梯度下降法、牛顿迭代法、共轭梯度法

合集下载

matlab梯度算法

matlab梯度算法

matlab梯度算法Matlab梯度算法在数学和计算机科学中,梯度是指一个多元函数在某一点上的变化率或斜率。

梯度算法是一种优化算法,用于找到函数的最小值或最大值。

在Matlab中,有多种方法可以使用梯度算法来优化函数,包括梯度下降和共轭梯度法。

本文将详细介绍Matlab中的梯度算法,并逐步讲解其原理和应用。

I. 梯度下降法梯度下降法是一种基于迭代的优化算法,通过计算函数的梯度来更新参数的值,以逐步接近函数的最小值。

在Matlab中,可以使用"gradientDescent"函数来实现梯度下降法。

1. 实现梯度下降法首先,我们需要定义一个优化目标函数,例如:f(x) = x^2 + 2x + 1。

然后,定义其梯度函数为g(x) = 2x + 2。

接下来,我们可以使用以下代码来计算梯度下降:matlab定义优化目标函数f = (x) x^2 + 2*x + 1;定义梯度函数g = (x) 2*x + 2;初始化参数x0 = 0;设置学习率和迭代次数alpha = 0.01;iterations = 100;梯度下降法for i = 1:iterationsx0 = x0 - alpha * g(x0);end打印最优解disp(['Optimal solution: ', num2str(x0)]);在这个例子中,我们使用了学习率(alpha)为0.01,迭代次数(iterations)为100。

通过不断更新参数x0的值,最终得到了最优解。

2. 梯度下降法的原理梯度下降法的核心思想是利用函数在当前点的梯度信息来更新参数的值,以便能够向着函数的最小值前进。

具体来说,算法的步骤如下:a. 初始化参数的值:选择一个初始参数的值作为起始点。

b. 计算梯度:计算函数在当前点的梯度,即求解函数关于参数的偏导数。

c. 更新参数:根据当前点的梯度和学习率,通过减去梯度的乘积来更新参数的值。

对数几率回归的求解方法

对数几率回归的求解方法

对数几率回归的求解方法1. 标准求解:对数几率回归的求解方法主要是通过最大似然估计来实现。

最大似然估计的目标是找到一组参数,使得给定数据的观察概率最大化。

2. 梯度下降法:梯度下降法是一种迭代的优化算法,通过迭代更新参数来逐渐逼近最优解。

在对数几率回归中,可以利用梯度下降法来最大化似然函数。

3. 牛顿法:牛顿法是一种迭代的优化算法,通过逐步逼近最优解来最大化似然函数。

与梯度下降法不同,牛顿法利用目标函数的二阶导数来指导参数更新。

4. 拟牛顿法:拟牛顿法是一组近似牛顿法的优化算法。

它通过估计目标函数的海森矩阵或其逆矩阵来更新参数,从而实现对数几率回归的求解。

5. 共轭梯度法:共轭梯度法是一种用于求解线性方程组的优化算法,也可以用于求解对数几率回归。

它利用方向共轭性质来加速参数更新过程。

6. 正则化方法:正则化是一种用来控制模型复杂度的方法。

在对数几率回归中,可以引入L1正则化或L2正则化来降低过拟合的风险,并简化参数的求解过程。

7. 坐标下降法:坐标下降法是一种迭代的优化算法,它通过固定一部分参数而优化其他参数,以此来逐渐逼近最优解。

在对数几率回归中,可以使用坐标下降法来更新模型参数。

8. RANSAC算法:RANSAC(Random Sample Consensus)算法是一种鲁棒性较强的拟合算法。

在对数几率回归中,可以使用RANSAC算法来估计参数,并排除异常值的影响。

9. 改进的牛顿法:改进的牛顿法是对标准牛顿法的改进,通过引入阻尼因子来提高算法的稳定性。

在对数几率回归中,改进的牛顿法可以用来优化参数的求解。

10. 随机梯度下降法:随机梯度下降法是梯度下降法的一种变体。

它通过随机抽样小批量数据来更新参数,从而加快算法的收敛速度。

11. L-BFGS算法:L-BFGS(Limited-memory Broyden-Fletcher-Goldfarb-Shanno)算法是一种省内存版本的拟牛顿法。

最优化问题的算法迭代格式

最优化问题的算法迭代格式

最优化问题的算法迭代格式最优化问题的算法迭代格式最优化问题是指在一定的条件下,寻找使某个目标函数取得极值(最大值或最小值)的变量取值。

解决最优化问题的方法有很多种,其中较为常见的是迭代法。

本文将介绍几种常用的最优化问题迭代算法及其格式。

一、梯度下降法梯度下降法是一种基于负梯度方向进行搜索的迭代算法,它通过不断地沿着目标函数的负梯度方向进行搜索,逐步接近极值点。

该方法具有收敛速度快、易于实现等优点,在许多应用领域中被广泛使用。

1. 算法描述对于目标函数 $f(x)$,初始点 $x_0$ 和学习率 $\alpha$,梯度下降算法可以描述为以下步骤:- 计算当前点 $x_k$ 的梯度 $\nabla f(x_k)$;- 更新当前点 $x_k$ 为 $x_{k+1}=x_k-\alpha\nabla f(x_k)$;- 如果满足停止条件,则输出结果;否则返回第 1 步。

2. 算法特点- 沿着负梯度方向进行搜索,能够快速收敛;- 学习率的选择对算法效果有重要影响;- 可能会陷入局部极小值。

二、共轭梯度法共轭梯度法是一种基于线性方程组求解的迭代算法,它通过不断地搜索与当前搜索方向共轭的新搜索方向,并在该方向上进行一维搜索,逐步接近极值点。

该方法具有收敛速度快、内存占用少等优点,在大规模问题中被广泛使用。

1. 算法描述对于目标函数 $f(x)$,初始点 $x_0$ 和初始搜索方向 $d_0$,共轭梯度算法可以描述为以下步骤:- 计算当前点 $x_k$ 的梯度 $\nabla f(x_k)$;- 如果满足停止条件,则输出结果;否则进行下一步;- 计算当前搜索方向 $d_k$;- 在当前搜索方向上进行一维搜索,得到最优步长 $\alpha_k$;- 更新当前点为 $x_{k+1}=x_k+\alpha_k d_k$;- 计算新的搜索方向 $d_{k+1}$;- 返回第 2 步。

2. 算法特点- 搜索方向与前面所有搜索方向都正交,能够快速收敛;- 需要存储和计算大量中间变量,内存占用较大;- 可以用于非线性问题的求解。

牛顿方向和共轭梯度方向一定是下降方向的证明

牛顿方向和共轭梯度方向一定是下降方向的证明

牛顿方向和共轭梯度方向一定是下降方向的证明一、概述在数学和计算机科学领域中,优化问题是一类重要的问题。

在求解优化问题时,常常需要寻找一个函数的最小值。

而求解函数的最小值往往需要借助梯度下降等方法,在这些方法中,牛顿方向和共轭梯度方向是两种常用的下降方向。

本文将通过推导和证明,论述牛顿方向和共轭梯度方向一定是下降方向的原因。

二、牛顿方向的下降性证明1.定义首先我们来定义牛顿方向。

对于一个可微函数f(x),我们可以通过$Hessian$矩阵(Hessian matrix)来描述函数的二阶导数信息。

$Hessian$矩阵的逆矩阵被称为牛顿矩阵(Newton matrix),记为$H^{-1}$。

牛顿方向可以通过以下公式计算得到:$$d=-H^{-1} \nabla f(x)$$在这里,d表示牛顿方向,$\nabla f(x)$表示函数f(x)在点x处的梯度。

假设当前点为$x_k$,那么牛顿方向可以表示为:$$d_k=-H_k^{-1} \nabla f(x_k)$$2.证明我们来证明牛顿方向一定是下降方向。

假设函数f(x)在点$x_k$处的梯度为$\nabla f(x_k)$,在牛顿方向$d_k$上的导数可以表示为:$$\frac{\partial f(x_k + \alpha d_k)}{\partial \alpha}$$根据链式法则,上述导数可以表示为:$$\frac{\partial f(x_k + \alpha d_k)}{\partial \alpha}=\nabla f(x_k + \alpha d_k)^T d_k$$对上式求导得:$$\frac{\partial^2 f(x_k + \alpha d_k)}{\partial \alpha^2}=d_k^T \nabla^2 f(x_k + \alpha d_k)d_k$$其中$\nabla^2 f(x_k + \alpha d_k)$表示函数f(x)在点$x_k +\alpha d_k$处的Hessian矩阵。

简述最优化原则

简述最优化原则

最优化原则概述最优化原则是指在给定约束条件下,利用数学方法寻找能够达到最优状态的方法和策略。

无论是在工程设计、经济决策还是科学研究中,最优化原则都具有重要的应用价值。

最优化问题可以是单目标问题,也可以是多目标问题。

单目标最优化问题旨在寻找能够使某个性能指标取得最优值的解决方案;而多目标最优化问题则考虑多个相互矛盾的目标,旨在寻找一个能够在这些目标之间取得最佳平衡的解决方案。

最优化问题的一般形式最优化问题通常可以表示为以下形式:minimize f(x)subject to:g(x) <= 0h(x) = 0x in D其中,f(x)是需要最小化的目标函数;g(x)是不等式约束条件;h(x)是等式约束条件;x是问题的变量;D是变量的定义域。

最优化问题的目标是找到一个变量的取值x,使得目标函数取得最小值,并且满足约束条件。

最优化问题的求解方法为了求解最优化问题,通常有两种基本的方法:数值方法和解析方法。

数值方法数值方法是通过迭代计算的方式求解最优化问题,通常包括以下几种常见算法:1. 梯度下降法梯度下降法是一种基于负梯度方向进行搜索的方法,通过不断调整变量的取值,使得目标函数逐渐接近最小值。

梯度下降法的核心思想是沿着目标函数的梯度方向进行搜索,逐步接近最优解。

2. 牛顿法牛顿法是一种迭代法,通过利用目标函数的二阶导数信息来逼近最优解。

牛顿法的基本思想是根据函数在某一点的局部信息来构造一个二次函数模型,然后求解该二次函数模型的最优解,从而得到目标函数的最优解。

3. 共轭梯度法共轭梯度法是一种用于求解对称正定线性方程组的迭代法,可以用于求解最优化问题。

与梯度下降法不同的是,共轭梯度法利用了函数二次项的信息,使得每一次迭代的方向都是互相正交的,从而提高了收敛速度。

解析方法解析方法是通过求解目标函数的导数为零的方程来寻找最优解,常见的方法包括:1. 拉格朗日乘子法拉格朗日乘子法是一种求解带有等式约束和不等式约束的最优化问题的方法。

常用的优化方法和优化函数

常用的优化方法和优化函数

常用的优化方法和优化函数优化方法和优化函数是在解决问题时常用的数学工具和方法。

优化是一种数学问题,目标是找到一些函数的最优解或近似最优解。

一、优化方法:1.初等方法:初等方法是最直接的一种优化方法,包括插值法、拟合法、曲线拟合法等,通过数学公式来估计函数的取值。

2.单变量优化方法:单变量优化方法是对单一变量进行优化的方法,常见的有二分法、黄金分割法和牛顿迭代法等。

这些方法适用于单调函数和凸函数的优化问题。

3.多变量优化方法:多变量优化方法是对多个变量进行优化的方法,常见的有梯度下降法、共轭梯度法和牛顿法等。

这些方法适用于非线性函数的优化问题。

4.线性规划:线性规划是一种常用的优化方法,通过线性函数和线性约束来确定最优解。

线性规划问题可以通过单纯形法或内点法求解。

5.整数规划:整数规划是一种在决策变量为整数时的优化方法,常用的算法有分支界限法、整数规划近似算法等。

6.动态规划:动态规划是一种将复杂问题分解为简单子问题的方法,通过递推关系求解最优解。

常用的动态规划算法有最短路径算法、背包问题算法等。

7.模拟退火算法:模拟退火算法是一种通过模拟物质在退火过程中的行为来进行全局的算法。

它能够在一定程度上跳出局部最优解,常见的变种有遗传算法和粒子群优化算法等。

8.遗传算法:遗传算法是一种基于自然选择和遗传机制的优化算法,通过模拟自然界的进化过程来优化问题。

它常用于求解复杂的问题,如函数逼近、组合优化等。

9.神经网络:神经网络是一种通过模拟神经元之间的连接和传输信息来建立模型的方法。

通过训练网络参数,可以实现优化目标函数。

二、常用的优化函数:1. Rosenbrock函数:Rosenbrock函数是一个经典优化函数,用于测试优化算法的性能。

其函数形式为 f(x,y) = (1-x)^2 + 100(y-x^2)^2,目标是找到函数的全局最小值。

2. Ackley函数:Ackley函数是另一个经典的优化函数,用于测试优化算法的鲁棒性。

非线性优化算法-牛顿法_DFP_BFGS_L-BFGS_共轭梯度算法

非线性优化算法-牛顿法_DFP_BFGS_L-BFGS_共轭梯度算法

统计学梯度下降法(SGDs)易于实现,然而它有两个主要的缺陷。

第一个缺陷是它需要手动调谐大量的参数,比如学习速率和收敛准则。

第二个缺陷是它本质上是序列方法,不利于并行计算或分布式计算。

(然而,在计算资源如RAM受限的情况下,序列方法倒是一个不错的选择。

)这里介绍一些非线性优化算法:牛顿算法,伪牛顿算法和共轭梯度法。

其中,伪牛顿算法包括DFP、BFGS和L-BFGS算法。

考虑如下的无约束最小化问题:min x f(x)(1)其中x=(x1,…,x N)T∈ℝN. 为简便起见,这里假设f是凸函数,且二阶连续可导。

记(1)的解为x∗.牛顿算法(Newton‘s Method)基本思想:在现有的极小点估计值的附近对f(x)做二阶泰勒展开,进而找到下其中g(k)=∇f(x)|x(k)是梯度矩阵,H(k)=∇2f(x)|x(k)是海森矩阵。

牛顿算法是一种具有二次收敛性的算法。

对于非二次函数,若函数的二次性态较强,或迭代点已进入极小点的领域,则其收敛速度也是很快的,这是牛顿算法的主要优点。

但牛顿算法由于迭代公式中没有步长因子,而是定步长迭代,所以对于非二次函数,有时会出现f(x(k+1))>f(x(k))的情况,这表明牛顿算法不能保证函数值稳定地下降。

由此,人们提出了阻尼牛顿算法,在原始牛顿算法的第4步中,采用一维搜索(line search)算法给d(k)加一个步长因子λ(k),其中:λ(k)=arg minλ∈ℝf(x(k)+λd(k))(2)一维搜索算法将另作介绍。

拟牛顿算法(Quasi-Newton Methods)基本思想:不直接计算二阶偏导数,而是构造出近似海森矩阵(或海森矩阵的逆)的正定对称阵,在拟牛顿条件下优化目标函数。

下文中,用B表示对H的近似,用D表示对H−1的近似,并令s(k)=x(k+1)−x(k),y(k)=g(k+1)−g(k).⒈拟牛顿条件(割线条件)对f(x)做二阶泰勒展开可得:y(k)≈H(k+1)×s(k)(3)或s(k)≈(H(k+1))−1×y(k)(4)⒉DFP算法核心:通过迭代的方法,对(H(k+1))−1做近似。

常用的优化函数

常用的优化函数

常用的优化函数优化函数是数学中非常重要的一个概念,其主要目的是将给定的问题转化为数学模型,并能够求解该模型的最优解。

随着计算机科学和机器学习的发展,优化函数已经成为许多领域中必不可少的一部分,在工程、科学、运筹学、经济学、统计学等领域都具有重要应用价值。

下面是常用的优化函数:1.最小二乘法最小二乘法是一种常见的优化函数,其主要目的是对于一组实验数据,找到一个函数(线性或非线性)的参数,使得该函数与实验数据之间的误差最小。

例如,在机器学习中的线性回归中,最小二乘法被广泛应用。

2.梯度下降法梯度下降法是一种迭代的优化方法,主要用于求解非线性函数的最小值或最大值。

其思路是从一个初始值开始,计算函数的梯度,在每一步迭代中,沿梯度的反方向更新参数,直到找到函数的极值。

3.牛顿法牛顿法是一种高效的优化方法,主要用于求解多元函数的最小值或最大值。

其基本思想是利用函数的一、二阶导数信息,通过不断逼近函数的极值点来求解最优解。

4.共轭梯度法共轭梯度法是一种有效的线性方程组求解算法,通常用于求解大规模线性方程组,在机器学习中的一些模型训练中也被广泛应用。

5.遗传算法遗传算法是一种基于自然选择和遗传进化原理的优化算法,其主要思路是通过模拟生物进化过程,从种群中筛选出适应度最高的解,并进行交叉和变异操作,从而不断迭代优化。

除了上述常用的优化函数外,还有一些其他的优化函数,如贪心算法、模拟退火算法、爬山算法等等。

这些算法在不同的应用场景中,都具有其独特的优势和适用性。

因此,我们在实际应用中需要根据具体问题,选择合适的优化函数进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

梯度下降法、牛顿迭代法、共轭梯度法
(参见:神经网络->PGM-ANN-2009-C09性能优化)
优化的目的是求出目标函数的最大值点或者最小值点,这里讨论的是迭代的方法
梯度下降法
首先,给定一个初始猜测值 ,然后按照等式
k k k k ΡαΧ+=X +1 (1)

k
k k k k P =X -X =∆X +α)(1 (2)
逐步修改猜测。

这里向量 k
P 代表一个搜索方向,一个大于零的纯量
k
α 为学习
速度,它确定了学习步长。

当用 k k k k ΡαΧ+=X +1 进行最优点迭代时,函数应该在每次迭代时都减小,即
)
()(1k k F F X <X +
考虑
+-∇-+-∇+=X
=X X
=X )()
()(2
1
)
()()()(*2****
*
x x x F x x x x x F x F x F T T
(3)
的)(X F 在k X 的一阶泰勒级数展开:
k
T
k k k k k g F F F ∆X +X ≈∆X +X =X +)()()(1
(4)
其中,T
k g 为在旧猜测值k X 处的梯度
k
F g k X =X X ∇≡)( (5) 要使
)
()(1k k F F X <X +
只需要(4)中右端第二项小于0,即
<P =∆X k T k
k k T k g g α (6)
选择较小的正数k α。

这就隐含0<k T
k P g 。

满足0<k T
k P g 的任意向量成为一个下降方向。

如果沿着此方向取足够小步长,函数一
定递减。

并且,最速下降的情况发生在k T k P g 最小的时候,容易知道,当k k -g P =时k T
k P g 最小,此时,方向向量与梯度方向相反。

在(1)式中,令k k -g P =,则有
k k k k g αΧ-=X +1 (7)
对于式(7)中学习速率k α的选取通常有两种方法:一种是选择固定的学习速率k α,另一种方法是使基于学习速率k α的性能指数或目标函数)(1k +X F 在每次迭代中最小化,即沿着梯度反方向实现最小化:k k k k g X X α-=+1。

注意:
1、对于较小的学习速度最速下降轨迹的路径总是与轮廓线正交,这是因为梯度与轮廓线总是正交的。

2、如果改变学习速度,学习速度太大,算法会变得不稳定,振荡不会衰减,反而会增大。

3、稳定的学习速率
对于任意函数,确定最大可行的学习速度是不可能的,但对于二次函数,可以确定一个上界。

令特征函数为:
c X
d AX X F T T
++=
2
1)x ( (8)
那么梯度为 d AX X F +=∇)( 代入最速下降法公式(7)中
d a X A a I d AX a X g a X X k k k k k k k k k k --=+-=-=+)()(1 (9)
在动态系统中,如果矩阵][aA I -的特征值小于1,则该系统是稳定的。

可用赫森矩阵
A 的特征值来表示该矩阵的特征值,假设A 的特征值和特征向量分别为{}n 21λλλ ,
,和{}n z z z ,,21,那么
[]i i i z a I z aA I )(λ-=- (10)
于是,最速下降法的稳定条件为
1<-i a I λ (11) 如果二次函数有一个强极小点,则其特征值为正数,上式可以化为i
a λ2
<
由于该式对于赫森矩阵的所有特征值都成立则 m ax
2
λ<
a (12)
分析:最大的稳定学习速度与二次函数的最大的曲率成反比。

曲率说明梯度变化的快慢。

如果梯度变化太快,可能会导致跳过极小点,进而使新的迭代点的梯度的值大于原迭代点的梯度的值(但方向相反)。

这会导致每次迭代的步长增大。

4、沿直线最小化 选择学习速率的另一种方法是k a 使得每次迭代的性能指数最小化,即选择k a 使得下式最小: )(k k k P a X F +
对任意函数的这种最小化需要线性搜索。

对二次函数解析线性最小化是可能的。

上式对k a 的导数为:
k X X T k k k X X T k k k k
P X F P a P X F P a X F da d
k k ==∇+∇=+|)(|)()(2 (13) 令式(13)导数为零求得 T
k k k k
T k k X X T k X X T k P A P P g P X F P P X F a k
k k -=∇∇-
===|)(|)(2 (14) 这里k A 为k X 的赫森矩阵:k X X k X F A =∇=|)(2
牛顿法
牛顿法基于二阶泰勒级数:
k k T
k k T k k k k k X A X X g X F X X F X F ∆∆+∆+≈∆+=+2
1)()()(1 (15)
牛顿法的原理是求)(X F 的二次近似的驻点,求这个二次函数对k X ∆的梯度并令它等于0,则有
0=∆+k k k X A g (16) 解得: k T
g A X k -=∆k
于是,牛顿法定义为 k k k g A X X 1
1k -+-= (17)
注意:牛顿法总是用一个二次函数逼近)(X F ,然后求其驻点,因此此方法总能够一步找到二次函数的极小点,如果原函数为二次函数(有强极小点),它就能够实现一步极小化
如果)(X F 不是二次函数,则牛顿法一般不能在一步内收敛,是否收敛取决于具体的函数和初始点
尽管牛顿法的收敛速度通常比最速下降法快,但其表现很复杂,除了收敛到鞍点的问题外,算法还可能震荡和发散,如果学习速率不太快或每步都实现线性极小化,最速下降法能保证收敛
牛顿法的另一个问题是需要对赫森矩阵及其逆阵的计算和存储
共轭梯度法
牛顿法有一个性质成为二次终结法(quadratic temination ),即它能在有限迭代次数内使得二次函数极小化,但这需要计算和存储二阶导数,当参数个数很大时,计算所有二阶导数是很困难的。

假定对下述二次函数确定极小点:
c X
d AX X F T T
++=
2
1)x ( (18)
当且仅当j k AP P j T
k ≠=,0时,称向量集合{}k P 对于一个正定赫森矩阵A 两两共轭。

因为对称矩阵的特征向量是两两正交的。

已经证明,如果存在沿着一个共轭方向集{}
,,2,1n P P P 的精确线性搜索序列,就能够在最多n 此搜索内实现具有n 个参数的二次函数的精确极小化。

注意到对于二次函数,有
A
X F d AX X F =∇+=∇)()(2 (19)
由于k k k k X A g g g ∆=-=∆+1,又有k k k k k P a X X X =-=∆+)(1,选择k a 使函数)(X F 在k P 方向上极小化,则共轭条件可重写称
j k P g AP X AP P a j T
k j T
k j T
k k ≠=∆=∆=,0 (20) 注意,第一次搜索方向0P 是任意的,而1P 是与0g ∆垂直的任意向量。

所以共轭向量集的数量是无限的。

通常从最速下降法的方向开始搜索:00g P -=
每次迭代都要构造一个与{}n g g g ∆∆∆ ,,10正交的向量k P 。

可以将迭代形式简化为 1-+-=k k k k P g P β (21) 通常选择
1
-1-k T
k
T k P g g g k k ∆∆=
β或1
-1-k T
k T k g g g g k k =
β或1
-1-1-k T
k
T k g g g g k k ∆=
β
综上,算法可以归纳为:
1、选择如00g P -=的与梯度相反的方向作为第一次搜索方向
2、根据k k k k k P a X X X =-=∆++)(11进行下一步搜索,确定k a 以使函数沿搜索方向极小化
3、根据k k k k P g P 111++++-=β确定下一个搜索方向,计算1+k β
4、如果算法不收敛,回到第2步
算法比较
梯度下降法形式简单,一般情况下都能够保证收敛,但是收敛速度慢 牛顿法对于二次目标函数收敛速度快,但是不能够保证收敛,而且需要对赫森矩阵及其逆阵的计算和存储
共轭梯度法结合了前面两种方法的性质,收敛速度快,不需要对赫森矩阵及其逆阵的计算和存储,但是形式比前两者复杂
Welcome !!! 欢迎您的下载,资料仅供参考!。

相关文档
最新文档