数列基本量计算

合集下载

等差数列与等比数列的基本量运算

等差数列与等比数列的基本量运算

等差数列与等比数列运算知识点:一.等差数列 1.等差数列基本概念⑴等差数列的概念:如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,常用字母d 表示. 即等差数列有递推公式:1(1)n n a a d n +-=≥. ⑵等差数列的通项公式为:1(1)n a a n d =+-.⑶等差中项:如果三个数,,x A y 组成等差数列,那么A 叫做x 和y 的等差中项,即2x yA +=. ⑷等差数列的前n 项和公式:211()(1)22n n n a a n n S na d An Bn +-==+=+. 1.等差数列通项公式的推导:2132121n n n n a a d a a da a d a a d----=-=-=-=,将这1n -个式子的等号两边分别相加得:1(1)n a a n d -=-,即1(1)n a a n d =+-.由等差数列的通项公式易知:()n m a a n m d -=-. 2.等差数列前n 项和公式的推导:1111()(2)[(1)]n S a a d a d a n d =+++++++-,把项的顺序反过来,可将n S 写成:()(2)[(1)]n n n n n S a a d a d a n d =+-+-++--,将这两式相加得:11112()()()()n n n n n S a a a a a a n a a =++++++=+,从而得到等差数列的前n 项和公式1()2n n n a a S +=,又1(1)n a a n d =+-, 得11()(1)22n n n a a n n S na d +-==+. 二.等比数列1. 等比数列的概念:如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,常用字母(0)q q ≠表示.2. 等比数列的通项公式为:11n n a a q -=.3. 等比中项:如果三个数,,x G y 组成等比数列,那么G 叫做x 和y 的等比中项,即2G xy =.两个正数(或两个负数)的等比中项有两个,它们互为相反数;一个正数与一个负数没有等比中项.1.等比数列通项公式的推导: 由等比数列的定义知:312412321,,,,,n n n n a a aa aq q q q q a a a a a ---===== 将这1n -个式子的等号两边分别相乘得:11n na q a -=,即11n n a a q -=. 由等比数列的通项公式易知:n m nma q a -=.一、等差数列中基本量的运算:a 1,a n ,n ,d ,S n 知三求二 ①基本量运算{}28454565651.,6,6,....n a a a A S S B S S C S S D S S =-=<=<=(一星)是等差数列且则()解:1994500a a S S S +=⇒=⇒=.选B.{}18451845184518452.,0,....n a d A a a a a B a a a a C a a a a D a a a a ≠><+>+=(一星)如果是正项等差数列公差则()答案:B.3,4,3,2550,,.k .a a k S a k =(一星)等差数列前三项为前项和求的值答案:2,50a k ==7.(二星)(2015年全国1)已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( )(A ) 172 (B )192(C )10 (D )12 答案:B7.(三星)(全国1理科)设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m = ( )A.3B.4C.5D.6 解:有题意知==0,∴=-=-(-)=-2,=-=3,∴公差=-=1,∴3==-,∴=5,故选C.2.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(3)n ≥从左向右的第3个数为 .4.(二星)已知是等差数列,公差不为零,前项和是,若,,成等比数列,则( ) A.B.B.C. D.(3)(2016全国1卷理)已知等差数列}{n a 前9项的和为27,810=a ,则=100a(A )100(B )99(C )98 (D )97解:由等差数列性质可知:()1959599292722a a a S a +⨯====,故53a =, 而108a =,因此公差1051105a a d -==- ∴100109098a a d =+=.故选C .4.(2017全国1卷理)记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为( ) A .1B .2C .4D .8解:45113424a a a d a d +=+++=61656482S a d ⨯=+= 联立求得11272461548a d a d +=⎧⎪⎨+=⎪⎩①② 3⨯-①②得()211524-=d624d = 4d =∴.选C3.(2018广州市调研理)在等差数列{}n a 中,已知22a =,前7项和756S =,则公差d =( )BA .2B .3C .2-D .3-4.(2018广州一模文)等差数列{}n a 的各项均不为零,其前n 项和为n S ,若212n n n a a a ++=+,则21=n S +(A )A .42n +B .4nC .21n +D .2n4.(2018全国1理)设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a B A .12- B .10- C .10 D .129. (2019全国1卷理)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A. 25n a n =- B.310n a n =-C. 228n S n n =-D. 2122n S n n =- 解:由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .18.(2019全国1卷文)记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解:(1)设{}n a 的公差为d .由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-. (2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a 等价于211100n n -+,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n ∈N .14.(2019全国高考3卷理)记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =________.414.(2019全国3卷文)记S n 为等差数列{a n }的前n 项和,若375,13a a ==,则10S =___________.15. (2018广东一模文)已知数列{}n a 的前n 项和为n S ,且23122n S n n =+,则5a = .146. (2018广东一模文)等差数列()()()333log 2,log 3,log 42,x x x +的第四项等于( A )A .3B .4 C. 3log 18 D .3log 24 ②创新题1.(2016全国2卷文)等差数列{}n a 中,且344a a +=,576a a +=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)记[]n n a b =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]26.2=.解:(Ⅰ)设数列{}n a 的公差为d ,由题意有11254,53a d a d -=-=,解得121,5a d ==,所以{}n a 的通项公式为235n n a +=.(Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦,当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=;当n=6,7,8时,2334,35n n b +≤<=;当n=9,10时,2345,45n n b +≤<=,所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=.17.(2016全国2卷理)n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=.(Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和. 解: ⑴设的公差为,,∴,∴,∴. ∴,,. ⑵记的前项和为,则. 当时,; 当时,; 当时,; 当时,.∴.(17)(2017届广州市调研文)等差数列}{n a 中,1243=+a a ,749S =. (Ⅰ)求数列}{n a 的通项公式;(Ⅰ)记][x 表示不超过x 的最大整数,如0]9.0[=,2]6.2[= . 令][lg n n a b =,求数列}{n b 的前2000项和.解:(Ⅰ)由1243=+a a ,749S =,得112512,72149.a d a d +=⎧⎨+=⎩{}n a d 74728S a ==44a =4113a a d -==1(1)n a a n d n =+-=[][]11lg lg10b a ===[][]1111lg lg111b a ===[][]101101101lg lg 2b a ==={}n b n n T 1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+0lg 1n a <≤129n =⋅⋅⋅,,,1lg 2n a <≤101199n =⋅⋅⋅,,,2lg 3n a <≤100101999n =⋅⋅⋅,,,lg 3n a =1000n =1000091902900311893T =⨯+⨯+⨯+⨯=解得11=a ,2=d , 所以12-=n a n .(Ⅰ))]12[lg(][lg -==n a b n n , 当51≤≤n 时, 0)]12[lg(=-=n b n ;当506≤≤n 时, 1)]12[lg(=-=n b n ; 当50051≤≤n 时, 2)]12[lg(=-=n b n ; 当5012000n ≤≤时, 3)]12[lg(=-=n b n .所以数列}{n b 的前2000项和为544515003450245150=⨯+⨯+⨯+⨯.③与其他内容结合4546.(){},10,15,___.n n a n S S S a ≥≤四星设等差数列的前项和为若则的最大值为4141115110235:3(23)3(2) 4. 4.1523S a d a a d a d a d S a d ≥+≥⎧⎧⇒⇒=+=-+++≤⎨⎨≤+≤⎩⎩解答案为二、等比数列中基本量的运算 ①基本量运算1.1,,,,9,.3,9.3,9.3,9.3,9a b c Ab ac B b ac C b ac D b ac --===-===-=-=-(一星)若成等比数列则()答案:B3102.,3,384,______a a ==(一星)等比数列中则通项公式为答案:332n n a -=⋅364714.,36,18,,____2n a a a a a n +=+===(一星)等比数列中答案:9n =13、(一星)(2015全国1)数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .答案:67.(一星)(2015全国2理)等比数列{a n }满足a 1=3,135a a a ++=21,则357a a a ++=( )A .21B .42C .63D .84 答案:B12.(一星)(2015全国2文)已知等比数列满足,,则( ) A. 2 B. 1 C. D. 答案:C5.(二星)(全国理)已知{}n a 为等比数列,47562,8a a a a +==-,则110a a +=A .7B .5C .-5D .-7 解:因为{}n a 是等比数列,所以56478a a a a ==-,所以47,a a 是方程2280x x --=的两根,解得4x =或2x =-。

数列基本量的计算

数列基本量的计算

证明: 【解】 (1)证明:Sn-Sn-1+2Sn·Sn-1=0,两边同除 证明 , 1 1 1 1 以 Sn·Sn-1, 得 -S +2=0, S - = , 即 =2(n≥2), ≥ , Sn-1 Sn-1 n n 1 1 1 为首项, 为公差的等差数列. ∴{S }是以 = =2 为首项,2 为公差的等差数列. 是以 S1 a1 n 1 1 (2)由(1)知S = +(n-1)d=2+(n-1)×2=2n, 由 知 - = + - × = , S1 n 1 ∴Sn= . 2n
第5章 章
数 列
2012高考 高考
江苏考纲解读 1.了解数列的概念及数列通项公式的意义. .了解数列的概念及数列通项公式的意义. 2.理解等差数列的概念 , 掌握等差数列的通项公式 .理解等差数列的概念, 与前n项和公式,并能解决简单的实际问题. 与前 项和公式,并能解决简单的实际问题. 项和公式 3.理解等比数列的概念 , 掌握等比数列的通项公式 .理解等比数列的概念, 与前n项和公式,并能解决简单的实际问题. 与前 项和公式,并能解决简单的实际问题. 项和公式
3.数列的表示方法 . 数列的表示方法有_________、 公式法 、 数列的表示方法有 列举法 、__________、 图象法. 图象法. ________ 4.数列的分类 .
有穷数列:项数有限 有穷数列: 按项分类 无穷数列: 无穷数列:项数无限
递减数列:对于任何 ∈N ,均有 <a 按 a 的增 递减数列:对于任何n∈ 均有a 减性分类摆动数列: 例如 :- , 1,- , 1,… 摆动数列:例如:- :-1, ,- ,-1, , 常数数列:例如:8,8,8,8,… 常数数列:例如: , , , ,
为零的等差数列, 项和, 为零的等差数列,Sn 为其前 n 项和,满足 a2+a2=a2+a2,S7=7. 2 3 4 5 (1)求数列 n}的通项公式及前 n 项和 Sn; 求数列{a 的通项公式及前 求数列 amam+1 (2)试求所有的正整数 m, 试求所有的正整数 , 使得 为数列 am+2 {an}中的项. 中的项. 中的项

等差数列基本量计算

等差数列基本量计算
+45d=20+135=155.故选 C.
21.(2019·课标全国Ⅰ)记 Sn 为等差数列{an}的前 n 项和.已知 S9=-a5.
(1)若 a3=4,求{an}的通项公式;
(2)若 a1>0,求使得 Sn≥an 的 n 的取值范围.
解析(1)设{an}的公差为 d.由 S9=-a5 得 a1+4d=0.由 a3=4 得 a1+2d=4.
10
5
=
4
.
解析 令公差为
10 10 1+90 1 100 1
d,则 d=a2-a1=2a1,所以 = 5 +20 = 25 =4.
5
1
1
1
2019
11.等差数列{an}中,若 S1=1,S5=15,则2019 =( D ).
A.2019
B.1
C.1009
D.1010
5×4
解析 因为等差数列{an}中,S1=1,S5=15,所以 S15=5×1+
d=40.
d=3.
2
法二:由 S5=5a3=40,得 a3=8.所以 a2+a5=a3-d+a3+2d=2a3+d=16+d=
19,得 d=3.所以 a10=a3+7d=8+3×7=29.
14.已知数列{an}是等差数列,若 a1=2,an=-26,Sn=-84,求公差 d;
-26=2+(n-1)d,
7
7(a1+a7)
2 2
所以 2a3= a3 ,又 an>0,所以 a3=7.因为 S7=
=7a4=63,所以 a4
7
2
=9.所以 d=a4-a3=2,所以 an=a3+(n-3)d=2n+1.
16.设等差数列{an}的前 n 项和为 Sn.若 a3+a5=4,S15=60,则 a20=(

数学人教A版高中必修5数列专题 : 等差、等比数列的基本量计算复习(学生版)

数学人教A版高中必修5数列专题 : 等差、等比数列的基本量计算复习(学生版)

1
1 1 1 ;
n(n 1) n n 1
升级: 1 1 (1 1 )
n(n k) k n n k
变式:
n
1 2-
(n 1
2)=
1= n2 3n 2
1
(2n 1)(2n 1)
专题:数列
微专题 1:等差、等比数列的基本量计算
立足于两数列的概念,设出相应基本量:
an 等差: a1, d , n, an, Sn
bn 等比: b1, q, n,bn, Sn (方程思想)
1、已知公差不为 0 的等差数列{an}的前 n 项和为 Sn,S1+1,S3,S4 成等差数列, 且 a1,a2,a5 成等比数列。 (1)求数列{an}的通项公式; (2)若 S4,S6,Sn 成等比数列,求 n 及此等比数列的公比。
an
a1
(n 1)(3 2
2n
1)
=n 2
1, Q
a1
1 an
n2
练习:已知数列an满足 a1 2 ,且 an an1 2n (n 2, n N ) ,求数列 an
的通项公式。
4、累乘法( 形如
an f (n) an1

例:已知数列 an满足 a1
2 ,且
an an1
1
1 n
N)
,求数列 an 的通项
公式。
6、构造法
方向 1:构造成等差数列( 形如
an1
pan p qan

解法:
(取倒法)两边取倒数 1 p qan 1 1 q ,构造成等差数列。
an1
pan
an1 an p
(同除法)分式变成整式
pan1 qanan1
pan

等比数列基本量运算

等比数列基本量运算

2018年7月29日高中数学作业1.已知等比数列{%}满足a】+ 32=3刁2 + 4 = 6,则a8=(A. 243B. 128 C81 D. 612,已知数列0」是公比为正数的等比数列,若5=1, 则数列心丿的前7项和为(A. 63 B. 64 C 127 D. 128屯53・正项等比数列b丿中,*3 = 2, a4・a6 = 64,则a^ + a?的值是(A. 4B. 8 C 16 D. 644,已知等比数列{%}的前n项和为Sn,若5“力6 = 3$3.则a©A. 2B. & C4 D. 15.已知等比数列b丿中,6=16,则a,A.4B. -4C. ±4D.16 6-在等比数列{%}中,己知*3 = 3, 33 + % +巧=21,则a5 A. 6 B. 9 C 12 D・ 18 7-数列{和为等比数列,若S = 3, 34 =弋则%为(A. -24B. 12 C 18 D. 24&已知等比数列{%}中,第% = 54,则%=(A. 54B. -81C. -729 D, 729 9.已知等比数列{%}的公比q = ・2,幷前n项的和为SqA. 7B.3 C・ 2 D・ 4若6$3 = 7$2,则公比为(10.已知各项均为正数的等比数列°丿的前n项和为SqA. -2B. 2 c・ 2 D・ 2 11.等比数列厲)的前n项和为Sq已知S3",$6 = 9,则Sg等于(A. 81B. 17C. 24D. 73 12-等比数列中2=3, dii=24r 则as+d;+G=(1A. 33B. 72C. 84D. 18913,数列{%}中,5 = 2, = (n e N *),则方円 + a?—+ ••①爪訂44%) 4宀1) -(』門A. 3 B・ 3 C. 3 4 D. 3 414.等比数列冋}中,*2 = 9, a5 = 243,扫」的前4项和为()A. 81B. 120C. 168D.⑼15.等比数列冋}中,3启"1 = 4:则数列{aj的公比为()A. 2 或-2B.4C. 2D.卫16,已知{时为等比数列,*5 + 38=2, 36*^7 = -^则*2 + ^广A. 5B. 7C. TD. -517.等比数列卩」中,= = 则%巧等于(A. 16B. ±4C.-4D.4Sof18-已知等比数列b丿中,5 = 2,督6=16,则弘-%的值为()A. 2B.4 C・ 8 D. 16 19.在等比数列{时中,4 +皆4,勺巳则公比q等于(A.・2B. 1 或-2C. 1D. 1或2 20.己知等比数列{和满足31 + 32=2^24 = 8,则$6的值为A. 21 B. 32 C 42 D. 170已知数列{qj满足%i=2q「a^+a,=2.则你+厲=<己知数列卯为正项等比数列,且2^2537 = 4则a2 + a6A. 8B. 16C. 32 D・ 64A. 1B.2C. 3D.423.已知等比数列{%}的前n项和为Sg若S2,S&S4成等差数列,贝ij %的值为24. 已知等比数列b丿的前n项和为Sg若S4=3,S I2・S8=12,则S 广25,已知正项等比数列的前n项和为沈•若2巧23 = %且S3 = 14•则驾=26. 设各项为正数的等比数列的前n项和为%已知a2 = 6, 3^-33^ = 12^则$5 =21- 22.27-己知等比数列{%}的前n项和S"二丈+ 1则巧+ r =28-等比数列{%}中,Sn为貝前C项和,若S.^f + a,则实数a的值为29.设等比数列{%}满足522=7, 6-6 = -3,则前4项的和$4 =30.等比数列心」的各项均为正数,且则100331 + 1003巧+・・・ + bg3ai031,1 1 1 1—+ — = 1/ — + — = 2在正项等比数列ej中,*3 a。

数列的定义与性质

数列的定义与性质

第5章 数列知识点一、数列的通项公式 1.数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常也叫做首项). 2.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. 3.数列的递推公式如果已知数列{a n }的第一项(或前几项),且任何一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,即a n =f (a n -1)(或a n =f (a n -1,a n -2)等),那么这个式子叫做数列{a n }的递推公式. 4.S n 与a n 的关系已知数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,这个关系式对任意数列均成立.二、数列的性质 数列的分类三、等差数列基本量的计算 1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+(1)2n n −d =1()2n n a a +.四、等差数列的基本性质及应用 等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d .(5)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1),遇见S 奇,S 偶时可分别运用性质及有关公式求解.(6){a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(7)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.五、等比数列基本量的计算 1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q =a 1-a n q1-q ,q ≠1. 六、等比数列的性质(1)若m +n =p +q ,则a m a n =a p a q ,其中m ,n ,p ,q ∈N *.特别地,若2s =p +r ,则a p a r =a 2s ,其中p ,s ,r ∈N *.对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的积即a 1a n =a 2a n -1=…=a k a n -k +1=….(2)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m (k ,m ∈N *).(3)若数列{a n },{b n }是两个项数相同的等比数列,则数列{ba n },{pa n qb n }和⎩⎨⎧⎭⎬⎫pa n qb n (其中b ,p ,q 是非零常数)也是等比数列. (4)S m +n =S n +q n S m =S m +q m S n .(5)当q ≠-1或q =-1且k 为奇数时,S k ,S 2k -S k ,S 3k -S 2k ,…是等比数列,其公比为q k . (6)若a 1a 2…a n =T n ,则T n ,T 2n T n ,T 3nT 2n,…成等比数列. (7)若数列{a n }的项数为2n ,S 偶与S 奇分别为偶数项与奇数项的和,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶=q . 七、数列求和1.公式法与分组转化法 (1)公式法直接利用等差数列、等比数列的前n 项和公式求和. (2)分组转化法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和后相加减. 2.倒序相加法与并项求和法 (1)倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式就是用此法推导的. (2)并项求和法在一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050. 3.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用错位相减法来求,如等比数列的前n项和公式就是用此法推导的.第5章 数列(1)一、选择题1.在数列1,2,7,10,13,…中,219是这个数列的( ) A .第16项 B .第24项 C .第26项 D .第28项2.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5= ( ) A .6116 B .259 C .2516 D .31153.在数列{a n }中,a n +1-a n =2,S n 为{a n }的前n 项和.若S 10=50,则数列{a n +a n +1}的前10项和为( )A .100B .110C .120D .1304.设S n 为数列{a n }的前n 项和,且S n =32(a n -1)(n ∈N *),则a n =( )A .3(3n -2n )B .3n +2C .3nD .3·2n -15.对于数列{a n },“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 6.已知数列{a n }满足:a 1=17,对于任意的n ∈N *,a n +1=72a n (1-a n ),则a 1413-a 1314=( )A .-27B .27C .-37D .377.定义np 1+p 2+…+p n为n 个正数p 1,p 2,…,p n 的“均倒数”,若已知数列{a n }的前n 项的“均倒数”为15n ,又b n =a n5.则b 10等于( )A .15B .17C .19D .218.已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x +2,x ≤2,a 2x 2-9x +11,x >2(a >0且a ≠1),若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .(0,1)B .⎣⎡⎭⎫83,3 C .(2,3) D .(1,3)9.对于数列{x n },若对任意n ∈N *,都有x n +x n +22<x n +1成立,则称数列{x n }为“减差数列”.设b n=2t -tn -12n -1,若数列b 3,b 4,b 5,…是“减差数列”,则实数t 的取值范围是( )A .(-1,+∞)B .(-∞,-1]C .(1,+∞)D .(-∞,1]10.已知数列{a n }满足:a 1=1,a n +1=a n a n +2(n ∈N *).若b n +1=(n -2λ)·⎝⎛⎭⎫1a n +1(n ∈N *),b 1=-32λ,且数列{b n }是单调递增数列,则实数λ的取值范围是( ) A .λ<45 B .λ<1 C .λ<32 D .λ<23二、填空题11.若数列{a n }满足a 1·a 2·a 3·…·a n =n 2+3n +2,则数列{a n }的通项公式为________.12.若a 1=1,对任意的n ∈N *,都有a n >0,且na 2n +1-(2n -1)a n +1a n -2a 2n =0.设M (x )表示整数x的个位数字,则M (a 2017)=________.13.若数列{a n }满足a 1=12,a n =1-1a n -1(n ≥2且n ∈N *),则a 2016等于________.14.已知各项均为正数的数列{a n }满足a n +1=a n 2+14,a 1=72,S n 为数列{a n }的前n 项和,若对于任意的n ∈N *,不等式12k12+n -2S n≥2n -3恒成立,则实数k 的取值范围为________.三、解答题15.已知数列{a n }的前n 项和为S n ,且对任意正整数n 都有a n =34S n +2成立.记b n =log 2a n ,求数列{b n }的通项公式.16.设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11000成立的n 的最小值.第5章 数列(2)一、选择题1.已知{a n }为等差数列,其前n 项和为S n ,若a 3=6,S 3=12,则a 10等于( ) A .18 B .20 C .16 D .222.若等差数列{a n }的前n 项和为S n ,且满足S 4=4,S 6=12,则S 2=( ) A .-1 B .0 C .1 D .33.《张丘建算经》卷上第22题为:“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.”其意思为今有女子善织布,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现在一个月(按30天计)共织390尺布.则该女最后一天织多少尺布?( ) A .18 B .20 C .21 D .254.已知等差数列{a n }的前10项和为30,a 6=8,则a 100=( ) A .100 B .958 C .948 D .185.等差数列{a n }的前n 项和为S n ,若S n a n =n +12,则下列结论中正确的是( )A .a 2a 3=2B .a 2a 3=32C .a 2a 3=23D .a 2a 3=136.已知函数f (x )在(-1,+∞)上单调,且函数y =f (x -2)的图象关于直线x =1对称,若数列{a n }是公差不为0的等差数列,且f (a 50)=f (a 51),则数列{a n }的前100项的和为( ) A .-200 B .-100 C .0 D .-507.若{a n }是等差数列,首项a 1>0,a 2016+a 2017>0,a 2016·a 2017<0,则使前n 项和S n >0成立的最大正整数n 是( )A .2016B .2017C .4032D .40338.中国历法推测遵循以测为辅、以算为主的原则.例如《周髀算经》和《易经》里对二十四节气的晷(ɡuǐ)影长的记录中,冬至和夏至的晷影长是实测得到的,其他节气的晷影长则是按照等差数列的规律计算得出的.下表为《周髀算经》对二十四节气晷影长的记录,其中115.146寸表示115寸146分(1寸=10分).已知《易经》中记录的冬至晷影长为130.0寸,夏至晷影长为14.8寸,那么《易经》中所记录的惊蛰的晷影长应为( )A .72.4寸B .81.4寸C .82.0寸D .91.6寸9.已知数列{a n }是首项为a ,公差为1的等差数列,数列{b n }满足b n =1+a na n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围是( )A .(-8,-7)B .[-8,-7)C .(-8,-7]D .[-8,-7]10.已知等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,如果当n =m 时,S n 最小,那么m 的值为( )A .10B .9C .5D .4 二、填空题11.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 12.已知函数f (x )=cos x ,x ∈(0,2π)有两个不同的零点x 1,x 2,且方程f (x )=m 有两个不同的实根x 3,x 4,若把这四个数按从小到大排列构成等差数列,则实数m =________.13.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为________. 14.已知数列{a n }是各项均不为零的等差数列,S n 为其前n 项和,且a n =S 2n -1(n ∈N *).若不等式λa n ≤n +8n 对任意n ∈N *恒成立,则实数λ的最大值为________. 三、解答题15.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且A ,B ,C 成等差数列.(1)若a =1,b =3,求sin C ;(2)若a ,b ,c 成等差数列,试判断△ABC 的形状. 16.数列{a n }满足a 1=12,a n +1=12-a n(n ∈N *).(1)求证:⎩⎨⎧⎭⎬⎫1a n -1为等差数列,并求出{a n }的通项公式;(2)设b n =1a n -1,数列{b n }的前n 项和为B n ,对任意n ≥2都有B 3n -B n >m20成立,求正整数m的最大值.第5章 数列(3)一、选择题1.已知数列{a n }为等比数列,a 5=1,a 9=81,则a 7=( ) A .9或-9 B .9 C .27或-27 D .272.数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于( )A .1B .-1C .12D .23.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .192里B .96里C .48里D .24里4.设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m =( ) A .3 B .4 C .5 D .65.等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( )A .-3B .5C .-31D .336.在各项均为正数的等比数列{a n }中,a 2,a 4+2,a 5成等差数列,a 1=2,S n 是数列{a n }的前n 项的和,则S 10-S 4=( )A .1008B .2016C .2032D .40327.已知{a n }是首项为1的等比数列,若S n 是数列{a n }的前n 项和,且28S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前4项和为( )A .158或4B .4027或4C .4027D .1588.已知S n 是等比数列{a n }的前n 项和,a 1=120,9S 3=S 6,设T n =a 1a 2a 3·…·a n ,则使T n 取最小值时n 的值为( )A .3B .4C .5D .69.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( ) A .6 B .7 C .8 D .910.已知正项等比数列{a n }满足:a 3=a 2+2a 1,若存在两项a m ,a n ,使得a m a n =4a 1,则1m +4n的最小值为( )A .32B .53C .256 D .不存在二、填空题11.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.12.若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=______. 13.已知S n 为数列{a n }的前n 项和,a n =2×3n -1(n ∈N *),若b n =a n +1S n S n +1,则b 1+b 2+…+b n =________.14.一正数等比数列前11项的几何平均数为32,从这11项中抽去一项后所余下的10项的几何平均数为32,那么抽去的这一项是第________项. 三、解答题15.已知{a n }是等差数列,满足a 1=2,a 4=14,数列{b n }满足b 1=1,b 4=6,且{a n -b n }是等比数列.(1)求数列{a n }和{b n }的通项公式;(2)若∀n ∈N *,都有b n ≤b k 成立,求正整数k 的值.16.设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1. (1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列;(3)求数列{a n }的通项公式.第5章 数列(4)一、选择题1.已知等差数列{a n }的前n 项和为S n ,且S 2=10,S 5=55,则a n +100+a n -98=( )A .8n +6B .4n +1C .8n +3D .4n +32.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( ) A .1 B .2 C .4 D .63.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n =7n n +3,则a 5b 5=( ) A .23 B .278 C .7 D .2144.已知函数f (n )=⎩⎪⎨⎪⎧n 2,当n 为正奇数时,-n 2,当n 为正偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .1025.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前2018项的和等于( ) A .1512 B .1513 C .1513.5 D .20186.在数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( )A .(3n -1)2B .12(9n -1)C .9n -1D .14(3n -1) 7.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+…+S 2017的值为( )A .20142015B .20152016C .20162017D .201720188.已知{a n }为等比数列,S n 是它的前n 项和.若a 3a 5=14a 1,且a 4与a 7的等差中项为98,则S 5等于( )A .35B .33C .31D .299.已知等比数列{a n }的前n 项和为S n ,则下列说法中一定成立的是( )A .若a 3>0,则a 2017<0B .若a 4>0,则a 2018<0C .若a 3>0,则S 2017>0D .若a 4>0,则S 2018>010.已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=33,b 1+b 6+b 11=7π,则tan b 3+b 91-a 4·a 8的值是( ) A .1 B .22 C .-22D .-3 二、填空题11.S n =1+11+111+…+=________. 12.数列{a n }满足:a 1=43,且a n +1=4(n +1)a n 3a n +n(n ∈N *),则1a 1+2a 2+3a 3+…+2018a 2018=________. 13.设f (x )=12x +2,利用课本中推导等差数列前n 项和的公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为________.14.已知数列{a n }的各项均为正整数,其前n 项和为S n ,若a n +1=⎩⎪⎨⎪⎧a n +12,a n 是奇数,3a n -1,a n 是偶数且S 3=10,则S 2016=________.三、解答题15.已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列;(2)求数列{S n }的前n 项和T n .16.已知各项均为正数的数列{a n }的前n 项和为S n ,满足a 2n +1=2S n +n +4,a 2-1,a 3,a 7恰为等比数列{b n }的前3项.(1)求数列{a n },{b n }的通项公式;(2)若c n =log 2b n b n -1a n a n +1,求数列{c n }的前n 项和T n . 17.已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.(1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .18.在等比数列{a n }中,a 1>0,n ∈N *,且a 3-a 2=8,又a 1,a 5的等比中项为16.(1)求数列{a n }的通项公式;(2)设b n =log 4a n ,数列{b n }的前n 项和为S n ,是否存在正整数k ,使得1S 1+1S 2+1S 3+…+1S n<k对任意n∈N*恒成立,若存在,求出正整数k的最小值;若不存在,请说明理由.。

02教学课件_5.3.1 等比数列基本量的计算

02教学课件_5.3.1 等比数列基本量的计算
则应有 G2=a5a7=a1q4·a1q6=a21q10 =962×1210=9.
所以 a5,a7 的等比中项是±3. 方法总结:
只有同号的两项才有等比中项,并且这两项的等比中项有两 个,它们互为相反数;异号的两数没有等比中项.
本量表示出来,通过解方程组确定基本量. 注意等比数列的各项及公比均不为零 2.等比中项:同号的两项才有等比中项,且有两个,互为相反数.
aa11+ q-a1aq1+q4=a1q422=168

a1
1 + q + q2
= 168

a1q 1 - q3 = 42

因为 1-q3=(1-q)(1+q+q2),
所以由②除以①,得 q(1-q)=14. 所以 q=12.
典型例题
例2:等比数列{an}的前三项的和为168,a2-a5=42, 求a5,a7的等比中项. 所以 a1=12-42124 =96. 若 G 是 a5,a7 的等比中项,
等比数列基本量的计算
知识回顾
1. 什么是等比数列?等比数列的各项和公比有什么特殊要求? 各项都不为零、公比也不为零
2. 等比数列的通项公式是什么?与什么有关?
an=a1qn-1 q≠0
3. 等比数列的基本量是什么?如何求解?
典型例题
例1:在等比数列{an}中,
(1)a2=-
1 3
,a6=-27 ,求an ;
(2)a2+a5=18,a3+a6=9,an=1,求n.
解 (1)基本量的计算
已知量用基本量表
设等比数列{an}的公比为 q, 示出来
由已知得a1q=-13
, 解得a1=-19 或a1=19
a1q5=-27
q=3

解答数列题的当家法宝——基本量法

解答数列题的当家法宝——基本量法

记住 , 所 以部 分 同学 对 解 这 道 题 信 心 不 足. 如果 你 试 图 用 基 本 量 法 , 你 便 会 觉 得 很 简
单 :设 首 项 为
: = = 一2 , s 。 =

- -I 1 0 . 用 基本
n 。 , 则 由 条 件 可 得 量法过 程如下 , 由
f 1 2 。 +
所 以 q 一 , a 一 去 , 所 以 。 e 一 1 ・ ( ) 5
— 4 .
例 3 设 等 差数 列 { } 的 前 项 和 为
+1 —1 3项 , 问题 是为 什 么这 样做 ? 道
S . 已知 S : 3 5 4 , 且前 1 2项 中偶 数 项 和 与
I 新高 数学
解 答 数 列题 的 当家 法宝
江 苏省 扬州 市 新 华 中 学 朱
对待 数列 问 题 , 我 们往 往 认 为 只 有 熟 练 有 效 , 问题 也看 得更 透. 掌握 各类 技巧 才 能 驾驭 它 , 似乎 用 技 巧 才 会
节省 时 间 、 简化过程 , 因此, 在平 时训练 中 , 例 2 在 各 项 均 为 正 数 的 等 比 数 列
有几 项?
了. 但能想到这 点未必很容易 , 需 要 你 对 数
列有 较深 刻 的把 握 , 况 且 在 高 考 考 场 上有 时
候容 不 得 我 们 花 太 多 的 时 间去 想 解 题 的最 佳 方案 . 能 捉 到 老 鼠 的就 是 好 猫 , 干 脆 用 基 本量 法 : 由题 意 知 , n 1 q— l , n 1 q 一n 1 q +
2 a q 。 , g 一q -2 4 , q =2 , 因为各 项均 为 正数 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差等比的基本计算练习
1.若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = .
2.已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,
若125,,a a a 成等比数列,则8S = . 3.已知{}n a 为等比数列,6,3876321=++=++a a a a a a ,则131211a a a ++______=.
4.在等比数列}{n a 中,n S 为其前n 项和,若140,1330101030=+=S S S S ,则20S 的值为______
5.等比数列{}n a 的前n 项和为n S ,公比不为1,若11a =,且对任意的*
n ∈N ,都有2120n n n a a a +++-=, 则5S = . 6.各项均为正数的等比数列{}n a 中,若569a a ⋅=,则3132310log log log a a a +++=
7.已知等比数列}{n a 为递增数列,且251021,2()5n n n a a a a a ++=+=,则数列}{n a 的通项公式n a = .
设等比数列}{n a 的公比为q ,前n 项和为n S ,若12,,n n n S S S ++成等差数列,则q 的值为_____
8.设数列{}n a 为等差数列,{}n b 为等比数列,111==b a ,342b a a =+,342a b b =,分别求出数列{}n a 和{}n b 的前10项和10S 及10T
9.已知等差数列{}n a 的前n 项和为n S 满足30S =,55S =-.
(1)求{}n a 的通项公式; (2)求数列21231n n a a --⎧⎫⎨
⎬⎩⎭
的前n 项和.
10.在公差为d 的等差数列{}n a 中,已知110a =,且1a ,222a +,35a 成等比数列.(1)求,n d a ; (2)若0d <,求123n a a a a ++++.
11.已知等差数列}{n a 满足:21=a ,且1a ,2a ,5a 成等比数列.
(1)求数列}{n a 的通项公式;
(2)记n S 为数列}{n a 的前n 项和,是否存在正整数n ,使得?80060+>n S n 若存在,求n 的最小值;若不存在,说明理由.。

相关文档
最新文档