他因素。
(3)在一些国家,汽车行驶在左边是常态,讨论你的解决方案是否能够转用,仅仅是要一个简单的方向改变,或者需要额外的要求。
(4)最后,如上所述的规则依赖于人的判断为标准。
如果运输车辆在相同的道路上完全被处于一个智能系统(无论是部分路网或是嵌入设计到所有车辆里)的控制下,在何种程度上这会改变你刚才分析的结果?问题B:大学传奇教练《体育画报》,一个给运动爱好者的杂志,正在寻找上个世纪(以前世纪)男女教练中“一直表现最佳的大学教练”。
(1)建立一个数学模型,选择最佳的大学教练(一个或多个,过去的或者现在的)。
根据男性或女性教练在高校曲棍球或曲棍球,足球,棒球或垒球,篮球,足等体育项目中的表现。
(2)清楚地说明你进行评估的指标。
讨论你在分析中使用的时间轴,是否对结果有所影响,也就是说,教练的执教能力在1913年是否不同于在2013年?(3)讨论你的模型是如何能在不同性别和所有可能的运动领域中普遍应用。
运用你的模型分别从3个不同的运动领域上展示你的前5名教练。
(4)除了MCM的格式和要求,为体育画报准备一份1-2页文章,解释你的结果,并包括你的数学模型的非技术性解释,以便体育迷们能够理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014 MCM Problems
PROBLEM A: The Keep-Right-Except-To-Pass Rule
In countries where driving automobiles on the right is the rule (that is, USA, China and most other countries except for Great Britain, Australia, and some former British colonies), multi-lane freeways often employ a rule that requires drivers to drive in the right-most lane unless they are passing another vehicle, in which case they move one lane to the left, pass, and return to their former travel lane.
在一些以行车靠右为规则的国家中(比如美国、中国以及除了大不列颠、澳大利亚和一些前英属殖民国家以外的其他国家),多行道的高速公路经常采用要求驾驶人在除超车以外时都靠右行驶的交通规则。
Build and analyze a mathematical model to analyze the performance of this rule in light and heavy traffic. You may wish to examine tradeoffs between traffic flow and safety, the role of under- or over-posted speed limits (that is, speed limits that are too low or too high), and/or other factors that may not be explicitly called out in this problem statement. Is this rule effective in promoting better traffic flow? If not, suggest and analyze alternatives (to include possibly no rule of this kind at all) that might promote greater traffic flow, safety, and/or other factors that you deem important.
1、请你建立和分析一个数学模型来分析这个规则在交通畅通和交通堵塞条件下的表现。
你可能乐意在交通流通和安全性、过低或者过高的限速(即速度限制太高或者太低)、以及其他可能不能从这个问题的陈述中直接发现的因素中找到一个平衡。
这个规则是否有效地促进了交通更好地流通?如果没有,请你提出并分析可能促进交通流通、保证交通安全、改善其他你认为重要的因素的其他规则。
In countries where driving automobiles on the left is the norm, argue whether or not your solution can be carried over with a simple change of orientation, or would additional requirements be needed.
2、在一些以行车靠左为准则的国家中,讨论你的解决方案是否可以在仅仅改变方向时被应用,或者是否需要额外的要求?
Lastly, the rule as stated above relies upon human judgment for compliance. If vehicle transportation on the same roadway was fully under the control of an intelligent system – either part of the road network or imbedded in the design of all vehicles using the roadway – to what extent would this change the results of your earlier analysis?
3、最后,上面陈述的规则是基于人们对于是否遵守规则的主观判断的。
如果现在在同一条道路上的车辆交通完全在一个智能的系统(系统被内嵌于所有车辆都使用道路的设计中,系统是路网的一部分)的控制之下,那么这会在何种程度上改变你的早期预测的结果?
PROBLEM B: College Coaching Legends
Sports Illustrated, a magazine for sports enthusiasts, is looking for the “best all time college coach” male or female for the previous century. Build a mathematical model to choose
the best college coach or coaches (past or present) from among either male or female coaches in such sports as college hockey or field hockey, football, baseball or softball, basketball, or soccer. Does it make a difference which time line horizon that you use in your analysis, i.e., does coaching in 1913 differ from coaching in 2013? Clearly articulate your metrics for assessment. Discuss how your model can be applied in general across both genders and all possible sports. Present your model’s top 5 coaches in each of 3 different sports.
一个运动发烧友的专属杂志Sports Illustrated正在寻找上一个世纪最好的大学教练(无论男女),1、请你们建立一个数学模型来遴选最好的几位college hockey或field hockey, 足球,棒球或垒球,篮球,或者橄榄球教练,无论男女。
2、在你的分析中使用的时间段是否会对结果造成影响?比如:1913年的训练是否和2013年的训练不同?请清楚地表述你们评估度量的标准。
3、并讨论你们的模型如何能被普遍的应用在两性和所有可能的运动项目中。
4、最后,请你用你们的模型给出三个不同运动的前五位顶尖教练。
In addition to the MCM format and requirements, prepare a 1-2 page article for Sports Illustrated that explains your results and includes a non-technical explanation of your mathematical model that sports fans will understand.。